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We have previously demonstrated the 24-hour redistribution and reabsorption of bronchoalveolar lavage (BAL) fluid delivered to
the lung during a bronchoscopic procedure in normal volunteers. In this work we utilize image-matching procedures to correlate
fluid redistribution and reabsorption to changes in regional lung function. Lung CT datasets from six human subjects were used
in this study. Each subject was scanned at four time points before and after BAL procedure. Image registration was performed to
align images at different time points and different inflation levels. The resulting dense displacement fields were utilized to track
tissue volume changes and reveal deformation patterns of local parenchymal tissue quantitatively. The registration accuracy was
assessed by measuring landmark matching errors, which were on the order of 1 mm. The results show that quantitative-assessed
fluid volume agreed well with bronchoscopist-reported unretrieved BAL volume in the whole lungs (squared linear correlation
coefficient was 0.81). The average difference of lung tissue volume at baseline and after 24 hours was around 2%, which indicates
that BAL fluid in the lungs was almost absorbed after 24 hours. Regional lung-function changes correlated with the presence of
BAL fluid, and regional function returned to baseline as the fluid was reabsorbed.

1. Introduction

Bronchoalveolar lavage (BAL) has important clinical appli-
cations and is typically used to diagnose lung diseases, such
as infection [1], lung cancer, and interstitial lung disease.
During the BAL procedure, fluid is squirted into a small part
of the lung through a bronchoscope and then recollected for
examination.

It is of great interest to understand the progress of the
distribution and resolution of BAL. Kelly et al. [2] used a
digital subtraction technique to visualize the anatomical dis-
tribution of saline containing a low concentration of radio-
opaque dye. Gurney et al. and Chen et al. [3, 4] showed that
the extent and frequency of defects tended to decrease with
time, and cleared after approximately 24 hours. Gabe et al.

[5] observed fluid movement between lobes and between
lungs before eventual resolution and demonstrated that lobes
returned to their baseline after 24 hours. In addition, the
change of lung function due to BAL procedure is important
to study the effect of unretrieved BAL. Klein et al. [6] demon-
strated that lung mechanics can be significantly altered an
hour or longer after BAL. However, few studies have been
done to track the resolution process of unretrieved BAL and
quantify the BAL effects on lung ventilation function of a
regional level.

Multidetector-row computed tomography (MDCT) can
be used to acquire multiple static breath-hold CT images
of the lung taken at different lung volumes. Applying image
registration techniques to CT data, we are able to find dense
deformation fields that transform the lungs between different
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lung volumes. The transformations can be analyzed to calcu-
late voxel-by-voxel density change, estimate local lung tissue
expansion, and make other biomechanical measurements.
When combined with image segmentation results, functional
and biomechanical measurements can be reported on a lung,
lobe, and any arbitrarily shaped subregion basis [7].

Hoffman and Ritman [8] used CT density measurements
to calculate regional tissue and air content of the lung.
This method reflects tissue density accurately and estimates
regional ventilation efficiently [5, 9]. Christensen et al. and
Reinhardt et al. have estimated rates of local tissue defor-
mation using a Jacobian-based ventilation measure [7, 10].
These measurements of tissue content and ventilation func-
tion can be utilized with image registration to track tissue
volume change and mechanical property change regionally
over time.

This paper describes an image registration based method
to quantitatively track the resolution process of unretrieved
BAL and measure regional lung ventilation function during
24 hours after BAL procedure. We evaluate our registra-
tion by tracking landmark movements. We show that the
unretrieved BAL is gradually absorbed and the non-air
content returns to the baseline after 24 hours. In addition,
we observed the local tissue ventilation function returns to
baseline state after 24 hours.

This study is most similar to [5]. They both observed the
resolution progress after BAL. The main difference is that in
[5] the BAL resolution progress was studied at the lobe level
which needs the lobe segmentation for each dataset, while
this paper presents a method to study the BAL resolution at
a regional level utilizing image registration techniques. Also,
local lung function change due to BAL was observed in this
work.

2. Material and Methods

2.1. Image Data Sets. The protocol was reviewed and
approved by the University of Iowa Institutional Review
Board. CT data sets from six healthy human subjects were
used. Each subject was scanned at four time points: baseline,
immediate post-lavage (within 30 minutes), 4 hours post-
lavage, and 24 hours post-lavage. At each time point a
pair of Functional Residual Capacity (FRC) and Total Lung
Capacity (TLC) scans were acquired. Therefore, each subject
experienced totally eight CT scans from four phases during a
24-hour period. Each scan pair was acquired with a Siemens
Sensation 64 multi-detector row CT scanner (Forchheim,
Germany) during breath-holds in the same scanning phase.
Each volumetric data set was acquired at a section spacing
of 0.5 mm and a reconstruction matrix of 512 × 512. In-
plane pixel spacing was approximately 0.6 mm × 0.6 mm.
Scans were reconstructed using a B31f reconstruction kernel.
Table 1 lists the data sets acquired for each subject in four
phases and the name of each scan used in this paper. Figure 1
shows the lung volumes at FRC and TLC pressures, and the
volume difference between FRC and TLC scans in each phase
for six subjects.

