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Abstract

Ryser’s conjecture postulates that, for r-partite hypergraphs, τ ≤ (r − 1)ν where τ is the
covering number of the hypergraph and ν is the matching number. Although this conjecture has
been open since the 1960s, researchers have resolved it for special cases such as for intersecting
hypergraphs where r ≤ 5. In this paper, we prove several results pertaining to matchings
and coverings in r-partite intersecting hypergraphs. First, we prove that finding a minimum
cardinality vertex cover for an r-partite intersecting hypergraph is NP-hard. Second, we note
Ryser’s conjecture for intersecting hypergraphs is easily resolved if a given hypergraph does not
contain a particular sub-hypergraph, which we call a tornado. We prove several bounds on the
covering number of tornados. Finally, we prove the integrality gap for the standard integer linear
programming formulation of the maximum cardinality r-partite hypergraph matching problem
is at least r − k where k is the smallest positive integer such that r − k is a prime power.

Key words. covering, matching, Ryser’s conjecture, r-partite hypergraphs, intersecting hyper-
graphs

1 Introduction

Finding a maximum cardinality matching in an r-partite hypergraph is a well-studied problem in
combinatorics, combinatorial optimization, and computer science that is known as the r-Dimensional
Matching Problem (rDM). rDM is NP-hard when r ≥ 3 [7]. A related problem is that of finding a
minimum cardinality vertex cover (rDVC) in an r-partite hypergraph. This problem is also NP-hard
for r ≥ 3 [6].
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The relationship between the size τ of a minimum cardinality vertex cover and the size ν of a
maximum cardinality matching in an r-partite hypergraph is the subject of an open conjecture due
to Ryser, which is stated as follows:

Ryser’s Conjecture. For an r-partite hypergraph, τ ≤ (r − 1)ν.

The case when r = 2 is the subject of König’s Theorem [8] for bipartite covering and matching.
Aharoni [2] proves the conjecture when r = 3. The conjecture remains open for r ≥ 4. Tuza [13]
proves the conjecture is true for intersecting hypergraphs when r = 4 and r = 5. The conjecture
remains open for intersecting hypergraphs when r ≥ 6.

There are other cases when Ryser’s conjecture is known to be true. Berge [3] establishes that any
polytope defined by:

{x ∈ Rn : Ax ≤ b;x ≥ 0} or {x ∈ Rn : Ax ≥ b;x ≥ 0}

where A is a {0, 1} matrix has integral vertices if and only if A is a balanced matrix and b is a vector
of positive integers. An implication of Berge’s result is that rDM and rDVC can be solved with linear
programming if the incidence matrix of the underlying hypergraph is a balanced matrix. If this is
the case, then the strong duality theorem of linear programming implies τ = ν for hypergraphs
with balanced incidence matrices. Thus, Ryser’s conjecture is easily resolved for hypergraphs with
balanced incidence matrices.

Since rDM and rDVC can occur on hypergraphs having incidence matrices that are not balanced,
the standard integer linear programming (ILP) formulation of rDM has a nontrivial integrality gap.
Note that the LP relaxations of the standard ILP of rDM and of rDVC form a primal-dual LP pair.
Therefore, a cover for a given hypergraph provides an upper bound on the integrality gap for the
rDM ILP formulation. If Ryser’s conjecture is true it would provide an upper bound of r − 1 on
the integrality gap for rDM. However, this upper bound is already known to be true due to the
following result of Füredi:

Füredi’s Theorem [5] For an r-partite hypergraph, τ∗ ≤ (r − 1)ν.

In this context, τ∗ refers to the cardinality of the minimum fractional vertex cover in the hypergraph.
Füredi’s Theorem is tight for the case when r is a prime power. This can be shown by constructing
an instance of rDM on the hypergraph that results from deleting a vertex and all incident hyperedges
from the projective plane of order r [2, 4, 12].

There are also known bounds on the integrality gaps of the standard formulations of rDVC. Lovász
[11] proves the ratio obtained by dividing the cardinality of the minimum vertex cover in a plain
(i.e., not necessarily r-partite) hypergraph by the cardinality of the minimum fractional vertex cover
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is at most 1 + log d where d is the maximum degree in the hypergraph. Naturally, this result also
extends to the integrality gap of rDVC. Lovász [10] also proves the integrality gap of rDVC is at
most r

2 .

This paper makes several contributions related to covers and matchings in r-partite hypergraphs.
First, we prove that rDVC in intersecting hypergraphs is NP-hard for r ≥ 3. We observe that an
r-partite intersecting hypergraph with τ 6= ν must contain a certain sub-hypergraph, which we call
a tornado. We prove several upper bounds on the size of minimum cardinality covers for tornados.
Finally, we present a proof that the integrality gap of the standard ILP formulation for rDM is at
least r − k, where k is the smallest positive integer such that r − k is a prime power.

Our last contribution is an extension of a known result; specifically, there exists an intersecting
hypergraph with τ = r− 1 if r is a prime power (e.g., Mansour et al. [12]). This result is combined
with Füredi’s Theorem and presented in terms of the integrality gap for the standard ILP formulation
for rDM.

2 Preliminaries

In this section we outline preliminary concepts that are used throughout this paper. Specifically,
we present preliminary concepts for edge colorings, hypergraphs, integer programming, and Latin
squares.

