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QSARbased onmolecular topology (MT) is an excellentmethodology used in predicting physicochemical and biological properties
of compounds. is approach is applied here for the development of a mathematical model capable to recognize drugs showing
dyspnea as a side effect. Using linear discriminant analysis, it was found a four-variable regression equations enabling a predictive
rate of about 81% and 73% in the training and test sets of compounds, respectively. ese results demonstrate that QSAR-MT is an
efficient tool to predict the appearance of dyspnea associated with drug consumption.

1. Introduction

1.1. Dyspnea as Side Effect. A side effect can be de�ned as an
expected and known effect of a drug that is not the intended
therapeutic outcome [1]. e US has been forced to remove
from the market 75 drugs and combination drugs products
since 1969 for safety reasons [2]. Although it is almost
imperceptible if referred to all marketed drugs (less than 1%),
safety-related regulatory actions (e.g. labeling changes, such
as the addition of precautions, contraindications, or black
box warnings) are much more common and less widespread.
From 1969 to 2002, the Adverse Event Reporting System
(AERS) of the Food and Drug Administration (FDA), as
Nebeker et al. remarked, received approximately 2.3 million
reports of adverse events on more than 6,000 drug products
[2].

Adverse drug effects (ADEs), are a cause of injury or
death to about 770,000 people each year, which may cost
up to $5.6 million each year per hospital depending on the
hospital size [3].erefore, anticipating the side effect pro�le
for drugs is becoming more and more important in current
drug discovery, development, and marketing. is strategy
can lead to millions of dollars of savings in health care.

One side-effect having notable repercussions in national
health care is dyspnea, de�ned by the American oracic
Society as “a termused to characterize a subjective experience
of breathing discomfort that is comprised of qualitatively
distinct sensations that vary in intensity” [4]. Moreover, this
symptom, characterized by the difficulty of getting sufficient
air past the larynx, is associated with secondary physiological
and behavioral responses [4].

Dyspnea is largely linked to people suffering from
advanced cancer and cardiac, respiratory, and certain neuro-
logical diseases [5]. Patients mostly respond to breathlessness
by adopting a sedentary lifestyle in order to relieve their
symptomatology. is leads to social isolation, depression,
fatigue, and dissatisfaction with life and signi�cant emotional
distress apart from skeletal muscle deconditioning [5, 6].

Dyspnea is one of themost distressing symptoms suffered
by 30–75% terminal cancer patients [5]. e care of patients
with dyspnea requires multidisciplinary resources such as
palliative care, physiotherapy, respiratory medicine, and
nursing [5].

ere are different types of drugs causing dyspnea
as a part of their side effects, such as chemotherapeutic
agents (Capecitabine, Imatinib, Irinotecan…) [7], and other
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therapeutic drugs (Amphotericin Bs, Nicotine, Dofetilide,
Cyclosporine…) [7].

Breathlessness hasmarked signi�cant impact on the qual-
ity of life of the patients but has also an economic impact in
our society. An example of that can be seen in a study quanti
fying the direct medical costs of dyspnea patients in 2008 or
2009 with a history of acute coronary syndrome (ACS) [8].

ACS patients included in the study were required to
have six months of continuous medical enrollment prior to
an emergency room (ER) visit. A total of 8433 emergency
room (ER) visits for dyspnea were identi�ed during 2008
to 2009 from these databases of approximately 74 million
bene�ciaries as reported by Bonafede et al. [8].

e average cost per dyspnea episode was $6958, asso-
ciated with the ER visit, physician services, and diagnosis
techniques such as electrocardiogram (71.3%) and chest
radiograph (75.9%) as Bonafede et al. reported [8]. is is
not all, more than one-fourth (25.8%) of dyspnea ER visits
preceded an inpatient stay, with an average cost of $20 693
per patient. As the authors remarked, dyspnea is a signi�cant
event associated with high medical resource utilization and
hospital costs.

1.2. Molecular Topology. Molecular topology (MT) is a dis-
cipline based in the topological description of molecules
by using numerical invariants, called topological indices
(TIs). ese descriptors are able to characterize the most
important features of molecular structure: molecular size,
binding, cycles and branching.

Topological indices have the advantage of being true
structural invariants, so that they are independent of the spa-
tial and temporal position of the atoms in themolecule. How-
ever, TI’s extensions that give account of three-dimensional
structure have been also devised [9–11].

Many physicochemical and biological properties have
been predicted by MT up to date, including groups of
compounds showing considerable structural diversity [12–
16]. Among the properties modeled stand several pharmaco-
logical activities such as anticonvulsant [17], antimalarial [18,
19], antimicrobial [20, 21], antifungal [22], antineoplastic
[23], antihistaminic [24], bronchodilator [25], cytostatic [26],
and anti-in�ammatory compounds [27, 28] just to mention
some examples.