Subjects were lavaged in the right middle lobe and ligula.
Each subject received aliquots of 300 mL in total; the total

Table 1: Eight CT scans acquired from four phases for each subject.

Baseline
0 hours

after BAL
4 hours

after BAL
24 hours
after BAL

FRC scans baseFRC post0FRC post4FRC post24FRC

TLC scans baseTLC post0TLC post4TLC post24TLC

amount is denoted as VBALtotal . BAL fluid was also retrieved
and measured by the bronchoscopist during this procedure;
the retrieved amount is denoted as VBALretrieved . Then the
subjects underwent the post-lavage scan within 30 minutes
of lavage (post0 phase scans). The volume of unretrieved
BAL fluid VBAL can be calculated by subtracting the volume
retrieved from the volume delivered, as shown in (1). The
calculated VBAL for each subject is shown in Table 2. Note
that subject 2 was observed to cough a significant amount of
BAL fluid out of the lungs.

VBAL = VBALtotal −VBALretrieved . (1)

2.2. Method Overview. Our goal is to utilize image registra-
tion to track non-air volume change and tissue ventilation
change regionally during 24 hours after BAL procedure.
Figure 2 shows the registrations used for analysis. Two types
of registration were performed on the CT data sets. Intra-
phase registrations register the FRC image to the TLC image
within a phase. These results are used to estimate local lung
function in each phase and make the comparison between
different phases to measure the function change. Inter-phase
registrations register all TLC images in post-lavage phases to
the baseline TLC. These results are used to track local tissue
(or non-air) content change across four different phases.

2.3. Tissue Volume Assessment. We assume that lung is a
mixture of air and tissue/blood (non-air). So the Hounsfield
units (HU) in lung CT images are a function of tissue and
air content. From the HU of CT lung images, the tissue
volume and air volume can be estimate following the air-
tissue mixture model by Hoffman and Ritman [8]. The tissue
volume V in a voxel at position x can be estimated as

V(x) = v(x)
HU(x)−HUair

HUtissue −HUair
= v(x)β(I(x)), (2)

where v(x) is the volume of voxel x. Similarly, the air volume
V ′ in a voxel can be estimated as

V ′(x) = v(x)
HUtissue −HU(x)
HUtissue −HUair

= v(x)α(I(x)). (3)

In this paper, we assume that HUair = −1000 and HUtissue =
55. α(I(x)) and β(I(x)) are introduced for notational sim-
plicity, and α(I(x)) + β(I(x)) = 1. The tissue volume in a
region are calculated as

TV =
∫

R
V(x)dx =

∫
R
v(x)β(I(x))dx. (4)

2.4. Image Registration. The goal of registration is to find the
spatial mapping that brings two images into alignment. Let I1
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Figure 1: Lung volumes at FRC and TLC pressures, and the volume difference between FRC and TLC scans in each phase for six subjects.

Table 2: Statistics of VBAL and TVC1 for each subject.

Subjects VBAL (mL) TVC1 (mL)

1 147 125.48

2 160 107.80

3 110 106.16

4 151 130.00

5 150 123.37

6 68 42.03

and I2 represent two 3D image volumes to be registered. The
transform defines how points from the template image I1 are
mapping to their corresponding points in the target image
I2. In three dimensional space, let x = (x1, x2, x3)T define a
voxel coordinate in the image domain. The transformation h
is a (3×1) vector-valued function defined on the voxel lattice
of target image, and h(x) gives its corresponding location in
template image.

For each subject, two different kinds of registrations were
performed: intra-phase registration matches a FRC data to
its according TLC data in the same phase and inter-phase
registration matches the TLC data in post-lavage phases to
the baseline TLC data. Different registration algorithms were
used to perform intra-phase and inter-phase registrations.

2.4.1. Intra-Phase Registration: RTVP. A regularized tissue
volume and vesselness measure preserving nonrigid regis-
tration (RTVP) algorithm [11, 12] was used to estimate the
transformations from FRC to TLC in the same phase. The
RTVP algorithm minimizes the sum of squared tissue vol-
ume difference (SSTVD) [9, 13, 14] and vesselness measure
difference (SSVMD), utilizing the rich intensity and shape
information provided by the vessels. This method has been
shown to be effective at registering across lung CT images
with high accuracy [11, 12].