2.1 Hypergraphs

Let H = (V,E) denote an undirected hypergraph with vertex set V and hyperedge set E. A
hyperedge e ∈ E is a subset of the vertices. That is, e ⊆ V for each e ∈ E. A hypergraph is
r-partite if the vertices are partitioned into r disjoint subsets Vk, k = 1, . . . , r, and each hyperedge
contains exactly one vertex from each of the r subsets. All hypergraphs discussed in this paper are
r-partite.

An incidence matrix A of a hypergraph is a {0, 1} matrix where every vertex has exactly one
corresponding row in A, every hyperedge has exactly one corresponding column in A and the entry
in the row corresponding to vertex v and the column corresponding to hyperedge e is 1 if and only
if v is contained in e. An incidence matrix is balanced [3] if it does not contain a submatrix that is
equivalent to an incidence matrix of a graph that is an odd cycle. A hypergraph with a balanced
incidence matrix is a balanced hypergraph. A hypergraph is intersecting if each pair of hyperedges
has a non-empty intersection.
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A matching in a hypergraph is a subset of hyperedges M⊆ E such that each vertex appears in at
most one of the hyperedges in M. A vertex cover in a hypergraph is a subset of the vertices C ⊆ V

such that every hyperedge contains at least one of the vertices in C.

A fractional vertex cover Cf is an assignment of weights to vertices such that every vertex receives
a weight in the closed interval from 0 to 1 and the sum of the weights of vertices on each hyperedge
is greater than or equal to one. |Cf | denotes the cardinality of a fractional vertex cover Cf , which
is the sum of the weights in the fractional vertex cover.

2.2 Edge Colorings of Graphs

Let G = (V,E) be a graph. An edge coloring is a partition of the edges into subsets where each
subset uniquely corresponds to a color. An edge that is in the subset corresponding to color c is
colored with color c. An edge coloring is proper if no two edges that are incident to the same vertex
are colored with the same color. Let Kn be the complete graph on n vertices. The following theorem
is well known:

Theorem 1. [14] There exists a proper edge coloring of K2n that uses 2n− 1 colors.

2.3 Integer Programming

Given an instance I of an ILP formulation of a combinatorial optimization problem where the
objective is to maximize a function, let z∗IP (I) denote its optimal objective value. Let z∗LP (I)
denote the optimal objective value of a corresponding linear programming (LP) relaxation, the
linear program obtained by replacing the integrality restrictions on the variables with nonnegativity
constraints. The integrality gap of this particular instance (for this particular ILP and LP relaxation
pair) is z∗LP (I)

z∗IP (I) . Similarly, the integrality gap of this ILP (and a corresponding LP relaxation) equals:

supI∈I
z∗LP (I)
z∗IP (I)

,

where I is the set of all possible instances of the problem. Note the integrality gap of any ILP is
always greater than or equal to one. An ILP with an integrality gap of exactly one is said to have
no integrality gap.
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2.4 Latin Squares

Let [n] = {1, 2, . . . , n}. A Latin square of dimension n is an n× n matrix where each number in [n]
occurs in each row exactly once and each number in [n] occurs in each column exactly once. Such
a Latin square has size n.

Given two square matrices L1 and L2 of size n, their paired matrix is a square matrix L1,2 of
dimension n such that the entry in the ith row and the jth column of L1,2 is an ordered pair (a1, a2)
where a1 is the element in the ith row and the jth column of L1 and a2 is the element in the ith
row and the jth column of L2.

Two Latin squares are orthogonal if their corresponding paired matrix contains each of the ordered
pairings in the set [n] × [n] exactly once. A set of pairwise orthogonal Latin squares are called
mutually orthogonal Latin squares (MOLS).

A well-known result concerning the existence of MOLS is the following:

Theorem 2. [1] A set of n− 1 distinct MOLS of dimension n exists if n is a prime power.

3 Covering r-Partite Intersecting Hypergraphs is NP-hard

Let IrDVC denote the special case of rDVC on intersecting hypergraphs. We provide a nontrivial
reduction of rDVC to IrDVC to prove IrDVC is NP-hard. First, we need the following definitions:

Definition 1. Let f : V → [2n−1] be a proper edge coloring of K2n. Then a tournament function

π : V × [2n− 1] → V is a function that, given a vertex u and a color c as input, outputs the vertex
v such that the edge (u, v) has color c when the edge coloring f is applied to K2n.

We use the name tournament function because if we were to schedule a single round-robin tourna-
ment between the vertices (players) using the well-known circle method of Kirkman [9], π would
indicate the opponent of vertex u during the week that corresponds to color c.

Definition 2. Let H = (V,E) be a hypergraph and let C ⊆ V be a vertex cover of H. A vertex
v ∈ C minimally covers a hyperedge e ∈ E if the vertex set C\{v} does not cover e.

Theorem 3. IrDVC is NP-hard for r ≥ 5.

Proof. Consider any instance of rDVC where r ≥ 5 and let H = (
⋃r
i=1 Vi, E) be the corresponding

hypergraph. We show how to transform this instance into an instance of Ir̂DVC, which is on a
hypergraph Ĥ = (

⋃r̂
i=1 V̂i, Ê) where r̂ = r + 2(|E| − 1). Assume for now that |E| is even.
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For each i ∈ {1, 2, . . . , r}, V̂i = Vi. In addition, for each hyperedge ei ∈ E and for each vertex subset
Vj such that j > r, create a vertex vi,j in partition V̂j . For each hyperedge ei = (v(i,1), v(i,2), . . . , v(i,r))
in E, create the following two hyperedges in Ê:

• ê(i,1) = (v(i,1), v(i,2), . . . , v(i,r), v(ψ(i,r+1),r+1), v(ψ(i,r+2),r+2), . . . , v(ψ(i,r̂),r̂)),

• ê(i,2) = (v(i,1), v(i,2), . . . , v(i,r), v(ω(i,r+1),r+1), v(ω(i,r+2),r+2), . . . , v(ω(i,r̂),r̂)),

where

ψ(i, r + p) :=

{
π

(
i, bp2c

)
if π

(
i, bp2c

)
< i and p is odd

i otherwise
,

ω(i, r + p) :=

{
i if ψ(i, r + p) = π(i, bp2c)

π
(
i, bp2c

)
otherwise

,

and π is a tournament function on the complete graph K2|E| such that:

• Each hyperedge in H corresponds to a vertex in K2|E|.