No matter the application �eld, MT’s strength lies in
the reliable prediction of speci�c activities or properties of
molecules. is way it is possible to select or design new
compounds, particularly new drugs, thereby producing a
high social and economic impact.

In a very recent paper [29], we demonstrated MT’s effec-
tiveness in predicting drug-induced anorexia. As a follow-up
study, in the present work it is sought to raise one more step
in the complex world of adverse effects to drugs, analyzing
another side effect, namely, dyspnea.

2. Material andMethods

eapplication of theMT-model, involves the following steps
(Figure 1).

Topological model’s validation

Optimization

Prediction
of  dyspnea

activity

Search of
topological model

Training setTest set

Virtual database screening

Dataset compilation from literature

Calculation of  topological descriptors

Division of  dataset
compounds into

F 1: General scheme of themethodology followed for building
up the dyspnea topological-mathematical model.

Step 1. Selection of dataset from the literature: the data
were comprised of both drugs inducing (active) and
not inducing (inactive) dyspnea.
Step 2. Calculation of topological descriptors: for that
purpose, we used Dragon soware, version 5.4. [30].
Step 3. Splitting of the dataset in two groups training
set and test set: the criteria applied for such a splitting
was based on the degree of dyspnea induction by
the drugs. A level of 3% was used as threshold
to distinguish dypsneagenic (above 3%) from non-
dypsneagenic (below 3%) drugs.
Step 4. Application of linear discriminant analysis
(LDA) to the training set.
Step 5. Validation of the LDA through an external test
set.
Step 6. Application of the topological model to the
identi�cation of potential dyspnea-inducers: (not car-
ried out here).

2.1. Selection of Dataset and Indices Calculation. A model
to distinguish the dypsneagenic (active), from the nondyp-
sneagenic (inactive) drugs, was built up with a dataset of 176
drugs. e drugs were from the database named SIDER [7]
and from the internet site “drugs.com” [31].

e dataset was split into two, namely, a training and a
test set. e �rst set was made up of 33 compounds causing
dyspnea as side-effect with an incidence rate greater than 3%
(active set) and 68 compounds showing an incidence rate
less than or equal to 3% (inactive set). e second was made
of 30 compounds causing dyspnea (test active set) and 45
compounds not showing dyspnea as a side effect (test inactive
set).
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e chemical structure of each drug was depicted by
using ChemBioDraw Ultra version 12.0 (CambridgeSo
Corporation, Cambridge, MA, USA).

2.2. Molecular Descriptors. Each compound was charact
erized by a set of 444 topological indices (TIs) obtained by
Dragon soware, version 5.4. Among the graph-theoretical
descriptors calculated, the 2D autocorrelation indices
demonstrated to be the most representative, and hence they
were selected.

e chemical structures of the drugs studied were very
heterogeneous. To guarantee that all groups were balanced,
a study of molecular similarity using TIs was performed.
Among the parameters calculated were the Tanimoto coef-
�cient, TC, and the Euclidean distance, ED as follows:

Euclidean distance:

ED = 󵀊󵀊󵠈󵠈󶀢󶀢𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑗𝑗󶀲󶀲
2
. (1)

Tanimoto coefficient:

TC =
∑𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

∑𝑥𝑥2𝑖𝑖 + ∑𝑥𝑥
2
𝑗𝑗 − ∑𝑥𝑥𝑖𝑖𝑥𝑥𝑗𝑗

, (2)

where 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 correspond to the topological indices of
molecules 𝑖𝑖 and 𝑗𝑗.

e topological similarity between two given com-
pounds, 𝑖𝑖 and 𝑗𝑗, will be higher when TC is closer to the unit
and ED closer to zero [32].

Figure 2 shows the pairs of compounds with greater
topological similarity (Adenosine, Lenalidomide and Clon-
azepam, Olanzapine for the active and the inactive training
group, resp.) and with lesser similarity (Cyclosporine, Nico-
tine and Nitric oxide, and Ritonavir). e average values of
the parameters TC and ED for all compounds studied (TC =
0.49; ED = 3.01 × 103) are analog to those obtained for the
training set (TC = 0.46; ED = 5.3 × 103 and TC = 0.53;
ED = 1.17 × 103 for the active and inactive group, resp.). e
results for the test set were similar to those from the training
set, what indicates that the groups were well arranged.

