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ABSTRACT 
The cognitive demand of mathematical tasks 
is an important aspect of analyzing the 
impact of instruction on student learning. 
The purpose of this study was to examine 
the instructional examples enacted by 
graduate student precalculus instructors in 
order to answer the following questions: 
What is the cognitive demand of the enacted 
examples? What does a high cognitive 
demand example look like when an 
instructor uses direct instruction? And how 
are examples drawn from the written 
curriculum enacted in different ways? Using 
both random and purposeful sampling of 
precalculus lessons, I conducted classroom 
observations as well as pre- and post-
observation interviews with the instructors. 
A modified version of the Task Analysis 
Guide (Smith & Stein, 1998) was then used 
to categorize the cognitive demand of the 
instructional examples. As a result, I found 
that 25 out of the 93 examples (27%) I 
observed were enacted at a high level of 
cognitive demand. I also present vignettes 
that illustrate how three different instructors 
chose to enact the same example type at 
differing levels of cognitive demand. 
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The cognitive demand of mathematical tasks is something that has been widely studied in 
the literature (Boston & Smith, 2009; Jackson, Shahan, Gibbons, & Cobb, 2012; Kisa & Stein, 
2015; Smith & Stein, 1998; Stein, Grover, & Henningsen, 1996). Studies have found that high 
cognitive demand tasks provide students with more opportunities to learn (Floden, 2002; 
Jackson, Garrison, Wilson, Gibbons, & Shahan, 2013; Smith & Stein, 1998; Stein, Remillard, & 
Smith, 2007) but are difficult for instructors to enact (Charalambous, 2010; Henningsen & Stein, 
1997; Rogers & Steele, 2016). However, much of the literature on this topic has focused on 
analyzing the cognitive demand of tasks where students are the primary doers of mathematics. 
This lens makes sense, since reforms in mathematics education have called for more student-
centered instruction and engaging students in authentic problem solving (National Council of 
Teachers of Mathematics, 2000; Mathematical Association of America, 2018). However, this lens 
makes it difficult to analyze the cognitive demand of instructional examples, which are presented 
through direct instruction. 
 
Purpose 
 

The purpose of this collective case study is to examine the instructional examples enacted 
by graduate student instructors in precalculus courses at a large public university. First, I 
examine existing literature on the cognitive demand of mathematical tasks and the use of 
examples. Next, I address some common concerns that often come up from the assertion that 
instructional examples presented by the instructor can be presented at a high level of cognitive 
demand. Third, I explain the methods that I used to analyze the cognitive demand of instructional 
examples used by graduate student instructors teaching a precalculus course. I present a modified 
version of Smith and Stein’s (1998) Task Analysis Guide that disentangles the who from the 
what. Finally, I present the results of my analysis and use three vignettes to illustrate what low-
level and high-level instructional examples might look like. 
 
Framework and Research Questions 
 

The framework that I used in this study was Stein, Remillard, and Smith’s (2007) 
temporal phases of curriculum use. Building on the concepts of formal or planned curriculum, 
institutional or intended curriculum, enacted curriculum, and experienced or attained curriculum 
(Doyle, 1992; Gehrke, Knapp, & Sirotnik, 1992; Valverde, Bianchi, Wolfe, Schmidt, & Houang, 
2002), Stein et al. identified three temporal stages of curriculum unfolding: written, intended, 
and enacted. The authors define the written curriculum as “the printed page” in textbooks or 
teacher materials, the intended curriculum as “the teachers’ plans for instruction,” and the 
enacted curriculum as “the actual implementation of curricular-based tasks in the classroom” (p. 
321). These three phases are viewed as unfolding in a temporal sequence, and all phases have an 
impact on student learning. However, studies have shown that the final stage, the enacted 
curriculum, is the phase that has the greatest impact on student learning (Carpenter & Fennema, 
1991). At each stage in the process, factors such as teachers’ beliefs and knowledge, orientations 
towards curriculum, professional identity, and professional communities, in addition to the 
organizational and policy contexts as well as the classroom structures and norms, all impact the 
unfolding of the curriculum.  

The research questions that guided this study were: 
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• What is the cognitive demand of the enacted examples in precalculus courses taught by 
graduate student instructors? 

• What might a high cognitive demand example look like if an instructor chooses to enact 
an example using direct instruction? 

• What similarities and differences are there between the examples that graduate student 
instructors enact when they use the same written curriculum materials? 

 
Literature Review 

 
Cognitive Demand 
 

The framework for analyzing the cognitive demand of mathematical tasks was developed 
by Stein and Smith (1998). In their framework, they defined lower-level demand tasks as “tasks 
that ask students to perform a memorized procedure in a routine manner” and higher-level 
demand tasks as “tasks that require students to think conceptually and that stimulate students to 
make connections” (p. 269). Each of these categories was then broken down into two 
subcategories: memorization and procedures without connections (lower-level demands) and 
procedures with connections and doing mathematics (higher-level demands). Smith and Stein 
differentiated procedures with and without connections as representing different levels of 
cognitive demand. They separated these two types of tasks in order to categorize mathematical 
tasks that “use procedures, but in a way that builds connections to the mathematical meaning” (p. 
270) of the underlying concept as a higher-level demand task. Tasks which require doing 
mathematics are categorized as higher-level demand tasks that require “students to explore and 
understand the nature of relationships” (Smith & Stein, 1998, p. 347). To aid in differentiating 
between the different types of tasks, Smith and Stein developed the Task Analysis Guide (p. 
348), which lists the characteristics of the four types of mathematical tasks. 

Stein et al. (1996) used the Task Analysis Guide to analyze a sample of 144 tasks that 
were implemented in reform-oriented classrooms. They found “the higher the cognitive demands 
of tasks at the set-up phase, the lower the percentage of tasks that actually remained that way 
during implementation” (p. 476). This finding provides confirming evidence for the claim that 
tasks with high cognitive demand are difficult to enact (National Council of Teachers of 
Mathematics, 2014, p. 17). To facilitate the design of lesson plans that would support high 
cognitive demand tasks, Smith, Bill, and Hughes (2008) developed the “Thinking Through a 
Lesson Protocol” (TTLP). Moving from the intended phase to the enactment phase, Jackson et 
al. (2012) examined four crucial elements for launching complex tasks: discussing the key 
contextual features, discussing the key mathematical ideas, developing a common language to 
describe the key features, and maintaining the cognitive demand. Similar to the TTLP, the 
authors provide teachers with a set of planning questions to reflect on what to do to launch a 
complex task effectively. In another paper, Jackson et al. (2013) examined how the launch of 
tasks correlated with opportunities to learn mathematics during the whole-class discussion. They 
found that by attending to the crucial elements for developing a common language to describe 
the key task features and maintaining the cognitive demand of the task during the launch, 
students had opportunities for higher quality learning during the concluding mathematics 
discussion. 
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Instructional Examples 
 

Bills et al., (2006) highlighted the importance of studying examples and exemplification 
in mathematics. First, examples play a central role in the development of mathematics as a 
discipline and in the teaching and learning of mathematics. Second, “examples offer insight into 
the nature of mathematics through their use in complex tasks to demonstrate methods, in concept 
development to indicate relationships, and in explanations and proofs” (pp. 126 – 127). While 
examples can be presented in a variety of ways, Bills et al. emphasized that “providing worked-
out examples with no further explanations or other conceptual support is usually insufficient,” as 
“learners often regard such examples as specific (restricted) patterns which do not seem 
applicable to them when solving problems that require a slight deviation from the solution 
presented in the worked-out example” (p. 140). Therefore, the authors emphasize that it is 
important for worked-out examples to include explanations and reasoning. 