For a pair of FRC and TLC scans in the same phase, the
time interval of acquisition can be ignored and the tissue

volume is assumed unchanged. Therefore, the registration
can be driven by preserving tissue volume in two images. The
sum of squared tissue volume difference (SSTVD) similarity
cost function [9] accounts for the variation of intensity in the
lung CT images during respiration. This similarity criterion
minimizes the local difference of tissue volume inside the
lungs scanned at different pressure levels. The tissue volume
of a CT scan can be estimated by (2). Then the intensity
similarity metric SSTVD is defined as [9]

CSSTVD =
∫
Ω

[V2(x)−V1(h(x))]2dx

=
∫
Ω

[
v2(x)β(I2(x))− v1(h(x))β(I1(h(x)))

]2
dx,

(5)

where I1 and I2 are the template and target image intensity
functions, respectively. Ω denotes the union of lung regions
in target image and deformed template image. The Jacobian
of a transformation J(h) estimates the local volume changes
resulted from mapping an image through the deformation.
Thus, the tissue volumes in image I1 and I2 are related by
v1(h(x)) = v2(x) · J(h(x)).

As the blood vessels branch to smaller diameters, the raw
grayscale information from vessel voxels provide very little
contribution to guide the intensity-based similarity metrics.
In order to better utilize the information of blood vessel
locations, we use the vesselness measure based on the eigen-
values of the Hessian matrix of image intensity. Ordering the
eigenvalues of a Hessian matrix by magnitude |λ1| ≤ |λ2| ≤
|λ3|, Frangi’s vesselness function [15] is defined as

F(λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
1−e−R2

A/2α
2
)
· e−R2

B/2β
2

·
(

1−e−S2/2γ2
)

, if λ2< 0 and λ3< 0,

0, otherwise,

(6)

with

RA = |λ2|
|λ3| , RB = |λ1|√|λ2λ3|

, S =
√
λ2

1 + λ2
2 + λ2

3,

(7)
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Figure 2: For each subject, intraphase registrations register the FRC image to the TLC image within a phase; interphase registrations register
all TLC images in post-lavage phases to baseline TLC.

where RA distinguishes between plate-like and tubular
structures, RB accounts for the deviation from a blob-like
structure, and S differentiates between tubular structure and
noise. α, β, and γ control the sensitivity of the vesselness
measure. The experiments in this paper used α = 0.5, β =
0.5, and γ = 5. The vesselness measure is calculated in
multiscales and selected as the maximum response. The
vesselness image is rescaled to (0, 1) and can be considered
as a probability-like estimate of vesselness features. The
feature-based similarity metric, sum of squared vesselness
measure difference (SSVMD), is designed to match similar
vesselness patterns in two images. Given F1(x) and F2(x) as
the vesselness measures of images I1 and I2 at location x
respectively, this new cost function is formed as

CSSVMD =
∫
Ω

[F2(x)− F1(h(x))]2. (8)

Enforcing constraints on the transformation helps gen-
erate physiologically more meaningful registration results.
Continuum mechanical models such as linear elasticity can
be used to regularize the transformations. In this paper, a
Laplacian operator is used to regularize the displacement
fields u where u = h(x) − x. This regularization term is
formed as

CLAP =
∫
Ω

∥∥∇2u(x)
∥∥2
dx, (9)

where ∇ = [∂/∂x1, ∂/∂x2, ∂/∂x3] and ∇2 = ∇ · ∇ = [(∂2/
∂x2

1) + (∂2/∂x2
2) + (∂2/∂x2

3)]. Using linear elasticity differential
operator can help smooth the transformation, and help
eliminate abrupt changes in the displacement fields.

Finally, the total cost is defined as a linear combination
of the intensity-based metric, vesselness measure preserving
metric and Laplacian constraint

CTOTAL = CSSTVD + χCSSVMD + γCLAP. (10)

Constants χ and γ are weights to adjust the significance of
the three terms. In this work, the weighting constants were
selected by minimizing three separate cost terms at the same
time based on the registration experiments of data sets from
six subjects. These parameters were set as χ = 1 and γ = 0.01
for all intra-phase RTVP registrations.

The transformation h(x) was parameterized using a
cubic B-splines represented transform:

h(x) = x +
∑
i∈G

φiβ(x − xi), (11)

where φi describes the displacements of the control nodes
and β(x) is a three-dimensional tensor product of basis
functions of cubic B-Spline. A spatial multiresolution pro-
cedure from coarse to fine was used in the registration to
improve speed, accuracy and robustness. The total cost in
(10) was optimized using a limited-memory, quasi-Newton
minimization method with bounds (L-BFGS-B) [16] algo-
rithm. Based on the sufficient conditions to guarantee the
local injectivity of functions parameterized by uniform cubic
B-Splines proposed by Choi and Lee [17], the B-Splines coef-
ficients are constrained so that the transformation maintains
the topology of two images.

