Defense Date

2017

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Engineering

First Advisor

Vamsi K Yadavalli

Abstract

Advances in the biomedical field require functional materials and processes that can lead to devices that are biocompatible, and biodegradable while maintaining high performance and mechanical conformability. In this context, a current shift in focus is towards natural polymers as not only the structural but also functional components of such devices. This poses material-specific functionalization and fabrication related questions in the design and fabrication of such systems. Silk protein biopolymers from the silkworm show tremendous promise in this regard due to intrinsic properties: mechanical performance, optical transparency, biocompatibility, biodegradability, processability, and the ability to entrap and stabilize biomolecules. The unique ensemble of properties indicates opportunities to employ this material into numerous biomedical applications. However, specific processing, functionalization, and fabrication techniques are required to make a successful transition from the silk cocoon to silk-based devices. This research is focused on these challenges to form silk-based functional material and devices for application in areas of therapeutics, bio-optics, and bioelectronics.

To make silk proteins mechanically conformable to biological tissues, the first exploration is directed towards the realization of precisely micro-patterned silk proteins in flexible formats. The optical properties of silk proteins are investigated by showing the angle-dependent iridescent behavior of micropatterned proteins, and developing soft micro-optical devices for light concentration and focusing. The optical characteristics and fabrication process reported in the work can lead to the future application of silk proteins in flexible optics and electronics.

The microfabrication process of silk proteins is further extended to form shape-defined silk protein microparticles. Here, the specificity of shape and the ability to form monodisperse shapes can be used as shape encoded efficient cargo and contrast agents. Also, these particles can efficiently entrap and stabilize biomolecules for drug delivery and bioimaging applications.

Next, a smart confluence of silk sericin and a synthetic functional polymer PEDOT:PSS is shown. The composite materials obtained have synergistic effects from both polymers. Silk proteins impart biodegradability and patternability, while the intrinsically conductive PEDOT:PSS imparts electrical conductivity and electrochemical activity. Conductive micro architectures on rigid as well as flexible formats are shown via a green, water-based fabrication process. The applications of the composite are successfully demonstrated by realizing biosensing and energy storage devices on rigid or flexible forms. The versatility of the approach will lead to the development of a variety of applications such as in bio-optics, bioelectronics, and in the fundamental study of cellular bio electrogenic environments.

Finally, to expand the applicability of reported functional polymers and composites beyond the microscale, a method for silk nano-patterning via electron beam lithography is explored. The technique enables one-step fabrication of user defined structures at the submicron and nano-scales. By virtue of acrylate chemistry, a very low energetic beam and dosage are required to form silk nano-architectures. Also, the process can form both positive and negative features depending on the dosage. The fabrication platform can also form nano scale patterns of the conductive composite. The conductive measurements confirm the formation of conductive nanowires and the ability of silk sericin to entrap PEDOT:PSS particles in nanoscale features.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

8-2-2017