By studying the purpose, design, and use of mathematical examples in elementary 
classrooms, Rowland (2008) found that teachers need to attend to variables, sequencing, 
representations, and develop learning objectives when choosing which examples to use in the 
classroom. Similarly, Muir (2007) found that teachers need to attend carefully to the examples 
that they choose to use when teaching numeracy in order to “avoid the likelihood of students 
developing common misconceptions about important mathematical concepts” (p. 513). Zodik 
and Zaslavsky (2008) examined the different characteristics of how teachers choose mathematics 
examples. They developed a framework that captures the type of examples teachers choose and 
how the examples are generated. Finally, Mesa et al., (2012) looked at the opportunities to learn 
through the examples included in college algebra textbooks. In particular, the authors examined 
the cognitive demand of the examples by coding them according to the categories in Smith and 
Stein’s (1998) framework (i.e., memorization, procedures without connections, procedures with 
connections, and doing mathematics). They found that of the 488 textbook examples that they 
analyzed, 445 (91%) of them could be described as procedures without connections. Looking at 
individual textbooks, 75% – 100% of the examples included fell into this category. Of the 
remaining examples, 41 (8%) were determined to be procedures with connections, two (<1%) 
were described as doing mathematics, and none of the examples were coded as memorization 
tasks.  

 
Methods 

 
Overall Approach and Rationale 
 

I chose to use a case study methodology, since I was interested in developing in-depth 
descriptions of what low-level and high-level cognitive demand enacted examples can look like 
in precalculus. According to Creswell (2013), “case study research involves the study of a case 
within a real-life, contemporary context or setting” (p. 97). Case study methodology is rooted in 
medicine and law, but is also a common methodology in educational research (Yazan, 2015). 
Because I examined multiple instructors, this project was designed as a collective case study 
(Yin, 2009). Also, since I was interested in examining similarities and differences between the 
examples that graduate student instructors enacted when they used the same written curriculum 
materials, I framed this as a comparative case study. The main bounded system that defined a 
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case in this study was the individual examples. However, I grouped examples by instructor and 
lesson in order to conduct a cross-case analysis. 
 
Site Description 
 
The Mathematics Department 

This study was conducted at a large, public university in the Midwest. In order to 
improve student experience and success in lower-level courses, the mathematics department had 
successfully transformed their precalculus courses by incorporating active learning and course 
coordination (raising pass rates from 60% to 80%). To oversee this transformation, the 
department hired a director of first-year mathematics, who was a term faculty member, and 
formed a faculty committee to help lead a research project to study the department’s changes in 
instruction and to provide formative evaluation to inform and improve the initiative. The 
department defined active learning as involving teaching methods and classroom norms that 
promoted student engagement in mathematical reasoning, peer-to-peer interactions, and 
instructors inquiring into student thinking. Class sizes were capped at 35, and first-time 
instructors were provided with undergraduate learning assistants who provided additional 
support during class. In an effort to provide a more uniform experience for students and support 
for instructors (who were primarily mathematics graduate students), all precalculus courses were 
heavily coordinated. Each course had an experienced graduate student who served as the primary 
coordinator and worked closely with a faculty course coordinator. Instructors were expected to 
use active learning and attended weekly course meetings. There was a common course schedule, 
homework assignments on WeBWorK, group quizzes (often written by the instructors), 
individual exams (written by the course coordinators), and shared grading of exams (by the 
instructors). 
 
Precalculus Courses 

Students could choose to take College Algebra (3 credits) and Trigonometry (2 credits) 
over two semesters or a combined course, College Algebra + Trigonometry (5 credits), during 
one semester. Graduate students and faculty members were involved in the development of the 
departmental precalculus curriculum materials, which focused on students making sense of 
mathematics and developing procedural fluency. Although the structure and content of the 
materials stayed the same, the coordinators and instructors would collaboratively make changes 
and improvements throughout the summer and academic year. The curriculum materials included 
student workbooks and instructor lesson guides, which promoted student engagement and built 
on student thinking. During class, students were expected to propose questions, communicate 
their reasoning, and work in groups to complete workbook problems. Instructors were expected 
to dedicate the majority of class time to group work and student presentations and limit periods 
of direct instruction to at most 15 – 20 minutes at a time. 
 
Instructor Population 

As mentioned previously, the majority of the instructors for precalculus courses were 
mathematics graduate students in the department’s doctoral program. After serving as recitation 
instructors for Calculus I or II, graduate students were typically assigned to teach College 
Algebra or Trigonometry in their second year. For many of the graduate students, this was their 
first experience serving as the instructor of record for a course, so the department ran an 
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intensive three-day workshop before the Fall semester and required graduate student instructors 
to take a year-long course on teaching and learning mathematics at the post-secondary level. 
During their third year of doctoral studies, graduate students were typically assigned to teach the 
combined College Algebra + Trigonometry course for one semester. 
 
Sampling Techniques 
 
Participants 

For my study, I chose to interview and observe instructors who were graduate students in 
their third year or higher and were teaching a precalculus course for at least the third semester 
(see Table 1). The reason I chose to study more experienced graduate student instructors instead 
of novice second-year instructors was twofold. First, while active learning is becoming more 
common in mathematics education, many of the graduate student instructors had only 
experienced lecturing in mathematics courses. So not only were they teaching their own course 
for the first time, but they were also being asked to use classroom practices that were new to 
them. Second, while the departmental lesson guides were beneficial in that they provided the 
instructors with suggested sequencing, examples, and timing, the second-year graduate student 
instructors were still teaching the course for the first time. Therefore, they may have struggled 
with not understanding some of the content, spotting common student conceptions and 
misconceptions, or applying different approaches to teaching procedures and concepts. (As a 
note, instructors chose their own pseudonyms in order to preserve anonymity.) 
 