2.4.2. Inter-Phase Registration: RIVP. Since the effect of the
BAL fluid resolved within 24 hours after lavage, the tissue
volume (non-air volume) varied between different phases.
Therefore, the tissue volume preserving assumption is not
valid in the case when registering TLC scans from post-lavage
phases to baseline TLC scan. The sum of squared difference
(SSD) defined by

CSSD =
∫
Ω

[I2(x)− I1(h(x))]2dx, (12)
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which was used for inter-phase registration. The underlying
assumption of SSD is that the image intensity at correspond-
ing points between two images should be similar. This is
true when registering images of the same modality. In such
cases, if the images are perfectly mapped, the corresponding
intensities should be identical, which means each point of
the same underlying structure has the same intensity value
in the two images to be registered. However, considering the
change in CT intensity due to different air content and BAL
effects, the grayscale ranges were different within the lung
region in two TLC images acquired at different phases. To
balance these grayscale range differences, normalization of
the intensities is needed. A histogram matching procedure
was used before SSD driven registration to modify the histo-
gram of template image so that it was similar to that of target
image.

Except for the fact that the similarity metric is changed
from SSTVD to SSD (after histogram matching), other com-
ponents and registration schemes of inter-phase registration
are the same with those of intra-phase registration. The
inter-phase TLC scans matching uses a regularized intensity
and vesselness preserving nonrigid registration (RIVP). The
transformation is estimated by minimizing the sum of
squared intensity difference, the sum of squared vesselness
measure difference, and the Laplacian constraints. The total
cost function

CTOTAL = CSSD + χCSSVMD + γCLAP. (13)

In this paper, the weighting constants were chosen using
similar criteria to that in intra-phase RTVP registrations, and
were set as χ = 2 and γ = 10 for all inter-phase RIVP registra-
tions.

2.5. Assessment of Registration Accuracy by Tracking Landmark
Movement. For each subject, 20 anatomic landmarks were
manually selected and tracked in all eight images during
four phases to assess registration accuracy. These landmarks
were chosen as recognizable airway branchpoints, as shown
in Figure 3. The transformation determined from the lung
registration can be used to predict the landmark movement
between the different coordinates. Landmark error is defined
as the Euclidean distance between registration-predicted
landmark position and its true position in the same image
coordinate to measure the matching accuracy.

For each scan pair of baseline data, a distributed set of
landmarks selected as vessel tree branch points were also
defined. The landmarks in baseFRC image were first selected
as the bifurcations of the segmented vessel tree [18]. A
semi-automatic system [19] was used to guide the observer
to find the landmarks in the baseTLC image with their
corresponding voxels in the baseFRC image. The landmarks
were selected throughout the lungs. An example of the point
distribution is shown in Figure 4. An expert selected over
100 landmark pairs for each baseline scan pair of the six
subjects.

2.6. Tracking Lung Tissue Volume Change. For each subject,
intersection registrations mapped all the post-lavage TLC

Figure 3: Distribution of landmark positions (red points) selected
on the airway tree from the baseTLC image of one subject.

images to baseline coordinate system, and provided voxel-
wise correspondences from the baseline phase to the three
post-lavage phases. These mappings enable assessment of the
tissue volume change for a given voxel position across the
four phases.

Using a Lagrangian reference frame, Figure 5 shows an
example of a region at location x of baseTLC deforms to
different shapes in post0TLC, post4TLC, and post24TLC
under transformations h1, h2, and h3, respectively. Assume
the region within the red rectangular in baseTLC corre-
sponds to the regions enclosed by red curves in images of
post phases in Figure 5. The volumes of the same region
in four phases are v(x), v(x)J(h1(x)), v(x)J(h2(x)), and
v(x)J(h3(x)). These volumes can be decomposed into the
tissue volume fraction and air volume fraction based on
the mean voxel intensity within the cube. The tissue vol-
umes are calculated as v(x)β(I0(x)), v(x)J(h1(x))β(I1(h(x)),
v(x)J(h2(x))β(I2(h(x)) and v(x)J(h3(x))β(I3(h(x)), respec-
tively. Here J is denoted as the Jacobian of the transforma-
tions; I0, I1, I2, I3 are intensity function of the four images.
As the ratio of tissue to air increases, the CT intensity of a
voxel increases (getting brighter). In this way, we are able to
track tissue volume of any subregion across the four phases
using inter-phase registration results.

