Defense Date

2010

Document Type

Thesis

Degree Name

Master of Science

Department

Physiology

First Advisor

Hiroshi Miyazaki

Abstract

Extracellular signal-regulated kinases (ERKs) modulate cellular activities in response to extracellular stimuli and play important biological roles. Thus, perturbed kinase pathways induce pathological conditions, such as tumor development. Rit, a novel member of the Ras family GTPases, activase ERK6, and its over-expression confers tumorigenicity. We hypothesized the presence of scaffolding molecules specific to ERK6, similar to other known MAP kinases. We performed yeast two-hybrid assays using ERK6 as bait, and Scribble was identified as a binding partner. Scribble contains 16 LRR domains and four PDZ domains. We performed immunoprecipitation (IP) assays and discovered ERK2 as another binding partner. Surprisingly, no interaction was observed with the highly homologous MAP kinase, ERK1. No other representative kinases showed binding capabilities with Scribble. IP data confirmed that both ERK2 and ERK6 bind to Scribble through its LRR and PDZ domains. Deletion of ten aminoi acids from the C-terminus of ERK2 and ERK6 abolished these interactions. In vitro kinase assays indicated the kinase suppressing ability of Scribble. Focus formation assays were performed with RitQ79L and H-RasV12 as constitutive activators of ERK6 and ERK2, respectively, in the presence of Scribble. Results confirmed the role of Scribble as a tumor suppressor.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

May 2010

Included in

Physiology Commons

Share

COinS