Table 1 
Instructors’ Year in Graduate School and Course Assignment 

Instructor Year Course 
Juno 3 Trigonometry 

Emma 3 College Algebra + Trigonometry 
Kelly 3 College Algebra + Trigonometry 
Alex 4 College Algebra + Trigonometry 
Dan 4 College Algebra + Trigonometry 
Greg 5 Trigonometry 

Selrach 5 College Algebra + Trigonometry 
 

Lessons 
During the first semester, I used random sampling for classroom observations. In 

particular, I asked instructors to pick one date in September, October, and November for me to 
observe their class. Since I only observed one class, there were times where I only observed part 
of a lesson because it was spread out over multiple days. During the second semester, I 
implemented purposeful sampling. First, I analyzed the lesson guides to identify lessons that 
were more procedural in nature, because I thought that this would provide me with the 
opportunity to see how a procedural example could be enacted at either a high or low level of 
cognitive demand. Then I verified that I could observe each instructor teach the lessons I had 
identified, although I still only observed each instructor teaching three times. Table 2 contains a 
list of the lessons I observed during the second semester. Several of the lessons were spread out 
over two days, so I visited the classroom on both days. 
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Table 2 
Purposeful Sampling of Lessons 

Title Course 
The Vertex of a Parabola College Algebra 
Function Compositions College Algebra 
Logarithms and Their Properties College Algebra 
Properties of Inverse Functions College Algebra 
Tangent and Reciprocal Trigonometric Functions Trigonometry 
Trigonometric Equations and Inverse Functions Trigonometry 
End-of-Semester Review Trigonometry 

 
Data Collection Methods 
 

There were three primary forms of data that I collected for the study: curriculum 
materials, video recordings of my observations, and recordings of my pre/post-observation 
interviews with the instructors. The curriculum materials that I collected included the 
departmental lesson guides and student worksheets for each lesson that I observed. Since the 
lesson guides had undergone multiple revisions throughout the years, instructors tended to use 
the version that they were given the first time they taught a precalculus course. So, while I 
observed several instructors teach the same lesson, some of them used different versions of the 
lesson guides. Also, there were slight differences between the lesson guides for the Trigonometry 
course and the lesson guides for the trigonometry unit of the College Algebra + Trigonometry 
course. However, all instructors who taught the same course used the same student workbooks. 
In addition, I asked instructors to provide me with a copy of their lesson plan, if they made one. 
Some instructors would create a separate lesson plan that followed the lesson guide, while other 
instructors used the lesson guide as a lesson plan. 

Before each classroom observation, I met with the instructor for approximately 30 
minutes to discuss their plan for the lesson. During the interview, I focused on the examples that 
they planned to present during the class. In some of the lesson guides, exact examples were 
given, while others provided example parameters or a description of the type of example that 
should be used. Typically, I conducted the pre-observation interview the morning before I 
observed the lesson, but occasionally schedules required that we meet the day before. The full 
semi-structured, pre-observation interview protocol can be found in Miller (2018). During the 
classroom observations, I videotaped each example the instructor presented and took detailed 
field notes. After each observation and before the post-observation interview, I analyzed the 
video recordings to determine the level of cognitive demand of each example. During the post-
observation interview, I asked questions about the instructors’ decision-making process, which 
was the focus of another part of the study that is not reported in this paper. 
 
Data Analysis Procedures 
 

In order to analyze the cognitive demand of the enacted examples, I used Smith and 
Stein’s (1998) Task Analysis Guide. However, the language used in the original framework 
specified both who was doing the mathematics (students) and what mathematical work was being 
done. Since in my study, examples were often presented primarily by the instructor, I found the 
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original framework difficult for me to apply. For example, the original framework includes 
phrases such as “students need to engage,” “require students to explore and understand,” “require 
students to access,” and “require students to analyze” (p. 348). While these are all desirable 
undertakings for students, I realized that many instructors viewed examples as mathematical 
tasks for the instructor to present through direct instruction and worksheet problems as 
mathematical tasks to engage students. However, other aspects of the cognitive demand 
framework focused more on the mathematical work being done, with phrases like “reproducing 
previously learned facts,” “have no connection to the concepts or meaning,” “represent in 
multiple ways,” and “analyze the task and actively examine task constraints” (p. 348). Therefore, 
in order to analyze the cognitive demand of the examples that were presented by the instructor, I 
felt it was necessary to modify some parts of the original Task Analysis Guide. 

Since the Memorization category of the Task Analysis Guide is primarily described in 
terms of the mathematical work inherent in the task, this first low-level category did not require 
any modifications. The second low-level category, Procedures without Connections, only 
required slight modifications. While the descriptors do not reference who is completing the task, 
Smith and Stein (1998) claim that Procedure without Connections tasks will “require limited 
cognitive demand for successful completion” (p. 348). Since my purpose for using the Task 
Analysis Guide was to determine the cognitive demand of a task, I found this recursive definition 
to be problematic. Therefore, I chose to remove this language from both the Procedures without 
Connections and Procedures with Connections descriptions. 

In addition to removing the phrase “require some degree of cognitive effort” (Smith & 
Stein, 1998, p. 348) from the Procedure with Connections category, I also removed any reference 
to who was completing the task. In particular, the original description stated that when working 
on Procedure with Connections tasks, “students need to engage with conceptual ideas that 
underlie the procedure to complete the task successfully and that develop understanding” (p. 
348). While this language could possibly be applied to moments when the teacher is using direct 
instruction, I thought that the language used earlier in the description for this category (“focus 
students’ attention on” p. 348) more clearly applied to any situation, so I decided to use this 
language in two places (see bullets 1 and 4 in Table 3) to describe how students might (directly 
or indirectly) engage with the task. The final category, Doing Mathematics, required the most 
modification to remove descriptions for referencing who is doing the mathematical work and 
instead ensure that the statements focus on what mathematical work is entailed in the task. In 
total, I used the phrase “focus students’ attention on” in three places as a replacement for the 
phrase “require students to.” I also removed the reference to requiring “considerable cognitive 
effort.”  My complete modification of the Task Analysis Guide appears in Table 3. 
 
Table 3 
Modification of Smith and Stein’s (1998) Task Analysis Guide 

Low-Level Demands 

Memorization 
• Involve either reproducing previously learned facts, rules, formulas, or definitions or 

committing facts, rules, formulae, or definitions to memory. 
• Cannot be solved using procedures because a procedure does not exist or because the 

time frame in which the task is being completed is too short to use a procedure. 
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• Are not ambiguous. Such tasks involve exact reproduction of previously seen material, 
and what is to be reproduced is clearly and directly stated. 

