Document Type

Article

Original Publication Date

2009

Journal/Book/Conference Title

Malaria Journal

Volume

8

Issue

139

DOI of Original Publication

10.1186/1475-2875-8-139

Comments

Originally published at http://dx.doi.org/10.1186/1475-2875-8-139

Date of Submission

August 2014

Abstract

Background

Malaria is the third most prevalent cause of infectious disease in the world. Resistance of the parasite to classical drugs makes the discovery of new and effective drugs more urgent. The oxidized derivative of hydroxy-cis terpenone (OHCT) is a synthetic molecule that is not toxic to cultured human liver cells at concentrations as high as 60 μM and inhibits activity of cytochrome P450s that metabolize many drugs.

Methods

OHCT activity against chloroquine-sensitive and -resistant strains of Plasmodium falciparum, and aP. falciparum clone that is partially resistant to artemisinin was assayed in vitro.

Results

OHCT at nanomolar concentrations was effective against all intraerythrocytic stages of P. falciparum and exhibited activity in vitro against both chloroquine-sensitive and -resistant strains of P. falciparum as well as a P. falciparum clone that is partially resistant to artemisinin. Moreover, OHCT exhibited potent activity against gametocytes, the form that is transmitted by mosquitoes and essential for the spread of malaria.

Conclusion

OHCT displays strong growth inhibitory activity against all stages of P. falciparum and no evidence of toxicity to human cells in culture. It is easily synthesized and has the potential for inhibiting metabolism of drugs used in combination therapies.

Rights

© 2009 Mayer et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Is Part Of

VCU Biology Publications

COinS