The total tissue volume in a region can be integrated
using (4). In the same region R defined on baseline coor-
dinate. Let TV0, TV1, TV2, and TV3 represent the total
tissue volume from baseTLC, post0TLC, post4TLC, and
post24TLC, respectively. They are calculated as

TV0 =
∫

R
v(x)β(I0(x))dx,

TVi =
∫

R
v(x)J(hi(x))β(Ii(hi(x)))dx, i = 1, 2, 3.

(14)

Meanwhile, we define TVC1, TVC2, and TVC3 as the index
of tissue volume change for three post-lavage phases when
compared with base phase, and also define TVCR1, TVCR2
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(a) (b)

Figure 4: Distribution of landmarks (green points) selected at vessel-tree branch points on (a) FRC, and (b) TLC scans of one subject.

BaseTLC Post0TLC Post4TLC Post24TLC

V(x)∗ β[I0(x)]

V(x)∗ J[h1(x)]

∗β{[I1(h1(x)])]}
V(x)∗ J[h2(x)] V(x)∗ J[h3(x)]

∗β{[I2(h2(x)])]} ∗β{[I3(h3(x)])]}

Figure 5: Illustration of the method utilizing inter-phase registration results to track tissue volume across four different phases. The region
within the red rectangular in baseTLC is assumed to deform to the regions enclosed by red curves in images of post phases.

and TVCR3 as the index of tissue volume change ratio. They
are formulated as follows:

TVCi = TVi − TV0, TVCRi = TVi − TV0

TV0
× 100%,

i = 1, 2, 3.
(15)

2.7. Assessment of Lung Function by Jacobian. The lung tissue
deformation pattern is an index to assess lung function. In
this work, the Jacobian determinant of the transformation
field derived by image registration is used to estimate the
local tissue deformation [7].

The Jacobian determinant (often simply called the Jaco-
bian) [20–22] is a measurement to estimate the pointwise
expansion and contraction during the deformation. In
three-dimensional space, let h(x) = [h1(x),h2(x),h3(x)]T

be the vector-valued transformation which deforms the
template image I1 to the target image I2. The Jacobian of the

transformation J(h(x)) at location x = (x1, x2, x3)T is defined
as

J(h(x)) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂h1(x)
∂x1

∂h1(x)
∂x2

∂h1(x)
∂x3

∂h2(x)
∂x1

∂h2(x)
∂x2

∂h2(x)
∂x3

∂h3(x)
∂x1

∂h3(x)
∂x2

∂h3(x)
∂x3

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (16)

Using a Lagrangian reference frame, a Jacobian value of one
corresponds to zero expansion or contraction. Local tissue
expansion corresponds to a Jacobian greater than one and
local tissue contraction corresponds to a Jacobian less than
one.

Across different phases, the Jacobian estimates are related
to two factors. The first factor is the unretrieved BAL.
According to [6], the lung mechanics can be significantly
altered an hour or longer after BAL. The second factor is
breathing effort. As shown in Figure 1, saline fluid retained
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in the lung after BAL procedure may cause reduced breathing
effort, that is, smaller volume change from FRC to TLC.
Smaller volume change results in lower lung function on
average. In order to focus our analysis on how the unre-
trieved BAL affects the lung function, we eliminate the
breathing effort factors by calculating the cumulative distri-
bution function (CDF) of the Jacobian estimates.

In our case, CDF of Jacobian describes the probability
that Jacobian values will be found less than or equal to a
given value. Intuitively, it is the “area under curve” function
of the probability distribution. It can be viewed as “rank”
information: a CDF of 1 means rank top (largest Jacobian),
while a CDF value of 0 means rank bottom (smallest
Jacobian). In the following description, we call the CDF
of the Jacobian as the rank for convenience. Regardless of
different overall volume changes, regions with higher lung
function correspond to higher rank. In this way, we eliminate
the breathing effort factors while comparing lung function
changes caused by unretrieved BAL fluid. Let Rank0, Rank1,
Rank2, and Rank3 represent the rank of Jacobians estimated
from base, post0, post4, and post24 phases, respectively.
Then the rank change RC is defined as

RCi = Ranki − Rank0, i = 1, 2, 3. (17)

2.8. Preprocessing. Preprocessing starts by identifying the
lung regions in all images using the Pulmonary Workstation
2.0 (VIDA Diagnostics, Inc., Iowa City, IA). For the baseTLC
image of each subject, an automatic lobe segmentation
algorithm [23] was used to segment the parenchyma regions
into five different lobes. Images and masks are downsampled
by a factor of 2 in each dimension to reduce computation
time of image registration.

