Document Type

Article

Original Publication Date

2018

Journal/Book/Conference Title

Multisensory Research

Volume

31

Issue

8

First Page

793

Last Page

823

DOI of Original Publication

DOI:10.1163/22134808-20181316

Comments

This is the pre-publication, non-copy-edited version of the article.

Date of Submission

November 2018

Abstract

Current theory supports that the numerous functional areas of the cerebral cortex are organized and function as a network. Using connectional databases and computational approaches, the cerebral network has been demonstrated to exhibit a hierarchical structure composed of areas, clusters and, ultimately, hubs. Hubs are highly connected, higher-order regions that also facilitate communication between different sensory modalities. One region computationally identified network hub is the visual area of the Anterior Ectosylvian Sulcal cortex (AESc) of the cat. The Anterior Ectosylvian Visual area (AEV) is but one component of the AESc that also includes the auditory (Field of the Anterior Ectosylvian Sulcus - FAES) and somatosensory (Fourth somatosensory representation - SIV). To better understand the nature of cortical network hubs, the present report reviews the biological features of the AESc. Within the AESc, each area has extensive external cortical connections as well as among one another. Each of these core representations is separated by a transition zone characterized by bimodal neurons that share sensory properties of both adjoining core areas. Finally, core and transition zones are underlain by a continuous sheet of layer 5 neurons that project to common output structures. Altogether, these shared properties suggest that the collective AESc region represents a multiple sensory/multisensory cortical network hub. Ultimately, such an interconnected, composite structure adds complexity and biological detail to the understanding of cortical network hubs and their function in cortical processing.

Is Part Of

VCU Anatomy and Neurobiology Publications

Share

COinS