Files

Download

Download Full Text (2.3 MB)

Abstract

A current trend in biodevices has involved a shift from traditional rigid platforms to flexible and stretchable formats. These flexible devices are expected to have a significant impact on future healthcare, disease diagnostics and therapeutics. However, the fabrication of such flexible devices has been limited by the choice of materials. Biomimetic composites of naturally derived and synthetic polymers provide exciting opportunities to develop mechanically flexible, physiologically compliant, and degradable bioelectronic systems. Advantages include the ability to provide conformal contact at non-planar biointerfaces, being able to be degraded at controllable rate, and invoking minimal reactions within the body. These factors present great potential as implantable devices for in-vivo applications, while also addressing concerns with “electronic waste” by being intrinsically degradable. In this work, we present a combination of photo-crosslinkable silk proteins and conductive polymers to precisely fabricate flexible devices and cell culture substrate. A facile and scalable photolithography is applied to fabricate flexible substrates with conductive and non- conductive micropatterns which show tuneable electrical and mechanical properties. We also demonstrate an approach to engineer flexibility in materials through the creation of patterned defects inspired from Kirigami- the Japanese art of paper cutting. Mechanically flexible, free- standing, optically transparent, large-area biomaterial sheets with precisely defined and computationally designed microscale cuts can be formed using a single-step photolithographic process. As composites with conducting polymers, flexible, intrinsically electroactive sheets can be formed. Through this work, the possibility of making next- generation, fully organic, flexible bioelectronics is explored.

Publication Date

2020

Disciplines

Engineering

Is Part Of

VCU Graduate Research Posters

Photolithographic micropatterning of organic, flexible biomaterials and its applications

Included in

Engineering Commons

Share

COinS