After preprocessing, three inter-phase registrations map-
ping TLC images from three post-lavage phases to baseline
TLC image for each subject were performed using RIVP
registration. These resulting transformations are used to
track tissue volume change across four phases. Then four
intra-phase registrations mapping FRC image to TLC image
within each phase for each subject were performed using
RTVP registration. The resulting transformation were used
to estimate regional lung deformation pattern within each
phase. Combined with inter-phase transformations, the
regional lung function was tracked across four phases.

For the RTVP and RIVP registration, a multiresolution
strategy was used in the optimization process. It proceeds
from low to high image resolution starting at one-eighth the
spatial resolution and increases by a factor of two until the
full resolution is reached. Meanwhile, a hierarchy of B-spline
grid spaces from large to small is used. The finest B-spline
grid space used in the experiments is 8 mm. The images and
image grid space were refined alternatively.

3. Results

3.1. Assessment of Registration Accuracy. Registration out-
come can be judged qualitatively by observers through visual
assessment. Visualization of the image intensity matching
is an intuitive method to determine how well the region

boundaries and corresponding structures were aligned.
Examples of inter-phase and intra-phase registration results
are shown in Figure 6. Figures 6(a)–6(e) show the matching
results of inter-phase registration: (a) and (b) show coronal
slices of baseTLC and post0TLC data sets for the same
subject, respectively; the deformed slice from FRC image
to TLC image is shown in (c); (d) shows the color-coded
fused slice between (a) and (b) before registration; and (e)
shows the color-coded fused slice between (a) and (c) after
registration. Matching results of intra-phase registration
between baseTLC and baseFRC are shown in the same way
in Figures 6(f)–6(j). It is obvious to see that besides the lung
boundaries, important structures, such as airway, vessel, and
fissure locations, are aligned well after registration.

For each subject, registration accuracy is quantitatively
assessed by tracking movement of 20 airway-branch land-
marks on TLC images across four phases, and between FRC
and TLC images within the same phase. Boxplots of the
landmark tracking error of both inter-phase registration
and intra-phase registration over six subjects are shown in
Figure 7. The boxplot of landmark error on over 100 widely
distributed vessel-branch landmarks for baseline intra-phase
registration (warping baseFRC to baseTLC) is shown in
Figure 8. These mean errors for each subject were on the
order of 1 mm.

3.2. Comparison between Quantitative-Assessed and Broncho-
scopist-Reported Unretrieved BAL. According to the experi-
mental protocol, the quantitative assessment of tissue volume
change between baseline phase and post0 phase should be
correlated with unretrieved BAL fluid from bronchoscopist
reported data [5]. From (1), VBAL is calculated from
bronchoscopist-reported volumes instilled and retrieved
during BAL procedure. From (15), the tissue volume change
calculated between baseTLC and deformed post0TLC to
baseline coordinate is defined as TVC1. Experiments to find
the relationship of the quantitative assessment and clinical
data were performed. The correlation coefficients between
VBAL and TVC1 were calculated by linear regression.

Table 2 lists the volume of unretrieved BAL fluid VBAL

and tissue volume change TVC1 for each subject. The linear
regression line and correlation coefficient are shown in
Figure 9(a). As noted, subject 2 was observed to cough a
significant amount of BAL fluid out of the lungs, which
was not collected during lavage process. Therefore it was
reasonable to remove this subject from the linear regression
analysis. The linear regression line and correlation coefficient
after removing data from subject 2 is shown in Figure 9(b).

3.3. Tracking Global and Regional Tissue Volume Change.
Using (14), we calculated the tissue volume in the same
arbitrary-shaped region R (defined on baseline phase) at
different phases. Substituting R with the baseline whole
lung segmentation, we tracked the global tissue volume
change using (15). The measurements of the whole lung
tissue volume change ratio over different phases are listed in
Table 3.
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(a) BaseTLC (b) Post0TLC (c) Deformed post0TLC

(d) Fused before interphase reg (e) Fused after interphase reg (f) Post0TLC

(g) Post0FRC (h) Deformed post0FRC (i) Fused before intraphase reg

(j) Fused after intraphase reg

Figure 6: Example of registration results. Matching results of interphase registration: (a) a baseTLC slice; (b) a post0TLC slice; (c) the slice
of deformed image from post0TLC to baseTLC which matches (a); (d) the fused slice of (a) (colored red) and (b) (colored green) before
registration; (e) the fused slice of (a) and (c) after registration. Matching results of intraphase registration are shown in the same way in
(f)–(j).

For each scan pair of baseline data, an automatic lobe
segmentation algorithm [23] was used to segment the
parenchyma regions into five different lobes. Substituting R
in (14) with five different lobe segmentations, we tracked
the lobe-based tissue volume change over time using (15).

Figure 10 shows the lobe-based tissue volume change ratio
over different phases averaged across six subjects.