• Have no connection to the concepts or meanings that underlie the facts, rules, formulas, 
or definitions being learned or reproduced. 
Procedures without Connections 

• Are algorithmic. Use of the procedure is either specifically called for or is evident from 
prior instruction, experience, or placement of the task. 

• Little ambiguity exists about what needs to be done and how to do it. 
• Have no connection to the concepts or meaning that underlie the procedure being used. 
• Are focused on producing correct answers instead of on developing mathematical 

understanding. 
• Require no explanations or explanations that focus solely on describing the procedure 

that was used. 

High-Level Demands 

Procedures with Connections 
• Focus students’ attention on the use of procedures for the purpose of developing deeper 

levels of understanding of mathematical concepts and ideas. 
• Suggest explicitly or implicitly pathways to follow that are broad general procedures 

that have close connections to underlying conceptual ideas as opposed to narrow 
algorithms that are opaque with respect to underlying concepts. 

• Usually are represented in multiple ways, such as visual diagrams, manipulatives, 
symbols, and problem situations. Making connections among multiple representations 
helps develop meaning. 

• Although general procedures may be followed, they cannot be followed mindlessly. 
They focus students’ attention on engaging with conceptual ideas that underlie the 
procedures to complete the task successfully and that develop understanding. 
Doing Mathematics 

• Require complex and nonalgorithmic thinking—a predictable, well-rehearsed approach 
or pathway is not explicitly suggested by the task, task instructions, or worked-out 
example. 

• Focus students’ attention on exploring and understanding the nature of mathematical 
concepts, processes, or relationships. 

• Demand self-monitoring or self-regulations of one’s own cognitive processes. 
• Focus students’ attention on accessing relevant knowledge and experiences and making 

appropriate use of them in working through the task. 
• Focus students’ attention on analyzing the task and actively examining task constraints 

that may limit possible solution strategies and solutions. 
• May involve some level of anxiety for the students because of the unpredictable nature 

of the solution process required. 
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Results 
 

Over the two semesters, I observed a total of 24 lessons presented by the instructors, 
which spanned 33 days and included 93 different examples (see Table 4). Twenty-five of the 
examples were presented at a high level of cognitive demand (which I refer to as HCD 
examples). As a note, Greg was the graduate student course coordinator for Trigonometry, so I 
was able to observe him during both semesters. All of the other graduate student instructors only 
taught a precalculus course for one semester. 

 
Table 4 
Distribution of Observed Examples 

Instructor Lessons Days Examples HCD Examples 
Fall Semester 

Emma 3 3 9 1 
Kelly 3 3 7 4 
Alex 3 3 5 3 
Greg 3 3 6 1 

Subtotal 12 12 27 9 
Spring Semester 

Juno 3 5 14 4 
Dan 3 6 18 3 
Greg 3 5 19 9 

Selrach 3 5 15 0 
Subtotal 12 21 66 18 
Total 24 33 93 25 

 
In the Fall semester when I used random sampling for the observations, I observed an 

average of 2.25 examples per day, 33% of which were enacted at a high level of cognitive 
demand. Emma had the lowest percentage of HCD examples (11%) but the highest number of 
observed examples, and Alex had the highest percentage of HCD examples (60%) but the lowest 
number of observed examples. In the Spring semester when I used purposeful sampling for the 
observations, I observed an average of 3.14 examples per day, 24% of which were enacted at a 
high level of cognitive demand. Selrach had the lowest percentage of HCD examples (0%) and 
the second lowest number of observed examples, while Greg had the highest percentage of HCD 
examples (47%) and the highest number of observed examples. Over all of my observations, 
27% of the examples were enacted at a high level of cognitive demand. 

 
Vignettes 
 

In order to gain a better understanding of what low-level versus high-level cognitive 
demand examples look like, I have included three vignettes below. These three vignettes were 
selected because they demonstrate how different instructors enacted the same type of example at 
differing levels of cognitive demand. In the Spring semester, I observed Juno, Greg, and Dan 
each teach the lesson entitled Trigonometric Equations and Inverse Functions. Juno and Greg 
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each taught this lesson in their Trigonometry course in March, while Dan taught this lesson in his 
College Algebra + Trigonometry course in April. In all three cases the lesson was spread over 
two consecutive days, and I observed both days. I chose to observe this lesson because through 
random sampling I had observed Greg teach the second half of this lesson in the Fall semester 
and realized that it involved a lot of procedures. Within the lesson I chose to focus on a particular 
example that involved finding all solutions to a trigonometric equation that correspond to a non-
standard unit circle angle. I did this because Juno and Greg enacted their examples at a high level 
of cognitive demand while Dan enacted his example at a low level of cognitive demand. 
 
Written Lesson Guide Description 

These vignettes feature the final example that was included in the written curriculum for 
the first day of the lesson entitled Trigonometric Equations and Inverse Functions. The learning 
objectives for this day were that students should be able to (i) graphically represent solutions to 
an equation, (ii) understand the process of finding all 𝜃𝜃 that satisfy the equation 𝑓𝑓(𝜃𝜃) = 𝑎𝑎, where 
𝑎𝑎 is fixed and 𝑓𝑓 is a periodic function, and (iii) use the unit circle to solve equations in part (ii) 
for 𝑓𝑓, a trigonometric function. The lesson guide provided the following outline for the lesson. 

I. Demonstrate how solutions to equations of the form 𝑓𝑓(𝑥𝑥) = 𝑎𝑎 can be represented 
graphically as the intersection points of two equations, 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) and 𝑦𝑦 = 𝑎𝑎. 

II. Give students time to work in small groups on a Ferris wheel word problem in the 
workbook and identify periodic patterns in their solutions. 

III. Work through an example of graphing two functions, 𝑦𝑦 = cos (𝜃𝜃) and 𝑦𝑦 = √3/2, and 
prompt students to notice the pattern in the occurrence of the intersection points.  

IV. Introduce the procedure for solving trigonometric equations by first finding the “initial” 
or “core” solutions that occur in one period and then adding integer multiples of the 
period (e.g. 2𝜋𝜋).  

V. Give students 10 minutes to work in small groups on two similar worksheet problems 
(i.e. solve sin(𝜃𝜃) = −√3/2  and cos(𝜃𝜃) = −1/2) 

VI. Bring the class together to discuss the final example (described below). 
Even though there were slight differences in the lesson guides used by the instructors 

(which I describe below), the general lesson outline was the same. 
 