• The pth color on edge (i, j) in K2|E| indicates each of the two hyperedges corresponding to ei
intersects one of the two hyperedges corresponding to ej in the (2p− 1)st partition of Ĥ and
intersects the other one in the (2p)th partition of Ĥ.

By construction, Ĥ is an intersecting, r̂-partite hypergraph where |V̂ | = |V | + 2|E|(|E| − 1) and
|Ê| = 2|E|. Thus, the input size of Ĥ is a polynomial function of r, |V |, and |E|, which makes this
a polynomial reduction.

What remains to show is that τ(H) = τ(Ĥ). Clearly, τ(Ĥ) ≤ τ(H) since the minimum vertex cover
of H has a corresponding cover in Ĥ.

We now show τ(H) ≤ τ(Ĥ). Let V̂L =
⋃r
i=1 V̂i and let V̂R =

⋃r̂
i=r+1 V̂i. Let Ĉ be a minimum vertex

cover of Ĥ that is minimal with respect to the cardinality of Ĉ ∩ V̂R. Every vertex v ∈ Ĉ ∩ V̂R must
minimally cover exactly two hyperedges since if it only minimally covered one hyperedge ê(i,j), then
this would contradict the minimality of Ĉ since a new minimum vertex cover could be formed from
Ĉ that replaces v with any vertex in V̂L ∩ ê(i,j), which would use fewer vertices from V̂R.

Furthermore, for any i, hyperedge ê(i,1) is minimally covered by a vertex in Ĉ ∩ V̂R if and only if
hyperedge ê(i,2) is minimally covered by a vertex in Ĉ ∩ V̂R. This is because a vertex in Ĉ ∩ V̂L
covers ê(i,1) if and only if it also covers ê(i,2).

Therefore, the vertices in Ĉ ∩ V̂R must collectively minimally cover a set of hyperedges of the form:

{ê(p(1),1), ê(p(1),2), ê(p(2),1), ê(p(2),2), . . . , ê(p(mR),1), ê(p(mR),2)} where mR = |Ĉ ∩ V̂R|.
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This means there exists an alternative minimum vertex cover that can be constructed by removing
all of the vertices in Ĉ ∩ V̂R from Ĉ and replacing them with one vertex from each of the following
vertex sets: ê(p(1),1) ∩ VL, ê(p(2),1) ∩ VL, . . . , ê(p(mR),1) ∩ VL. However, this contradicts the minimality
of Ĉ. Thus, any minimum vertex cover for Ĥ is also a minimum vertex cover for H, which implies
that τ(Ĥ) = τ(H).

Finally, if |E| is odd, Ĥ can be constructed as follows:

1. Create a phantom r-partite hyperedge e|E|+1 on an arbitrary set of vertices to ensure the
number of hyperedges is even.

2. Construct Ĥ as described above.

3. Remove the two hyperedges extended from e|E|+1 in Ĥ.

The same reasoning shows that τ(Ĥ) = τ(H) when |E| is odd.

For illustrative purposes, we describe a small example of constructing Ĥ.

Example of Construction: SupposeH = (V,E) where E consists of the following four hyperedges:

1. e1 = (v(1,1), v(1,2), . . . , v(1,r)),

2. e2 = (v(2,1), v(2,2), . . . , v(2,r)),

3. e3 = (v(3,1), v(3,2), . . . , v(3,r)),

4. e4 = (v(4,1), v(4,2), . . . , v(4,r)).

Note that it is possible for any of these four hyperedges to intersect in H (i.e., v(i1,j) = v(i2,j) for
hyperedges ei1 and ei2 and some subset j), but they need not intersect.

Then we can construct Ĥ by including the original r subsets of vertices, creating six new subsets of
vertices, and including the following eight hyperedges:

1. ê1,1 = (v(1,1), v(1,2), . . . , v(1,r), v(1,r+1), v(1,r+2), v(1,r+3), v(1,r+4), v(1,r+5), v(1,r+6)),

2. ê1,2 = (v(1,1), v(1,2), . . . , v(1,r), v(2,r+1), v(2,r+2), v(3,r+3), v(3,r+4), v(4,r+5), v(4,r+6)),

3. ê2,1 = (v(2,1), v(2,2), . . . , v(2,r), v(1,r+1), v(2,r+2), v(2,r+3), v(2,r+4), v(2,r+5), v(2,r+6)),

4. ê2,2 = (v(2,1), v(2,2), . . . , v(2,r), v(2,r+1), v(1,r+2), v(4,r+3), v(4,r+4), v(3,r+5), v(3,r+6)),
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5. ê3,1 = (v(3,1), v(3,2), . . . , v(3,r), v(3,r+1), v(3,r+2), v(1,r+3), v(3,r+4), v(2,r+5), v(3,r+6)),

6. ê3,2 = (v(3,1), v(3,2), . . . , v(3,r), v(4,r+1), v(4,r+2), v(3,r+3), v(1,r+4), v(3,r+5), v(2,r+6)),

7. ê4,1 = (v(4,1), v(4,2), . . . , v(4,r), v(3,r+1), v(4,r+2), v(2,r+3), v(4,r+4), v(1,r+5), v(4,r+6)),

8. ê4,2 = (v(4,1), v(4,2), . . . , v(4,r), v(4,r+1), v(3,r+2), v(4,r+3), v(2,r+4), v(4,r+5), v(1,r+6)).