2.3. Modeling Techniques. Linear discriminant analysis
(LDA) [33] is a statistical technique providing a classi�cation
based on the combination of variables that best predict the
category or group to which a given object—a compound
in our case-belongs. e compounds in the training set
were allocated to active or inactive groups, according to
their capability to produce dyspnea. Hence, the discriminant
property was the capability of producing dyspnea as a side
effect, and the independent variables were the TIs. e LDA
�nal outcome is a discriminant function (DF), that is, an
equation relating the activity, expressed in disjunctive terms
in a Boolean way (1 = active; 2 = inactive), with the set of TIs.
To get the LDA, the soware Statistica version 9.0 (StatSo,
Inc., Tulsa) was used.

e discriminant capability was assessed as the per-
centage of correct classi�cations in each set of compounds.
e classi�cation criterion was the minimal Mahalanobis

distance [34] (distance of each case to the mean of all the
cases in a category), and the quality of the discriminant
function was evaluated by using theWilks parameter [35, 36],
𝜆𝜆, which was obtained by multivariate analysis of variance
that tests the equality of the group means for the variable
in the discriminant model. e method used to select the
descriptors were based on the Fisher-Snedecor parameter (F)
[37], which determines the relative importance of candidate
variables. e topological variables input is chosen in a
stepwise manner; at each step, the variable that makes the
largest contribution to the separation of the groups is entered
into the discriminant equation (or the variable thatmakes the
smallest contribution is removed).

e validation of the selected function was done using an
external test set. Compounds that comprise the test set were
randomly selected from approximately 20% of the data.

Another important parameter that usually provides a
balanced evaluation of themodel’s prediction is theMatthews
correlation coefficient (MCC) [38]. is coefficient is based
on the fact that in any prediction process there can be four
different possibilities to account for:

TP: true positive, a drug-induced dyspnea correctly clas-
si�ed or predicted.

FP: False positive, a drug not inducing dyspnea predicted
as induced or when there was none to predict.

TN: True negative, a drug not inducing dyspnea correctly
classi�ed.

FN: False negative, a drug-induced dyspnea predicted as
not inducing or when there was none to predict.

It is clear therefore, that any single number that represents
the predictive power of the method must account for all of
the possibilities listed above. One such factor is theMatthews
correlation coefficient, which is given by:

MCC= (TP × TN)−(FP × FN)
󵀄󵀄(TN + FN)×(TN + FP)×(TP + FP)×(TP + FN)

.

(3)

e Matthews correlation coefficient ranges from
−1 ≤MCC ≤ 1. A value of MCC = 1 indicates the best
possible prediction, in that every drug and all drug inducting
dyspnea are correctly predicted. A MCC = −1 indicates
the worst possible prediction (or anticorrelation), where
no one dyspneagenic drug is detected, whereas all the
nondyspneagenic drugs are erroneously predicted as
dypsneagenic. Finally, a Matthews correlation coefficient of
MCC = 0 indicates a random prediction.

Furthermore, a receiver operating characteristic curve
(ROC) was drawn to evaluate the accuracy of the selected DF
through the sensitivity (true positive fraction) and speci�city
(true negative fraction) for different DF thresholds. ROC
curve is the representation of sensitivity versus (1-speci�city)
(false positive fraction). e closer the curve follows the le-
hand border and then the top border of the ROC space, the
more accurate the test. e closer the curve comes to the 45-
degree diagonal of the ROC space, the less accurate the test.
Accuracy ismeasured by the area under the ROC curve, AUC
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F 2: Results obtained from the molecular similarity study. TC: Tanimoto coefficient and ED: Euclidean distance.

[39, 40]. An AUC value = 1 represents a perfect test, whereas
AUC of 0.5 represents a worthless test.

e model’s predictive power was also assessed by using
internal and external validation tests. A cross-validation, as
an internal validation, was carried out by changing the roles
of randomly 15–20% of active and inactive compounds from
the training to the test set. Later on, it is checked if the model

continues to show a good classi�cation rate of the remaining
compounds in the training and test set or not.

e equation obtained for the training set is used to
predict the corresponding values of the test set.