Lesson Guide Example Descriptions 

Juno and Greg drew from the same version of the lesson guide. Figure 1 contains the 
example description that Juno and Greg used for this lesson. This example is procedural, 
explicitly stating that “the strategy for finding 𝜃𝜃 is still a two-part process: find initial solutions 
and then translate them.” I categorized this example as Procedures without Connections (see 
Table 3) because it does not explicitly make connections to the concepts or meaning that underlie 
the procedure being used (i.e., there is no explanation for why there are two initial solutions or 
why it is necessary to add the period to an initial solution to determine an infinite family of 
solutions). In addition, the example, as written, is more focused on students producing correct 
answers (e.g., “use inverse trigonometric functions on our calculators,” “add or subtract copies of 
2𝜋𝜋 in order to find additional solutions,” and “letting 𝜃𝜃 = 0.84 and calculating cos (𝜃𝜃) on the 
calculator should give a value very close to 2/3”) instead of  students developing mathematical 
understanding of the concepts. However, as I will demonstrate, both Juno and Greg transformed 
this example in ways that raised the level of cognitive demand.  
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Figure 1 
The Example Description in the Version of the Lesson Guide Used by June and Greg 

Example. Solve the trigonometric equation cos(𝜃𝜃) = 2/3. 
Notice that cos(𝜃𝜃) = 2/3 is not satisfied by any standard angle present on the unit circle. 
However, the strategy for finding 𝜃𝜃 is still a two-part process: find initial solutions and then 
translate them. 

(i) Since cos(𝜃𝜃) = 2
3
 is not satisfied by any standard angle present on the unit circle, we 

need to use inverse trigonometric functions on our calculators. This produces one 
solution of: 

𝜃𝜃 = cos−1(2/3) ≈ 0.84 
The second solution we obtain by symmetry, finding 𝜃𝜃 ≈ −0.84. 

(ii) Recall now that, since cos(𝜃𝜃) is periodic, we can take our two initial solutions to 𝜃𝜃 =
0.84 and 𝜃𝜃 = −0.84, and add or subtract copies of 2𝜋𝜋 in order to find additional 
solutions. For example, two additional solutions are given by: 

𝜃𝜃 = −0.84 + 2𝜋𝜋    and    𝜃𝜃 = 0.84 + 2𝜋𝜋 
To account all possible solutions, we write: 

𝜃𝜃 = 0.84 + 2𝜋𝜋𝜋𝜋    and    𝜃𝜃 = −0.84 + 2𝜋𝜋𝜋𝜋 
Again, 𝜋𝜋 can be any integer! 

 
Important: We can check our solutions! For example, letting 𝜃𝜃 = −0.84 and calculating 
cos (𝜃𝜃) on the calculator should produce a value very close to 2/3 if we have the correct 
solution. Note that we should have our calculators in radian mode for this task. 

Important: Solving a trigonometric equation involves finding all of the solutions within a 
single repeated segment. Once all initial solutions are found, we use the fact that the 
trigonometric function is periodic to find the other solutions (by adding copies of the period to 
the solutions). It will not always be the case that we find two initial solutions or that we add 
2𝜋𝜋. This will be explored in Exercises 4 and 5 of the worksheet and will be seen many times in 
the future. 

 
Figure 2 
The Example Description in the Version of the Lesson Guide Dan Used and the Problem Dan 
Chose from the Student Workbooks 

Example. Discuss the case in which the initial solutions are not angles on their unit circles. 
You can make up your own example here, or do Problem 3(a) as a class. Remind students that 
they can check their solutions, and walk them through the process of doing so in this scenario. 

Problem 3(a) Solve the trigonometric equation sin(𝜃𝜃) = −2/3. 

 
Dan, however, used a different version of the lesson guide and therefore the description 

he based his example on was different (see Figure 2). In particular, the version of the lesson 
guide that Dan used provided much less detail regarding how to present the example and what to 
emphasize, but the equation used in the example was similar to the one that Juno and Greg used. 
The lesson guide stated that the instructor could make up their own example or use a problem 
from the student workbook. Dan decided to do the latter. Because the lesson guide was so vague, 



214 | Journal of Mathematics and Science: Collaborative Explorations 16 
 

it was difficult to determine the cognitive demand of the example. However, I chose to code it as 
Procedures without Connections (see Table 3) because the problem statement only referenced 
solving the trigonometric equation and the lesson guide prompted Dan to “remind students that 
they can check their solution and walk them through the process of doing so in this scenario.” So 
this example also seemed to primarily be focused on students producing correct answers. Dan’s 
presentation did not change the cognitive demand of the task.  

Juno. During the observation, Juno followed the lesson guide closely (see Figure 1). At 
the end of the first day, Juno began the final example by directing students’ attention to a graph 
she had drawn on the board at the beginning of class (see Figure 3). In describing how this 
example was similar to previous problems they had completed (e.g. solve sin(𝜃𝜃) = −√3/2  and 
cos(𝜃𝜃) = −1/2), she emphasized that “the fact that it’s not on the unit circle doesn’t change 
anything on the graph…. We still have two solutions in one period, so we still want to find the 
base solutions, and then add 2𝜋𝜋𝜋𝜋.” Juno proceeded by explaining how to use the inverse cosine 
function on the calculator to find one base solution, and then she asked her class, “Do you 
remember how we find the other solution?” Student 1 responded with “add 𝜋𝜋,” so Juno drew 
Figure 4.  
 
Figure 3 
The Graph Juno Drew on the Board at the Beginning of Her Lesson 

 
Figure 4 
The Graph Juno Drew to Help Students Figure Out the Second Initial Base Solution. 

 
The discussion that ensued is presented here as an excerpt of the transcript of the observation 
video. 



  Miller | Analyzing Cognitive Demand of Examples | 215 

Juno: So, here we got to know what quadrant we are in. So, this is 0.841 [draws Figure 
4]. Which other quadrant is cosine positive in? 

Student 2: Four. 

Juno: Yeah, fourth quadrant. [Adds the corresponding fourth quadrant angle to Figure 
4.] So, that’s the angle we want. You can either do 2𝜋𝜋 − 0.841, or you can just do 
−0.841. Ok, so if I do 2𝜋𝜋 − 0.841 I’m getting this solution [pointing to the 
intersection point immediately to the left of 𝑥𝑥 = 2𝜋𝜋 in Figure 3]. If I do −0.841, 
I’m getting that solution [pointing to the intersection point immediately to the left 
of 𝑥𝑥 = 0 in Figure 3]. But it doesn’t really matter, because we are just going to be 
shifting them by multiples of the period anyway. So, then our general solution is 
going to be 

𝜃𝜃 = 0.841 + 2𝜋𝜋𝜋𝜋 
𝜃𝜃 = −0.841 + 2𝜋𝜋𝜋𝜋 

for any integer 𝜋𝜋.  
 