In this example, V̂L = ∪ri=1V̂i and V̂R = ∪r+6
i=r+1V̂i. The sub-hypergraph in V̂R corresponds to a proper

edge coloring of K4 with three color classes. Let u1, u2, u3, u4 be the vertices of K4. Hyperedge ei in
H corresponds to vertex ui in K4 for i = 1, 2, 3, 4 and the newly-added vertex subsets V̂r+1 and V̂r+2

correspond to the first color class, V̂r+3 and V̂r+4 correspond to the second color class, and V̂r+5 and
V̂r+6 correspond to the third color class. This construction corresponds to the proper edge coloring
of K4 with (u1, u2) and (u3, u4) in the first color class, (u1, u3) and (u2, u4) in the second color class,
and (u1, u4) and (u2, u3) in the third color class. Since edge (u1, u2) is in the first color class, the
hyperedges in Ĥ corresponding to e1 (ê1,1 and ê1,2) intersect the hyperedges corresponding to e2

(ê2,1 and ê2,2) in vertex subsets V̂r+1 and V̂r+2. Similarly, since edge (u3, u4) is in the first color
class, the hyperedges in Ĥ corresponding to e3 intersect the hyperedges corresponding to e4 in vertex
subsets V̂r+1 and V̂r+2. Likewise, since edge (u1, u3) is in the second color class, the hyperedges
in Ĥ corresponding to e1 intersect the hyperedges corresponding to e3 in vertex subsets V̂r+3 and
V̂r+4. The remaining three edges in K4 similarly describe how the hyperedges intersect in Ĥ in the
newly-added subsets.

Note that a minimum vertex cover for H is a minimum vertex cover for Ĥ. The newly-added vertices
cannot be used to create a cover of smaller cardinality. A smaller cardinality cover is not possible
because each pair of hyperedges has at most one vertex in common in V̂R and we have doubled the
number of hyperedges in H to create Ĥ.

4 Covering Tornados

In the introduction, we stated that any intersecting hypergraph where τ 6= ν must contain a certain
kind of sub-hypergraph, which we call a tornado. In this section, we formally define tornados and
prove several bounds on the covering numbers of r-partite tornados.

Definition 3. A tornado is an intersecting hypergraph H = (V,E) where there is a vertex set
Veye with |Veye| = |E| such that the corresponding |E| × |E| submatrix of the incidence matrix is the
incidence matrix of a graph that is an odd cycle.

Note every tornado by definition necessarily has an odd number of hyperedges. We call the vertex
set Veye the eye of the tornado. We call these hypergraphs “tornados” since they can often be

8



2

2

3

4

2
3

1 5

3

4

4

4

Figure 1: A 5-partite tornado with 5 hyperedges. The black vertices are those in Veye and the white
vertices are in V \Veye. The label on each vertex denotes which of the five subsets contain the vertex.
Each hyperedge has a distinct pattern and all hyperedges intersect at vertices in subsets 1 and 5.

drawn as having part of every hyperedge composing an odd cycle (i.e., the eye) while the remaining
parts are “twisted” around the eye. Figure 1 illustrates an example of a tornado. The definition of
tornado is reciprocal to Berge’s concept of balanced matrices and hypergraphs [3]: a tornado-free
r-partite intersecting hypergraph is a balanced hypergraph.

We now prove upper bounds for the covering number of tornados. We use the following notation
throughout this section: Let E = {ei : i = 1, . . . , |E|} be the hyperedges of a tornado with ei ∩
ei+1∩Veye = {vi} for i = 1, . . . , |E|−1 and with e|E|∩e1∩Veye = {v|E|}; thus, Veye = {v1, . . . , v|E|}.

First we prove Ryser’s Conjecture is easily resolved for tornados.

Proposition 4. For an r-partite tornado, τ ≤ r − 1.

Proof. It suffices to construct a vertex cover C of an r-partite tornado that contains at most r − 1
vertices.

Choose an arbitrary hyperedge e1. e1 has r − 2 vertices in V \Veye, and e1 intersects each of the
hyperedges e3, . . . , e|E|−1 at a vertex in V \Veye. Including these r − 2 vertices in C ensures that
every hyperedge is covered except e2 and e|E|.

Since every tornado is an intersecting hypergraph, e2 and e|E| must intersect at some vertex in
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V \Veye. Including this vertex in C produces a vertex cover with cardinality r − 1.

Proposition 5. For an r-partite tornado, τ ≤ |E|+1
2 .

Proof. It suffices to construct a vertex cover C of an r-partite tornado that contains at most |E|+1
2

vertices. Choosing C = {v1, v3, v5, . . . , v|E|} gives such a cover.

The next proposition proves the upper bound from Proposition 5 is tight for tornados where |E| ≤
2

⌊
r+1
2

⌋
− 1.

