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Introduction

Assisting End-Users in Creating Chatbots by Improving Training Data
Aparna Roy, Chris Egersdoerfer, Kostadin Damevski

Department of Computer Science, Virginia Commonwealth University, Richmond, VA

As the number of open-source chatbot frameworks 
continues to grow, there is an ever-increasing need 
for tools to automatically measure and improve upon 
domain-specific chatbots. 

The training dataset being one of the most impactful 
pieces to overall chatbot performance, it is the 
foundational component we aim to optimize.

Method
Part 1: Set Up

1. Randomly split entire training data set into 80% 
(training set) and 20% (test set)

Part 2: KNN-Based Removal
(testing if removing worst examples improves chatbot)

1. Embed training examples with Sentence-BERT [1]
2. Reduce 384-dimensional embeddings to 2 

dimensions with Principal Component Analysis
2. Find 7% of all points that are closest to each 

example using k-nearest neighbors (KNN) algorithm
3. For each example, X, calculate: 

4. If the calculated ratio equates to 0, remove the 
example from the training set
- If the intent has less than 7 total examples, no 

examples are removed
5. Retrain chatbot with updated training set and test 

chatbot with test set

Part 3: Confidence-Based Removal
(setting a baseline using Rasa’s NLU system) 

1. Remove training examples with lowest confidence 
based on Rasa’s intent prediction model
- Remove same number of examples using this 

method as removed with KNN-based removal 
2. Retrain chatbot with updated training set and test 

chatbot with test set

Method
 Part 4: Paraphrase-Based Training Data Addition
(testing if increasing training set improves chatbot) 

1. Paraphrase each example 3 times [2]
2. Retrain chatbot using larger training set and then 

test chatbot with test set

Part 5: Repeat
1. Repeat previous steps 5 times and average results
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Results

Discussion
Significance of Results
● After testing the confidence-based removal and 

KNN-based removal on 6 different chatbots, our 
results showed:
○ Removing training data with lowest confidence 

(based on Rasa’s NLU system) increases average 
F1-score and accuracy.

○ However, using KNN-based removal method 
further increases average F1-score and accuracy.

○ Not every chatbot may benefit from this approach, 
but most will.

● This shows that KNN-based training data removal 
helps improve chatbot performance by enhancing 
chatbots’ ability to correctly classify user input.

Limitations
● The chatbots that were evaluated were mostly 

amateur projects, not production-ready chatbots.
○ As a result, the quality of the training data was not 

always the best, though it is likely close to 
real-world data.

Future Directions
● We will continue to test if paraphrase-based training 

data addition improves chatbot performance.
● Does paraphrase-based addition in combination 

with KNN-based removal improve chatbots more 
than just removing or adding alone?

Emergency Chatbot Training Dataset

Emergency Chatbot Precision Recall F1-Score Accuracy

Original Chatbot 
(No Removal) 0.8852 0.8348 0.8593 0.8492

Confidence-Based 
Removal 0.8822 0.8392 0.8602 0.8571

KNN-Based 
Removal 0.9049 0.8392 0.8708 0.8572

Chatbot Performance: Original vs After Removal

Intents:

I have to phone the firefighters station
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