3.4. Tracking Regional Lung Function Change. For each
intra-phase registration, we calculated voxel-wise Jacobian
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(a) Boxplot of landmark error of inter-phase registrations averaged
over six subjects
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(b) Boxplot of landmark error of intra-phase registrations averaged
over six subjects

Figure 7: Registration accuracy on airway landmarks. (a) Boxplot of landmark error of interphase registrations. Inter1a, Inter2a and Inter3a
denote the error from post0TLC, post4TLC, and post24 TLC to baseTLC before registration, respectively. While Inter1b, Inter2b and Inter3b
denote the error after three interphase registrations. (b) Boxplot of landmark error of intraphase registrations. Intra1a, Intra2a, Intra3a, and
Intra4a denote the error from baseFRC to baseTLC, from post0FRC to post0TLC, from post4FRC to post4TLC, and from post24FRC to
post24TLC before registration, respectively. While Intra1b, Intra2b, Intra3b and Inter4b denote the error after four intraphase registrations.
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Figure 8: Registration accuracy on vessel landmarks of baseline intra-phase registration. For each subject, the left bar shows error before
registration, and the right bar shows error after registration.

from the transformations to estimate lung expansion and
contraction, which reflects the local lung function during
the respiration process. In order to observe the regional lung
function tendency, we divided the lung into 30 rectangular-
shaped slabs from dorsal to ventral lung, and from apex to
base lung. The average Jacobian was calculated within each
slab, and plotted in Figure 11. Each color-coded line shows
the Jacobian estimated from one intra-phase registration.

Combining intra-phase and inter-phase registration
together, we mapped Jacobian estimates in different phases
to the same baseline coordinate for comparison. Figure 12
illustrates the Jacobian and its rank (CDF) distribution on a

transverse slice defined in baseTLC coordinate. The left col-
umn shows the intensity pattern over four different phases;
the middle column shows the corresponding Jacobian maps
in each phase; and the right column shows the corresponding
rank maps of Jacobian estimates.

As shown in Figure 12(d), the region with unretrieved
BAL (lavage region) has much higher CT intensity than other
regions. This intensity difference enables us to segment the
lavage region manually. The regional function change over
time can be observed by tracking the rank change of Jacobian
estimates over four phases within lavage region and non-
lavage region, as shown in Figure 13.
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Figure 9: Correlation between quantitative assessment of TVC1 and bronchoscopist reported unretrieved BAL fluid volume VBAL. (a) shows
the linear regression using data from all six subjects. (b) shows the linear regression using data from five subjects after removing subject 2.
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Figure 10: Tissue volume change ratio over different phases for five
lobes average across six subjects.

Table 3: Statistics of whole lung tissue volume change ratio TVCR1,
TVCR2, and TVCR3 for each subject and averaged over six subjects.

Subjects TVCR1 TVCR2 TVCR3

1 14% 12% 5%

2 15% 4% 1%

3 15% 3% 0%

4 22% 13% 0%

5 14% 8% 1%

6 5% 3% 2%

Avg 14% ± 5.41 7% ± 4.59 2% ± 1.94

4. Discussion

We have described a registration-based method to study
the progress of regional BAL resolution and lung func-
tion change. Both inter-phase and intra-phase registration

achieved good accuracy by visual inspection as shown in
Figure 6, and by tracking landmark movement. The mean
landmark (airway branch points) tracking error across six
subjects is 0.70 ± 0.34 mm for inter-phase registration, and
0.86± 0.50 mm for intra-phase registration. These errors are
within subvoxel range, which indicates that the registrations
results were able to describe lung deformations within the
same phase and between different phases with tolerable
errors.

Inter-phase registration was used to track tissue volume
change in any arbitrary-shaped lung regions through all
different phases. At the whole lung level, the bronchoscopist-
reported unretrieved BAL VBAL and quantitative-assessed
tissue volume changes from baseline to post0 phase TVC1

are listed in Table 2 for each subject. We noticed that
TVC1 was always lower than VBAL, which may due to the
fluid resolution during the time interval between lavage
and the first post-lavage scan (within 30 minutes). The
linear regression analysis demonstrated good correlation
between bronchoscopist-reported VBAL and quantitative-
assessed TVC1, as shown in Figure 9(a). The correlation
coefficient is R2 = 0.81 with a slope of 0.83. After removing
data from subject 2 which had inaccurate unretrieved
BAL measurement due to cough, the correlation coefficient
increased significantly to R2 = 0.94 with a slope of 0.98,
as shown in Figure 9(b). This analysis shows that the quan-
titative-assessed tissue volume change is highly correlated
with bronchoscopist-measured data, which demonstrates the
method we used to track tissue volume change through inter-
phase registration is meaningful in the global sense.