Proposition 6. Given r, there exist tornados with |E| = 3, 5, . . . , 2
⌊
r+1
2

⌋
− 1 such that τ = |E|+1

2 .

Proof. Consider a proper edge coloring of the complete graph Km = (V̂ m−1 ∪ {v̂m}, Ê) where
m = 2

⌊
r+1
2

⌋
with m − 1 colors. Such a proper edge coloring exists because m is even. Construct

a hypergraph H = (V,E) where V =
⋃m−1
k=1 Vk and E = {ei : i = 1, 2, . . . , |E|} such that there is a

bijection between vertices in V̂ m−1 and hyperedges in E.

For each edge (v̂i, v̂j) ∈ Km with i, j 6= m and color k, create a vertex in Vk with hyperedges ei
and ej incident to it. For each edge (v̂i, v̂m) ∈ Km with color k, create a vertex in Vk with only
hyperedge ei incident to it.

The hypergraph is (m−1)-partite because in Km every vertex has degree m−1 and for each edge in
Km there is a vertex. The hypergraph is intersecting by construction because for any pair of hyper-
edges there is an edge in Km. The hypergraph is a tornado with eye {v1,2, v2,3, . . . , vm−2,m−1, vm−1,1}
where vi,i+1 is the unique vertex that is contained in hyperedges ei and ei+1.

A cover for H is the subset of vertices {vi,i+1 : i odd} ∪ vm−1,1, so τ ≤ |E|+1
2 . This cover is of

minimum size because a set of vertices of size |E|−1
2 or less can cover at most 2 |E|−1

2 = |E| − 1
hyperedges. Therefore, H is a tornado with 2

⌊
r+1
2

⌋
− 1 hyperedges with τ = |E|+1

2 . From H we can
construct a tornado with any odd number of hyperedges h by taking the sub-hypergraph formed by
edges {ei : i = 1, . . . , h} where h ≥ 3.

The next proposition proves the upper bound on the covering number for r-partite tornados can be
slightly tighter than that in Proposition 5 if |E| > r.

Proposition 7. For an r-partite tornado with |E| > r, τ ≤ |E|−1
2 .

Proof. It suffices to construct a vertex cover C that contains at most |E|−1
2 vertices.

Let e1 be any hyperedge in the tornado. Then e1 intersects at least |E| − 2 other hyperedges at
vertices that are not in the eye of the tornado, which means these intersections occur in at most
r − 2 subsets of the r-partition of vertices.
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3,4

1 2
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Figure 2: Illustration of a proof of Proposition 9. The black vertices correspond to vertices in Veye.
The labels on the vertices represent the incident hyperedges. Each column of vertices corresponds
to a subset of the 3-partition.

If |E| > r, then |E| − 2 > r − 2, and there is at least one vertex v where e1 intersects two other
hyperedges. Place v in the vertex cover, leaving |E| − 3 hyperedges to be covered. Since |E| is
odd, |E| − 3 is even. There exists a vertex contained in each pair of these hyperedges because
the hypergraph is intersecting. Thus, the remaining |E| − 3 hyperedges can be covered with |E|−3

2

vertices, which means we have constructed a vertex cover of size |E|−3
2 + 1 = |E|−1

2 .

Corollary 8. An r-partite tornado with τ = r − 1 and r ≥ 4, if one exists, has at least 2r − 1
hyperedges.

Proof. Suppose that an r-partite tornado with τ = r − 1 and |E| < 2r − 1 exists. If |E| ≤ r, then
by Proposition 5, τ ≤ |E|+1

2 < r − 1, which is a contradiction. Similarly, if r < |E| < 2r − 1, then
by Proposition 7, τ ≤ |E|−1

2 < r − 1, which is a contradiction.

Proposition 9. Every 3-partite tornado has exactly 3 hyperedges.

Proof. Suppose that H = (V,E) is a 3-partite tornado with |E| ≥ 5. Without loss of generality,
let v1 ∈ V1 and v2 ∈ V2. Then e2 intersects hyperedges e4, . . . , e|E| in V3 ∩ V \Veye, and all of the
vertices in Veye are in V1 and V2. Then v|E| ∈ V1, which means e1 has two vertices in V1, which
contradicts the fact that H is 3-partite. Figure 2 presents a schematic of this proof.

We now present the final result of this section.

Theorem 10. For a 4-partite tornado with |E| ≥ 5, τ = 1.

Proof. Suppose, for the sake of contradiction, we are given a 4-partite tornadoHT with the minimum
number of hyperedges with τ ≥ 2 and |E| ≥ 5.

11



Without loss of generality, let v|E| ∈ V1, v1 ∈ V2, and v2 ∈ V3. We may assume the vertices of Veye
are contained in at least 3 subsets of the 4-partition since otherwise the vertices in Veye correspond
to an odd cycle in a bipartite graph, which is impossible. This setup implies e1 and e3 intersect at
a vertex in V4 ∩ V \Veye and e2 and e|E| intersect at a vertex in V4 ∩ V \Veye. Figures 3, 4, and 5
present schematics for the proofs of Cases I, II, and III that follow. We refer to these schematics
throughout our proofs.

Case I: v3 ∈ V2. The first box in Figure 3 illustrates the starting point for Case I.

From this setup, we can infer that the following pairs of hyperedges must intersect at a vertex in
V4 ∩ V \Veye: e1 and e3, e2 and e|E|, and e3 and e|E|. Therefore, e1, e2, e3, and e|E| intersect at a
single vertex in V4 ∩ V \Veye (Figure 3, box 2).

