Document Type


Original Publication Date


Journal/Book/Conference Title






First Page


Last Page


DOI of Original Publication



Originally published at

Funded in part by the VCU Libraries Open Access Publishing Fund.

Date of Submission

November 2017


Woody expansion has been documented for decades in many different systems globally, often yielding vast changes in ecosystem functioning. While causes and consequences of woody expansion have been well documented, few studies have addressed plant functional traits that promote dramatic and rapid expansion in range. Our objectives were to investigate plant functional traits that contribute to the colonization, rapid expansion, and thicket formation of an invasive, N-fixing shrub, Elaeagnus umbellata Thunb. (Elaeagnaceae), and a native, N-fixing shrub Morella cerifera (L.) Small (Myricaceae) and compare to native, sympatric, non-expanding shrub species. Quantified functional traits included morphological (e.g., specific leaf area, leaf area) and physiological characteristics (e.g., electron transport rate, hydraulic conductivity) and were linked to two primary resources: light and water, which directly influence plant growth. Elaeagnus umbellata and M. cerifera rely on different strategies to maximize carbon gain, yet resulting physiological efficiency is similar. Elaeagnus umbellata invests a substantial amount of energy into growth during a short amount of time (i.e., deciduous growing season), using an acquisitive trait strategy to outcompete co-occurring woody species, while M. cerifera is productive year-round and uses a combination of conservative and acquisitive traits to outcompete co-occurring woody species. The majority of quantified functional traits of E. umbellata and several of M. cerifera are indicative of efficient light capture, utilization, and internal water movement. These factors contribute to rapid range expansion and thicket formation by promoting enhanced productivity while simultaneously inhibiting colonization and expansion of co-occurring species. Suites of functional traits are important for expansive success and thicket formation, yet differences in functional traits represent alternative strategies for colonization, rapid expansion, and thicketization.


© 2017 Shiflett et al. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

Is Part Of

VCU Biology Publications

Included in

Biology Commons