Defense Date

2007

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Human Genetics

First Advisor

Dr. Shawn E. Holt

Abstract

Telomerase, a ribonucleoprotein enzyme minimally composed of an RNA template (hTR) and a catalytically active protein subunit (hTERT), synthesizes telomeric repeats onto chromosome ends and is obligatory for continuous tumor cell proliferation, as well as malignant progression of breast cancer cells. Telomerase is an attractive anticancer therapeutic target because its activity is present in over 90% of human cancers, including more than 95% of breast carcinomas, but undetectable in most somatic cells. Traditions chemo- and radio-therapies lack the ability to effectively control and cure breast cancer, in part because residual cells are or become resistant to DNA damaging modalities.While various telomerase inhibition strategies cause cancer cells to undergo apoptosis car senescence, there is often a lag period between administration and biologic effect (Corey, 2002). Our goal in this study was to compare the efficacy of different telomerase inhibition strategies in concert with standard chemotherapeutic agents at triggering senescence and/or apoptosis in cultures of breast cancer cells. We hypothesized that telomerase inhibition strategies will sensitize breast cancer cells to traditional chemotherapies, potentially reducing the lag phase, allowing for more potent anti-tumor effects at lower doses, and therefore ultimately imparting less toxicity to the patient.We blocked telomerase by targeting hTR and hTERT, individually and collectively utilizing synthetic short interfering RNA (siRNA), short hairpin RNA (siRNA), and a dominant negative form of hTERT (DN-hTERT) in MCF-7 breast cancer cells. We analyzed the efficiency of telomerase inhibition for each strategy alone and then treated the cells with two mainstay chemotherapeutic agents, Adriamycin (AdR) and Taxol. The most effective telomerase inhibition strategies were synthetic siRNA and DN-hTERT, individually. After treatment with various concentrations of AdR or Taxol, breast cancer cells with inhibited telomerase grew significantly slower and exhibited widespread senescence or apoptosis within a much shorter time period and at a dose that is insufficient to trigger cytostasis. In addition, we provide evidence that cells in which telomerase was inhibited were more sensitive to anti-cancer agents, whether the drug inhibited topoisomerase II resulting in DNA damage (AdR) or blocked mitosis via protracted microtubule stabilization (Taxol). Collectively, our data indicate that alone, anti-telomerase inhibition strategies differ in their efficacy. However, when used in the adjuvant setting with diverse acting chemotherapeutic agents, there is a potent synergy resulting in chemotherapeutic sensitization characterized in part by widespread senescence and/or apoptosis.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Share

COinS