If |E| = 5, then v4 ∈ V3 and e1 and e4 intersect at a vertex in V4∩V \Veye. This means all hyperedges
intersect at a single vertex in V4 ∩V \Veye, which contradicts our assumption that τ ≥ 2. Therefore,
we may assume |E| ≥ 7. We can remove e1, e2, and e3 and add a new hyperedge ea that contains
the vertices (e1 ∩ (V1 ∪ V3 ∪ V4)) ∪ (e3 ∩ V2). This creates a 4-partite tornado HTa with |E| − 2
hyperedges (Figure 3, box 3).

Since we are assuming HT is a 4-partite tornado with the fewest number of hyperedges such that
τ ≥ 2, then we know τ(HTa) = 1. If the minimum vertex cover of HTa is comprised of the vertex in
ea ∩ V4, then that vertex also covers HT , which is a contradiction. Therefore, the vertex in ea ∩ V3

is a cover for HTa (Figure 3, box 4).

Moreover, this setup implies v|E|−1 ∈ V2. We can remove ea and restore hyperedges e1, e2 and e3

(Figure 3, box 5).

Now, we can remove hyperedges e|E|, e1, and e2 and replace them with eb, where eb contains the
vertices (e2 ∩ (V1 ∪ V3 ∪ V4)) ∪ (e|E| ∩ V2). Note this creates another tornado HTb

that has |E| − 2
hyperedges (Figure 3, box 6).

By our assumption, we know τ(HTb
) = 1. If the vertex in eb∩V4 is a cover for HTb

then it is a cover
for HT , so the vertex in eb ∩ V1 must be the cover for HTb

. This setup is depicted in the seventh
box in Figure 3 and the setup where eb is removed and e|E|, e1 and e2 are restored is depicted in
the eighth box in Figure 3.

This setup implies vj ∈ V2 for every odd value of j and vj ∈ V4 for every even value of j. This
implies v|E|−1 ∈ V4, which contradicts the fact that v|E|−1 ∈ V2 (Figure 3, box 9).

Case II: v3 ∈ V1 and v|E|−1 ∈ V2. The first box in Figure 4 illustrates the starting point for Case II.

From this setup, we can infer the following pairs of hyperedges must intersect at a vertex in V4 ∩
V \Veye: e1 and e3, e2 and e|E|, and e3 and e|E|. Therefore, e1, e2, e3, and e|E| intersect at a single
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Figure 3: Illustration of a proof of Case I of Theorem 10. The black vertices correspond to vertices
in Veye. The labels on the vertices represent the incident hyperedges. Each column of vertices
corresponds to a subset of the 4-partition.
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Figure 4: Illustration of a proof of Case II of Theorem 10. The black vertices correspond to vertices
in Veye. The labels on the vertices represent the incident hyperedges. Each column of vertices
corresponds to a subset of the 4-partition.

vertex in V4 ∩ V \Veye (Figure 4, box 2).

If |E| = 5, then e2 and e4 intersect at a vertex in V4 ∩ V \Veye, which implies all five hyperedges
intersect at a single vertex in V4∩V \Veye, which contradicts our assumption. Thus, we may assume
|E| ≥ 7.

We can remove hyperedges e|E|, e1, and e2 and replace them with a hyperedge ea that contains
vertices (e2 ∩ (V1 ∪V3 ∪V4))∪ (e|E| ∩V2). Note this creates a 4-partite tornado HTa that has |E| − 2
hyperedges (Figure 4, box 3).

We know τ(HTa) = 1 since we assumed HT is a 4-partite tornado with τ(HT ) ≥ 2 that has the
fewest number of hyperedges. The unique vertex in the minimum vertex cover for HTa must be in V4

since the vertices in Veye ensure this vertex cannot be in the other three vertex subsets. Specifically,
the vertex that covers HTa must be the same vertex in V4 that is contained in hyperedges ea and e3
(Figure 4, box 4).

After removing ea and restoring hyperedges e|E|, e1, and e2, we note these three hyperedges are also
incident to the vertex that covers HTa , which means this vertex also covers HT . However, this is a
contradiction since we assumed τ(HT ) ≥ 2 (Figure 4, box 5).

Case III: v3 ∈ V1 and v|E|−1 ∈ V3. The first box in Figure 5 illustrates the starting point for Case
III.

This setup implies the following pairs of hyperedges must intersect at a vertex in V4 ∩ V \Veye: e1
and e3, e2 and e4, and e2 and e|E| (Figure 5, box 2).
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If |E| = 5, then e1 and e4 intersect at a vertex in V4∩V \Veye, which implies all hyperedges intersect
at a single vertex in V4 ∩ V \Veye. Thus, we may assume |E| ≥ 7.

If v4 ∈ V3, then we can remove hyperedges e2, e3, and e4, replace them with a hyperedge ea that
contains the vertices (e2 ∩ (V1 ∪ V3 ∪ V4)) ∪ (e4 ∩ V3). This creates a 4-partite tornado HTa that
has |E| − 2 hyperedges. We know τ(HTa) = 1 since we assumed HT is a 4-partite tornado with
τ(HT ) ≥ 2 that has the fewest number of hyperedges. Specifically, the vertex that covers HTa can
only be in V4. However, this vertex would also be a cover for HT , which is a contradiction. Thus,
we see v4 /∈ V3 and we can conclude v4 ∈ V2 (Figure 5, box 3).

