This work is part of a retrospective collection of 179 electronic theses and dissertations (ETDs) from the VCU Libraries pilot ETD system that were designated as available only to VCU users. Please contact us at if you have questions or if you are the author of one of these and would like to release it for online public access.

Non-VCU users: Please talk to your librarian about requesting this thesis through interlibrary loan.

Defense Date

2007

DOI

https://doi.org/10.25772/J5RA-MD64

Document Type

Thesis

Degree Name

Master of Science

Department

Biology

First Advisor

Dr. Raj Rao

Abstract

Transwell inserts with microporous membranes, available from multiple commercial sources, have been widely used for various mammalian cell culture applications, including the reduction of cell culture mixing. In this study, we examined the feasibility and functionality of using this technology for separating human embryonic stem cells (hESCs) from their respective feeder cells. We found that when hESCs were propagated on transwell inserts positioned directly above feeder cells grown in a separate dish, the hESCs could be maintained in an undifferentiated state for over 10 passages with no change in their basic pluripotent characteristics. In parallel with our transwell insert experiments, we also evaluated the ability of a new defined, xeno-free medium, HEScGRO™, to enhance the animal-free characteristics of the transwell insert-based culture system. Results from our studies demonstrate that HEScGRO™ medium assists in maintaining the pluripotent characteristics of hESCs propagated in the transwell insert- based culture system. These combined results represent a significant development in properly segregating stem cells from their feeders, thus eliminating cell mixing, contamination, and providing the cells with a superior environment for nourishment and controlled self-renewal. Overall, this development in hESC propagation could have wide-reaching applications for self-renewal and differentiation studies within the field of stem cell biology.

Comments

Part of Retrospective ETD Collection, restricted to VCU only.

Rights

© The Author

Is Part Of

VCU University Archives

Is Part Of

VCU Theses and Dissertations

Date of Submission

June 2008

Share

COinS