DOI

https://doi.org/10.25772/NPWA-Z721

Defense Date

2004

Document Type

Dissertation

Degree Name

Doctor of Philosophy

Department

Physiology

First Advisor

Dr. Roland N. Pittman

Abstract

Skeletal muscle dysfunction in chronic obstructive pulmonary disease (COPD) is a condition in which peripheral skeletal muscle undergoes myopathic changes which impair muscle function, limit physical performance, and can lead to significant disability. While the etiology of the dysfunction is unknown, this study was conducted to test the hypothesis that chronic hypoxemia leads to alterations in oxygen transport and muscle function. A primary objective was to validate elastase-induced emphysema in rats as an animal model of skeletal muscle dysfunction in COPD.Arterial blood gases were used to determine the severity of hypoxemia and sodium dodecyl sulfate- polyacrylamide gel electrophoresis was used to determine the proportions of myosin heavy chain isoforms I, IIa, IIx, and IIb. Measures of microvascular oxygenation and blood flow in the spinotrapezius muscle allowed for determination of both convective and diffusive oxygen supply to the muscle, as well as calculation of muscle oxygen consumption at rest and during electrically stimulated three-minute muscle contractions. Muscle performance measures included peak force, force-time integral, and fatigue index. Due to a presumed rat respiratory virus, which likely resulted in the control group being nearly as hypoxemic as the elastase-induced emphysema group, this study was not able to definitively test the hypothesis that chronic hypoxemia leads to both a diminished supply and demand of oxygen in skeletal muscle. Although many of the results of the present study were not statistically significant, they exhibited consistent trends over time and are likely of physiological significance. All measures of muscle performance were lower in the emphysema group. In addition, spinotrapezius muscle oxygen consumption and blood flow were lower in the emphysema group. The addition of supplemental oxygen during isolated, small-muscle mass exercise did increase the force-time integral by ~18% in both groups, suggesting that muscle work in these hypoxemic animals may be limited by oxygen supply. Thus, the data on muscle fiber type, oxygen consumption and muscle performance suggest that elastase-induced emphysema in rats leads to a similar skeletal muscle dysfunction that is observed in humans with COPD, and indicates that it is a valid animal model of skeletal muscle dysfunction in COPD.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Included in

Physiology Commons

Share

COinS