Then the following pairs of hyperedges intersect at the same vertex in V4 ∩ V \Veye: e3 and e5, e5
and e|E|, and e|E|−1 and e4. Thus, e1, e2, e3, e4, e5, e|E|−1, and e|E| intersect at the same vertex
v∗ ∈ V4 ∩ V \Veye (Figure 5, box 4).

If |E| = 7, then all hyperedges intersect at v∗, which is a contradiction. We now prove by induction
on the number of remaining vertices in Veye that all hyperedges intersect at v∗ for tornados with
|E| > 7.

Assume vi−1 ∈ (V1∪V2∪V3) for each i ∈ {|E|, 1, 2, . . . , j−1} and that hyperedges e|E|−1, e|E|, e1, . . . , ej−1

all intersect at the same vertex v∗ in V4 ∩ V \Veye (Figure 5, box 5). We now show this implies
vj−1 ∈ (V1 ∪ V2 ∪ V3) and ej also contains v∗.

First, note that hyperedges vj−1 /∈ V4 because this contradicts the fact that ej−1 already contains
vertex v∗ ∈ V4 ∩ V \Veye. Furthermore, note that if

1. vj−1 ∈ V1, then e2 intersects ej at a vertex in V4 ∩ V \Veye, which can only occur at v∗.

2. vj−1 ∈ V2, then e3 intersects ej at a vertex in V4 ∩ V \Veye, which can only occur at v∗.

3. vj−1 ∈ V3, then e1 intersects ej at a vertex in V4 ∩ V \Veye, which can only occur at v∗.

These three possibilities are depicted in the sixth box of Figure 5. Thus, in any case, ej contains v∗

(Figure 5, box 7), and v∗ is a cover for the tornado (Figure 5, box 8), which is a contradiction.

5 Integrality Gap for an r-Dimensional Matching Formulation

In this section, we provide a proof that the integrality gap of the standard ILP formulation of rDM
is exactly r − 1 when r − 1 equals a prime power. Whereas the results of previous sections are
concerned with intersecting hypergraphs, the main result of this section applies to the general rDM
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Figure 5: Illustration of a proof of Case III of Theorem 10. The black vertices correspond to
vertices in Veye. The labels on the vertices represent the incident hyperedges. Each column of
vertices corresponds to a subset of the 4-partition.
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problem. Other researchers, such as Mansour et al. [12], have proven the lower bound on integrality
gap using projective planes. Our proof of the lower bound is an equivalent construction that uses
MOLS. There is a known correspondence between projective planes of order r and a complete set of
r−1 r-dimensional MOLS [1]. We use Füredi’s Theorem to prove the upper bound on the integrality
gap. In addition, we extend the result to show the integrality gap is at least r − k where k is the
smallest positive integer such that r − k is a prime power.

Let xe equal 1 if hyperedge e is in our matching and 0 otherwise. The standard ILP for rDM is the
following:

Integer linear programming formulation of rDM (rDM-ILP):
Maximize

∑
e∈E xe,

Subject to ∑
e∈E:v∈e xe ≤ 1 ∀v ∈ V ,

xe ∈ {0, 1} ∀e ∈ E.

The LP relaxation of rDM-ILP is the ILP except with the binary constraints replaced by non-
negativity constraints. The LP relaxation of rDM-ILP shall henceforth be abbreviated as rDM-LP.
Note that we need not constrain each of the LP decision variables to be less than or equal to 1,
since these constraints are implied by the matching constraints.

Lemma 11. The integrality gap of rDM-ILP is at most r − 1.

Proof. Let I be any instance of rDM so that ν is the objective value of an optimal solution to the
instance as formulated by rDM-ILP. Since the underlying hypergraph of any instance of rDM is
r-partite, we know from Füredi’s Theorem that we can construct a fractional vertex cover Cf with a
cardinality of (r− 1)ν. Note that such a cover is a feasible solution to the dual of rDM-LP and has
an objective value of (r − 1)ν. Thus, by duality theory, we know the objective value of an optimal
solution to rDM-ILP of I is bounded above by (r − 1)ν.

To prove that the integrality gap of rDM-ILP is at least r − 1 whenever r − 1 is a prime power, it
suffices to construct a family of instances where the optimal objective value to rDM-ILP is z∗r and
the optimal objective value to rDM-LP is at least (r − 1)z∗r .

Theorem 2 provides that for any prime power r−1, there exists a set of r−2 MOLS L1, L2, . . . , Lr−2,
each of which have dimension r − 1. We use this set of MOLS to construct an instance of rDM. In
addition, define Lr−1 to be the square matrix of dimension r − 1 where every entry in row i is the
number i, for each i in {1, 2, . . . , r − 1}. (Note Lr−1 is not a Latin square.)

17



From L = {Li : i = 1, . . . , r − 1} construct an r-partite hypergraph Hr = (
⋃r
j=1 Vj , E) as follows:

1. Let each subset V1, V2, . . . , Vr contain r − 1 vertices. Let vi,j be the ith vertex in subset Vj .

2. For each k and for each element a contained in matrix Lk, create a hyperedge ea that contains
the vertex vk,r and the vertex vi,j for each pair (i, j) such that Lk(i, j) = a.