In this exchange, Juno referenced graphical representations from earlier in the lesson in 

order to help her students understand how to find the second initial solution based on the value 
given by calculating with inverse cosine. She also made connections to the original graph she 
had drawn with intersection points for the two functions (see Figure 3) in order to help students 
understand which intersection point corresponded with 𝜃𝜃 = −0.841 and which intersection point 
corresponded with 𝜃𝜃 = 2𝜋𝜋 − 0.841. Juno wrapped up the example by asking if any students had 
questions. One student asked if they could just write 𝜃𝜃 = 0.841 + 𝜋𝜋𝜋𝜋 to capture all the solutions 
to the equation. Juno explained that shifting one intersection point by only half a period (𝜋𝜋) 
would not result in landing (graphically) on another intersection point. Another student asked if it 
would be possible to turn 2𝜋𝜋 − 0.841 into a decimal. Juno explained that the number 0.841 was 
already a rounded approximation, so converting 2𝜋𝜋 − 0.841 to a decimal would also be an 
approximation and not an exact solution. Finally, Juno wrapped up the example by explaining 
how students could check their work by plugging in a few values from their solution families for 
𝜃𝜃 into the expression cos (𝜃𝜃) to make sure the results were close to 2/3. 

Even though Juno was doing much of the mathematical work, the mathematical focus of 
the example justified it being coded as Procedures with Connections (see Table 3). While Juno 
used a procedure for finding initial base solutions and then translated them, she focused students’ 
attention on the use of the procedure for the purpose of developing deeper levels of 
understanding of mathematical concepts and ideas. In particular, Juno emphasized that, 
regardless of whether or not the trigonometric equation corresponds with a standard unit circle 
angle, the process still involves finding intersection points. Also, she consistently referenced the 
graphical representation of the problem (Figure 3) in order to help her students understand that, 
while there are an infinite number of intersection points, they actually correspond with two initial 
solutions that repeat in a periodic fashion. Second, Juno did not represent the procedure for 
solving the problem in an algorithmic way. 1 

Juno also used multiple representations to help her students understand the example. 
Throughout her presentation, she consistently referenced the graphical representation of the 
problem (Figure 3) to help her students develop an understanding of why there were infinitely 
                                                
1 In contrast, I observed Selrach present a similar example where he listed a five-step algorithm on the board and 
instructed students to follow the algorithm in order to solve trigonometric equations. 
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many solutions. When her students struggled to identify how to find the second initial base 
solution, Juno referenced another representation (Figure 4) to help her students reason with the 
symmetry of the unit circle to find the solution instead of memorizing and implementing a 
formula like 2𝜋𝜋 − cos−1(𝑥𝑥). Finally, although Juno followed the general procedure for finding 
initial base solutions and then translating them, she challenged her students to engage with the 
conceptual ideas that underlie the procedure. In particular, Juno focused students’ attention on 
the periodic nature of the cosine function, the symmetry of corresponding angles on the unit 
circle, and the graphical consequence of choosing different equivalent representations for the 
initial base angles (e.g. −0.841 vs. 2𝜋𝜋 − 0.841). 

Greg. For the beginning of class, Greg followed the lesson guide directly. However, Greg 
decided to use a different final example than the one provided. Instead of illustrating how to 
solve cos(𝜃𝜃) = 2/3, Greg chose to use the equation 1 + 2 sin(𝜃𝜃) = 4/3. 2 During the pre-
observation interview, Greg explained that he changed the example because he wanted his 
students to understand that even when there is a lot of other “stuff” going on (i.e., 
transformations of the trigonometric function), they should still follow the same procedure. He 
also wanted to connect students’ prior experiences with solving linear equations with what they 
were learning about solving trigonometric equations. Moving forward, Greg knew that his 
students would need to continue to combine ideas (i.e., solving linear and trigonometric 
equations) when working through problems. In selecting his example, he knew that he wanted to 
incorporate a constant multiple of the sine function plus a constant, and he didn’t want the 
solution to involve a unit circle angle because the prior example did so. He wanted to introduce 
the students to the general procedure for solving trigonometric equations regardless of whether 
or not the problem required analyzing standard unit circle angles. 

When Greg first introduced the final example, he acknowledged that they were “stepping 
it up a little bit.” However, he emphasized that, although the example may look intimidating, 
“this is really just combining two ideas that you already know.” In order to help his students 
recognize that part of the problem involved solving a linear equation, Greg decided to substitute 
𝑋𝑋 = sin (𝜃𝜃) into the equation. Greg explained that he used a capital 𝑋𝑋, in order to “remind myself 
that I’m not solving for 𝑋𝑋, I’m solving for 𝜃𝜃.” However, making this temporary substitution 
would make it clear what the next step should be to work through the problem. Greg then 
rewrote the original equation as 1 + 2𝑋𝑋 = 4/3 and worked through the steps for solving the 
linear equation to get 𝑋𝑋 = 1/6. Greg labeled this as Step 1 and said “for Step 2, remember we 
didn’t want to solve our equation initially for 𝑋𝑋, we wanted to solve it for 𝜃𝜃.” So, he substituted 
𝑋𝑋 = sin (𝜃𝜃) which resulted in the equation sin (𝜃𝜃) = 1/6. 

With the trigonometric equation isolated, Greg explained that they couldn’t use the unit 
circle, because 1/6 is not a standard unit circle angle. So instead, he asked his class “What do we 
want to use to move the sine to the other side?”  The discussion that ensued is presented here as 
an excerpt of the transcript of the observation video. 

 
Student 1: Arcsine. 
Greg: Yeah, we’ll use an arcsine. Ok? I’ll write it as sine inverse. So, I get 

𝜃𝜃 = sin−1(1/6). So that’s one solution. Where does the second solution come 
from? I gave a chart. 

Student 2: I just have a quick question. How did we know to use arcsine? 
                                                
2 As a note, solving more complicated trigonometric equations was the first learning objective for the second day of 
the lesson, so Greg was leading into what they would be doing next. 
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Greg: [To Student 1] How did you know to do that? 
Student 1: Because you’re trying to find 𝜃𝜃, and to get rid of sine you have to move it to the 

other side using sine inverse. 
Student 2: Oh, yeah. 
 

As a quick aside, Greg mentions that it is not acceptable to divide both sides by sin to 
isolate 𝜃𝜃 and arrive at 𝜃𝜃 = 1

6sin
. Greg identifies 𝜃𝜃 = sin−1(1/6) as an initial solution and asks, 

“Someone, remind me where the other solution comes from whenever you use arcsine? The other 
solution in [0, 2𝜋𝜋].” One student responds with, “2𝜋𝜋 − sin−1(1/6),” and another asks, “Isn’t it 
just 𝜋𝜋 −?” 