With inter-phase registrations, we were also able to track
the tissue volume change through the four phases. As shown
in Table 3, the mean tissue volume change ratio to baseline
state is 14%± 5.41 at post0 phase, then it drops to 7%± 4.59
at post4 phase, and finally decreased to 1% ± 2.64 at post24
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Figure 11: Lung expansion pattern within each phase for one subject. (a) shows the slab division scheme from dorsal to ventral lung,
and the corresponding mean Jacobian in each slab over four phases. (b) shows the slab division scheme from apex to base lung, and the
corresponding mean Jacobian in each slab over four phases.

phase. This indicates that the fluid is continuously resolved
during the 24 hours after lavage. After 24 hours, most lavage
fluid is absorbed and the lung tissue volumes return to their
baseline state.

Besides assessing tissue volume change at the global
level, we were able to track the tissue volume change within
subregions defined on baseline data sets with inter-phase
registration. For instance, lobar segmentation on baseline
images was used to track the tissue volume change in each
lobe through the four phases. As shown in Figure 10, the
right middle lung and left upper lung have the largest tissue
volume change after lavage. This is because lavage fluid was
delivered to the two lobes. However, the other three lobes also
experience tissue volume increase, which indicates the fluid
was redistributed among different lobes. After 24 hours, most
lavage fluid was absorbed and the tissue volume of all lobes
return to baseline state.

Intra-phase registration results provides local lung func-
tion measurement assessed by Jacobian within each phase.
Dividing the whole lung region into 30 slabs from dorsal
to ventral along lung height, or from apex to base along

lung length, the mean Jacobian was tracked in each slab
region across four phases with inter-registration results. As
shown in Figure 11, the mean Jacobian in each slab was
high at baseline, then dropped dramatically at post0 phase,
and increased at post4, and finally returns to the baseline
state at post24 phase. This is because with fluid in the lung,
all subjects except subject 6 have smaller inspiration effort
immediately after lavage, as shown in Figure 1. As the effects
of the fluid resolves, the lungs return to normal state and
have similar breathing efforts with baseline state. As a result,
the lung function recovers with the same inspiration efforts,
shown as the overlap between blue line (baseline) and purple
line (post24 phase) in Figure 11. We also noticed that there
were gradients for each mean Jacobian curve from dorsal
to ventral along lung height, and from apex to base along
lung length. With different lung volume change, regions with
larger lung function (dorsal lung and base lung) were affected
more than other regions.

Figure 12 shows the local Jacobian map on a transverse
slice. After warping all post-lavage images to baseline, the
change on the same slice was tracked during the 24 hours.
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Figure 12: Comparison of local lung function estimates over different phases. (a), (d), (g), and (j) show the intensity pattern on the same
slice from baseTLC, deformed post0TLC to baseTLC, deformed post4TLC to baseTLC, and deformed post24TLC to baseTLC, respectively.
(b), (e), (h), and (k) show the Jacobian maps estimated from four phases on the slice. (c), (f), (i), and (l) show the corresponding rank maps
of Jacobian estimates.

Fluid delivery and resolving is clearly seen in the intensity
images. Jacobian maps show that the function decreases in
post0 and post4 phases, and recovers in post24 phase. The
cumulative density function (CDF) of Jacobian gives us a
rank information of Jacobian, which eliminated the affect
of different breathing efforts. It shows that at post0 and
post4 phases, the rank for non-lavage region was almost
unchanged, but the lavage region was significantly decreased.
Also, after 24 hours, the rank for each region recovered.
This pattern of rank change is also reflected in Figure 13.

The lavage regions has around 6% function rank decrease
immediately after lavage, while non-lavage regions have a
little increase in contrast. Those rank changes disappear after
24 hours.

The results of this work agree with the previous study in
[3–6]. References [3–5] showed that the fluid was absorbed
gradually within 24 hours and [6] demonstrated the lung
mechanics change after BAL. Most of those studies are at
the global level, or depends on the region of interest seg-
mentations provided for each dataset. Our work used image
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registration to generate dense displacement field between
images and was able to track the fluid content change within
any given region over time quantitatively. Lung function
changes were also analyzed from registration resulting trans-
formations.

5. Conclusions

This paper described a method to study fluid resolution
progress and lung function change regionally using image
registration techniques. Results were presented to show that
the registration is able to describe lung motion within
the same phase and between different phases. Inter-phase
registrations enabled us to track tissue volume change in any
arbitrary-shaped lung regions through all different phases.
Meanwhile, intra-phase registrations provided the local lung
function map within the same phase. Combining inter-
phase and intra-phase registrations, lung function change
was tracked through different phases at a local region level.
This method can also be applied to track disease progression
and help in radiotherapy design.
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