Example Construction: For illustrative purposes, we describe how our method constructs Hr for
the case when r = 4. First, we construct two MOLS of size 3:

L1 =

 1 2 3
2 3 1
3 1 2

 L2 =

 1 3 2
2 1 3
3 2 1


Next, we construct the matrix L3:

L3 =

 1 1 1
2 2 2
3 3 3


This allows us to construct H4 = (

⋃4
j=1 Vj , E) where Vj = {v1,j , v2,j , v3,j} for each j in {1, 2, 3, 4}

and

E =


(v1,1, v3,2, v2,3, v1,4), (v2,1, v1,2, v3,3, v1,4), (v3,1, v2,2, v1,3, v1,4),
(v1,1, v2,2, v3,3, v2,4), (v2,1, v3,2, v1,3, v2,4), (v3,1, v1,2, v2,3, v2,4),
(v1,1, v1,2, v1,3, v3,4), (v2,1, v2,2, v2,3, v3,4), (v3,1, v3,2, v3,3, v3,4)

 .

We now prove several properties about Hr.

Lemma 12. Hr is an intersecting hypergraph.

Proof. Note that any hyperedge in Hr is created using one matrix in L. Any two hyperedges created
using the same matrix in L intersect because they both contain the same vertex from Vr.

Now consider two hyperedges ea and eb that are created from two distinct matrices La and Lb. Let
La,b be the paired matrix that results from pairing La with Lb.

Every hyperedge created using La intersects every hyperedge created using Lb if La,b contains every
ordered pair from the set [r−1]× [r−1]. First, consider the case when a = r−1. For each element i
in [r− 1], every element in row i from La is the number i since La = Lr−1. Similarly, every element
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from [r − 1] appears in exactly one entry in row i of Lb since Lb is a Latin square. Thus, for each
i in [r − 1], row i in La,b contains (i, j) for each j in [r − 1]. Therefore, every hyperedge created
using La intersects every hyperedge that is created using Lb. The same argument applies for the
case when b = r − 1.

Now consider the case where a 6= r − 1 and b 6= r − 1. This means both La and Lb are MOLS,
which means that their paired matrix contains (i, j) exactly once, for each (i, j) in [r − 1]× [r − 1].
Therefore, in this case every hyperedge created using La intersects with every hyperedge created
using Lb.

Lemma 13. The optimal objective value to rDM-LP for Hr is at least r − 1.

Proof. To prove this lemma, we construct a feasible solution to rDM-LP that has objective value
r − 1. Specifically, set xe = 1

r−1 for each e ∈ E.

For each vertex v ∈
⋃r
j=1 Vj , the corresponding constraint is satisfied because each vertex has a

degree of r−1. This holds because for each vertex there is one hyperedge created using each matrix
in L and |L| = r − 1. Thus, this solution is feasible.

In addition, there are (r − 1)2 hyperedges in Hr since each matrix in L is used to create r − 1
hyperedges and |L| = r − 1. Thus, the objective value of this solution is (r−1)2

(r−1) = r − 1.

Theorem 14. The integrality gap of rDM-ILP when r − 1 is a prime power is exactly r − 1.

Proof. By Lemma 11, the integrality gap of rDM-ILP is at most r − 1. By Lemma 12, Hr is
intersecting and has matching number 1, so that the optimal objective value of rDM-ILP is 1. By
Lemma 13, the objective value of rDM-LP is at least r − 1. Therefore, the integrality gap for
instances Hr is exactly r − 1.

Corollary 15. The integrality gap of rDM-ILP is at least r − k where k is the smallest positive
integer such that r − k is a prime power.

Proof. Assume k > 1 since the case when k = 1 is handled by Theorem 14. Since r − k is a prime
power, the hypergraph Hr−k+1 that is defined using the aforementioned construction exists. This
hypergraph is (r−k+1)-partite and each subset of the partition contains r−k+1 vertices. Construct
an r-partite hypergraph H̃r from Hr−k+1 as follows.

For each vertex in Hr−k+1, create a corresponding vertex in H̃r.

In addition, create r−k+1 vertices vi,r−k+2, vi,r−k+3, . . . , vi,r for each i ∈ {r−k+2, r−k+3, . . . , r}
where vi,r−j ∈ Vj for each j ∈ {r − k + 2, r − k + 3, . . . , r}. Lastly, for each hyperedge e =
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(vi,j , . . . , v`,r−k+1) in Hr−k+1 create the hyperedge ẽ = (vi,j , . . . , v`,r−k+1, v`,r−k+2, v`,r−k+3, . . . , v`,r)
in hypergraph H̃r.

H̃r has a maximum cardinality matching of exactly one hyperedge since it is an intersecting hyper-
graph. We can obtain a solution to rDM-LP with objective value r− k by setting xe = 1

r−k for each
hyperedge e in H̃r.

6 Conclusions and Future Work

In this paper, we use ideas common in the math programming community to gain further insight into
two well-studied combinatorics problems. First, we show that the r-Dimensional Vertex Cover Prob-
lem is NP-hard for intersecting hypergraphs. This result is interesting because the r-Dimensional
Matching Problem is trivial for intersecting hypergraphs. The construction in our proof uses a
well-known algorithm for obtaining a proper edge coloring in a complete graph (which is also a
well-known algorithm for scheduling a single round-robin tournament).

We note that Ryser’s conjecture is easily resolved for intersecting hypergraphs that do not contain
a sub-hypergraph that we call a tornado. A tornado-free intersecting hypergraph can be covered
with a single vertex. We prove several bounds on the covering number of tornados. Extending
these results to a possible proof of Ryser’s conjecture for intersecting hypergraphs would involve
characterizing how tornados can be arranged in a hypergraph.

We demonstrate an equivalence between two previous results and the integrality gap for the r-
Dimensional Matching Problem. We then extend the result to provide a bound for any value of r,
whereas the previous result only provides bounds for the case when r − 1 is a prime power.
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