 
Greg: Why do you think it’s 𝜋𝜋 −? I mean that’s the chart, right? But…the 2𝜋𝜋 − has the 

effect of flipping over the 𝑥𝑥-axis, and that works for cosine. But for sine values, 
we want to flip over the 𝑦𝑦-axis. And to do that, we use 𝜋𝜋 −. 

 
Greg labels 𝜃𝜃 = 𝜋𝜋 − sin−1(1/6) as the second initial solution and then reminds the class 

that in the earlier graphed examples, they saw that sine and cosine usually have two initial 
solutions. He then wrote the following on the board: (init)+(per)𝜋𝜋 where init stands for initial 
solution and per represents the period. Greg first introduced this notation for the general form of 
an infinite solution family of a trigonometric equation during the second example when they 
solved the equation cos(𝜃𝜃) = √3/2. When I observed Greg teach the second half of this lesson 
the prior Fall, he did not use this notation. However, Greg consistently used this notation during 
both lessons in the second semester as a way to help students see that the structure of the 
solutions was consistent regardless of the differences in the trigonometric equations. 

Next, Greg asked, “What’s the period that I’m looking for in this case?” He paused for 
approximately 6 seconds, but no one responded, so he answered his own question and explained 
that it was possible to find the period by looking at the equation sin(𝜃𝜃) = 1/6. Greg wrote the 
two solution families on the board, using the general form (init)+(per)𝜋𝜋, and summarized that 
“It’s really the same pattern that we were using before. Now it’s just two steps.” At the end, Greg 
asked if any students had questions. One student asked what type of equation would require a 
change in the period in the general form. Greg explained that an equation like 1 + 2 sin(3𝜃𝜃) =
4/3 would have period 2𝜋𝜋/3. In fact, the change from 𝜃𝜃 to 3𝜃𝜃 in the equation would mean that 
both the initial solutions and the period would have different values in the general form. Another 
student asked if the final answer was simply the two initial solutions, or the “longer equations.” 
Greg explained that the final answer must include all solutions, not just the initial solutions. 
Finally, Greg wrapped up the example by explaining how students could check their work by 
plugging in some of the solutions to the original equation into make sure they get 4/3. 

In this example, Greg involved students in the process of finding the solutions more than 
Juno did, but he still worked through most of the mathematics himself. Greg listed some 
procedures and referred to Step 1 (i.e., isolate the trigonometric function using algebraic 
manipulations) and Step 2 (i.e., solve the trigonometric equation), but he mainly focused on the 
broad, general procedures and on developing student understanding. So I coded this example as 
Procedures with Connections (see Table 3). In particular, Greg consistently focused students’ 
attention on the general procedure for finding initial solutions and then adding on integer 
multiples of the period. He introduced the general form (init)+(per)𝜋𝜋 in the previous example, 
brought it up again in this example, made connections between the general form and the 
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graphical representation of the trigonometric equation, and emphasized repeatedly that the 
general procedures for finding initial solutions and identifying the period were core features of 
the problem. Like Juno, he did not present the procedure algorithmically but rather emphasized 
how the procedure was connected to the periodic nature of trigonometric functions. Although he 
did not graph 1 + 2 sin(𝜃𝜃) = 4/3, he did make references to the graphs he had drawn previously 
when explaining why there are two initial solutions. He also referenced the graph when 
explaining why the second initial solution was 𝜋𝜋 − sin−1(1/6) and not 2𝜋𝜋 − sin−1(1/6). 
Finally, Greg often paused and asked his students questions, which helped them do more than 
just mindlessly follow the procedure. Rather, he consistently focused their attention on engaging 
with the concept that solution families of trigonometric equations have the general form 
(init)+(per)𝜋𝜋. 

Dan. While the example in the lesson guide that Dan used was not as detailed as the one 
followed by Greg and Juno, he ended up using an example similar to Juno’s example: Solve the 
trigonometric equation sin(𝜃𝜃) = −2/3. In the pre-observation interview, Dan explained that he 
picked this equation because he wanted an example that didn’t have a lot of clutter so that the 
students could focus on how to solve trigonometric equations with a “not nice” (i.e., non-
standard) unit circle coordinate. He planned to walk his students through five steps: (1) draw the 
unit circle, (2) draw 𝑦𝑦 = −2/3, (3) note which quadrant(s) the two solutions are in, (4) find the 
actual angles using arcsine, and (5) given that the period is 2𝜋𝜋, write the equations representing 
infinitely many solutions. Although he didn’t list these steps explicitly on the board, he did 
reference them verbally in the example presented here and his previous example (solve cos(𝜃𝜃) =
√3/2). 

Dan started the example by mentioning that although the equation sin(𝜃𝜃) = −2/3 does 
not correspond to a “nice” unit circle coordinate, “we shouldn’t throw the baby out with the bath 
water.” In particular, Dan emphasized that all of the work was going to be almost exactly the 
same as with the previous example. But instead of using the unit circle to find the initial 
solutions, they would have to use inverse trigonometric functions. Here is an excerpt from the 
observation video transcript where Dan begins to work through the example: 

 
Dan: Again, the overall analysis is exactly the same. We draw our picture [draws 

Figure 5 while talking], we turn our equation into a label. Sine tells me I’m 
looking at 𝑦𝑦-coordinates. −2/3 tells me I want 𝑦𝑦 = −2/3. That gives me two 
points, one in the third quadrant and one in the fourth quadrant.  

Dan reminded the class that they should use arcsine on their calculators but that the value 
provided, 𝜃𝜃 ≈ −0.73, is an angle in either the first or fourth quadrant. He explained that the 
fourth quadrant angle represents starting at 0 and subtracting 0.73 to get −0.73, while the third 
quadrant angle is found by starting at 𝜋𝜋 and adding 0.73 to get 𝜋𝜋 + 0.73. Once Dan had the two 
initial solutions, he skipped immediately to writing the solution families (shown below) and then 
asked if anyone had questions. 

𝜃𝜃 = (−0.73) + 2𝜋𝜋𝜋𝜋 
𝜃𝜃 = (𝜋𝜋 + 0.73) + 2𝜋𝜋𝜋𝜋 
𝜋𝜋 any whole number 

One student asked, “So you know how if you take arcsin (−2/3) it’s −0.73? So, for the 
second one, you did 𝜋𝜋 + 0.73. What about the negative?” Dan explained that the two points in 
the third and fourth quadrant are based on the symmetry of the unit circle, and the −0.73 is the 
result of moving clockwise while the +0.73 is the result of moving counter-clockwise. Another 
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student asked if there are four ways to write the solution, since each initial solution could start at 
0 and move either clockwise or counter-clockwise. Dan explained that while it is possible to 
come up with different initial solutions, all solutions to the equation are equivalent and “it’s sort 
of all taken care of in this +2𝜋𝜋𝜋𝜋 business.” 

 
Figure 5  
Figure Dan Drew to Demonstrate which Quadrants Contain the Angles Corresponding with the 
Equation sin(θ) = −2/3. 

 
In this vignette, Dan worked through the same procedure as Juno and Greg. However, he 

emphasized the procedure itself instead of using the procedure to highlight the underlying 
conceptual ideas. So, I categorized this example as Procedures without Connections (see Table 
3). While Dan included a graphical representation in his explanation, he mainly used it to 
determine which quadrant the solutions are in. So, his representation was used primarily to 
produce correct answers instead of to develop mathematical meaning or understanding. He did 
reference the conceptual structure of the infinite families of solutions for trigonometric 
equations, but his references were brief and mainly focused on writing down the solution (i.e., he 
skipped immediately from finding the initial solutions to writing the family of solutions without 
discussing why it is necessary to add constant multiples of the period or why the period is 2𝜋𝜋). 
When the student asked if there were four different ways to write the initial solutions (based on 
working clockwise or counter-clockwise around the unit circle), Dan could have explained how 
different initial solutions correspond with different intersection points of the graphs of 𝑦𝑦 =
sin (𝜃𝜃) and 𝑦𝑦 = −2/3 (like Juno did), but instead he said it did not matter which approach was 
used and “it’s sort of all taken care of in this +2𝜋𝜋𝜋𝜋 business.” 

 
Discussion 

 
In this study, I examined the cognitive demand of the examples that graduate student 

instructors chose to enact in precalculus courses. At first, I attempted to use the original Task 
Analysis Guide developed by Smith and Stein (1998) to code the cognitive demand of the 
enacted examples. However, the original version of the Guide includes language that specifies 
that students are the ones doing the mathematical work (e.g., “require students to explore” and 
“students need to engage”). While some instructors did involve students explicitly in working out 
examples, others chose to present examples using direct instruction. Therefore, I created a 



220 | Journal of Mathematics and Science: Collaborative Explorations 16 
 

Modified Task Analysis Guide for analyzing the cognitive demand of examples (Table 3) that 
removed any language concerning who is doing the mathematical work. Using this Modified 
Task Analysis Guide, I found that of the 93 examples that I observed over two semesters, 25 
(27%) of them were enacted at a high level of cognitive demand. 

Next, I conducted a cross-case analysis in order to illustrate what high cognitive demand 
precalculus examples might look like when instructors use direct instruction and to identify 
similarities and differences between the examples that different instructors enacted when using 
the same written curriculum materials. In the vignettes of Juno, Greg, and Dan, I illustrated how 
instructors can enact the same type of example at a high level of cognitive demand but 
emphasize different concepts (i.e., connections between algebraic manipulations and graphical 
representations versus the underlying structure of solution families). In addition, I found that 
while high and low cognitive demand examples might use similar representations (i.e., algebraic 
and graphical), focusing on finding the answer instead of on developing student understanding 
can lower the cognitive demand. 
 
Implications 
 

One implication of this study is that even through moments of direct instruction (i.e., 
during the enactment of an example), instructors can present mathematical tasks with higher 
levels of cognitive demand. A precalculus instructor who was not a participant in this study but 
taught in the department where the study was conducted told me that all of the content he 
covered was easy and did not require deep thinking. However, Juno, Greg, and several of the 
other graduate student instructors demonstrated that it is possible to teach concepts in precalculus 
that focus on developing deeper understandings of the underlying mathematics and make 
connections between multiple representations. 

The Modified Task Analysis Guide that I developed for analyzing the cognitive demand 
of examples is useful for both researchers and practitioners. First, this framework gives 
researchers a way to analyze the cognitive demand of tasks independent of who is doing the 
mathematical work. This is especially important for examples, since instructors can present them 
in a variety of ways. While it is similar in many ways to the original Task Analysis Guide (Smith 
& Stein, 1998), I modified the categories by removing any reference to who is doing the 
mathematical work. The Modified Task Analysis Guide is also useful for practitioners as a 
planning and reflection tool. As teachers plan and reflect on their teaching, they can use this 
framework to assess the cognitive demand of the examples they use. 

 
Limitations 
 

One limitation of this study is that while the instructors were using the department lesson 
guides, the different versions they were using had some clear and distinct differences. In the 
example that I highlighted in my vignettes, the structure of the two lesson guides was the same; 
however, the amount of descriptive text that accompanied the example varied greatly. The 
version with more descriptive text still focused mostly on producing the correct answer, so it was 
still categorized as a Procedures with Connections task. However, it is difficult to determine what 
effect the different versions may have had on the cognitive demand of the enacted examples. 

Another limitation of this study is that not only did the instructors know when I was 
observing them teach, but they also knew I was there to examine the cognitive demand of the 
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examples they presented. Therefore, they may have spent more time thinking about the cognitive 
demand of the examples that they enacted on the days that I observed, which may have 
influenced the results. In conversations with Greg, who I observed both semesters, he mentioned 
that our interviews made him think more deeply about the content that he was teaching. So, 
while these conversations may have impacted the results, if the outcome was that he presented 
more examples at a high level of cognitive demand, then I view that as a positive impact of this 
work. 

Finally, another limitation of my study is that I cannot make any claims related to student 
learning. Since the focus of this study was the graduate student instructors and the choices that 
they made when planning and enacting examples in their precalculus classrooms, I did not 
collect any student data. Therefore, I cannot make any claims about whether high cognitive 
demand examples presented through direct instruction have a positive impact on student learning 
or understanding. Rather, enacting these types of examples provides students with opportunities 
to engage with mathematical tasks that require higher levels of cognitive demand. I was not able 
to determine whether or not students actually took advantage of these opportunities. 
 
Future Directions 
 

There are some aspects of my modifications to the Task Analysis Guide that may need 
further attention. I chose to use the phrase “focus students’ attention on” instead of “require 
students to” in order to remove references to who is doing the mathematical work of the task and 
to allow the framework to be used to analyze instructional examples that are presented using 
direct instruction. However, it is possible that a teacher could lecture for 50 minutes and claim 
their aim is to “focus students’ attention on” high-cognitive demand tasks, but the students may 
never truly engage with the mathematics. Therefore, I think it would be beneficial to analyze 
student engagement, or perhaps students’ opportunity to struggle, in addition to analyzing 
cognitive demand. This would provide a clearer picture of the type of mathematical work that 
students actually engage in during class. Finally, a follow up study that I could complete from 
my data set is to analyze the cognitive demand of the written and planned examples and then 
examine whether the cognitive demand of the examples increased, decreased, or stayed constant 
as the lesson unfolded. 
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