2.4. Arrangement of the Pharmacological Distribution Dia-
gram. e corresponding distribution diagram PDD [41]
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and, hence, determining dyspnea side effect.

was drawn for dyspnea. Such diagrams are graphic repre-
sentations providing a straightforward way to visualize the
regions of minimum overlap between the active and inactive
compounds, as well as the regions in which the probability
of �nding active compounds is maximum. �ctually, a �DD
is a frequency distribution diagram of dependent variables in
which the ordinate represents the expectancy, 𝐸𝐸, (probability
of activity) and the abscissa represents the DF values in the

range. For an arbitrary range of values of a given function,
an expectancy of activity can be de�ned as 𝐸𝐸𝑎𝑎 = 𝑎𝑎𝑎𝑎𝑎𝑎 𝑎 𝑎𝑎𝑎𝑎,
where “𝑎𝑎” is the number of active compounds in the range
divided by the total number of active compounds, and “𝑖𝑖” is
the number of inactive compounds in the interval divided by
the total number of inactive compounds. e expectancy of
inactivity is de�ned in a symmetrical way, as 𝐸𝐸𝑖𝑖 = 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  .
Upon these diagrams, it is easy to visualize the intervals in
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which there is a maximum probability of �nding new active
compounds and a minimum probability of �nding inactive
compounds.

3. Results and Discussion

Appendix A in Supplementary material shows the values of
the indices for every compound conforming the training and
the test sets. e discriminant function selected as the best
one was

DF = 2.892𝑥𝑥ATS2e − 7.159𝑥𝑥MATS2v

+ 2.281𝑥𝑥MATS8e − 7.437𝑥𝑥MATS1p − 10.954,

𝑁𝑁 𝑁𝑁𝑁𝑁𝑁  𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑁𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁  𝑁𝑁 𝑁 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁

(4)

where DF is discriminant function, ATS2e is Broto-Moreau
autocorrelation of a topological structure at lag 2 weighted
by atomic Sanderson electronegativities, MATS2v is Moran
autocorrelation at lag 2 weighted by atomic van der Waals
volumes, MATS8e is Moran autocorrelation at lag 8 weighted
by atomic Sanderson electronegativities, MATS1p is Moran
autocorrelation at lag 1 weighted by atomic polarizabilities,
𝑁𝑁 is Number of data compounds, 𝜆𝜆 is Wilks’ lambda, 𝐹𝐹 is
Fisher-Snedecor parameter, and 𝑃𝑃 is Statistic signi�cance.

From this equation, a given compound will be selected
as active, that is, as a potential producer of dyspnea, if
DF > 0� otherwise, it is classi�ed as inactive.e classi�cation
matrix for DF is very signi�cant for the training set: 82% of

correct prediction for the active group, that is, 27 out of 33
compounds, and 55 out of 68 (81%) for the inactive group
(see Table 1).

As pointed above, an additional way to check the model’s
predictive capability is through the Matthews’ coefficient,
which returns a range of values between −1 and +1. e
higher its value the more reliable is the model. However,
we calculated the Matthews’ coefficient in a slightly different
way, that is, just adding +1 to each threshold value, so that
the outcome is expressed as % accuracy. In other words, 0
would mean no correlation at all, 1 represents 50%, and 2
accounts for 100% correlation. By doing so, the output was
83% of accuracy (modi�ed Matthews’ coefficient � 1.66).

An internal cross-validation (CV) analysis was also car-
ried out to check the DF quality. Table 2 shows the values of 𝜆𝜆
(Wilks’ lambda) and the classi�cation matrix for compounds
in the training and test sets. e values of 𝜆𝜆 for both sets are
very close to each other. In fact, the values for the selected
model and the average of the cross-validation model were
𝜆𝜆𝜆𝜆𝜆𝜆𝜆𝜆  , and 𝜆𝜆𝜆𝜆𝜆  𝜆𝜆𝜆, respectively. Moreover, the average
percentage of correctness classi�cation is also similar in both
models (78% for the average CV and 77 %, for the selected
model).

As can be seen in Table 2, the DF percentage of correct
in the test set was 77%, what means that 23 out of 30 active
compoundswere correctly classi�ed, while 31 out of 45 (6�%)
were correct in the inactive group (see Table 2). Table 3
outlines the results of the prediction for every compound of
the external test.
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T 1: Classi�cation of compounds sho�ing and not sho�ing dyspnea� obtained by linear discriminant analysis on the training set.

Compound DF Prob(A) Class. Compound DF Prob(A) Class.
Active group

Adenosine 2.259 0.905 A Mycophenolic acid −1.514 0.18 I
Amphotericin 3.866 0.979 A Nelarabine 3.177 0.96 A
Anagrelide 5.07 0.994 A Nicotine 0.575 0.64 A
Anastrozole −2.044 0.115 I Nilutamide −2.939 0.05 I
Argatroban 2.23 0.903 A Pentostatin 2.321 0.911 A
Atovaquone −0.122 0.47 I Pergolide 0.822 0.695 A
Busulfan 2.502 0.924 A Pindolol 2.179 0.898 A
Capecitabine 2.054 0.886 A Por�mersodium 1.69 0.844 A
Cidofovir 3.462 0.97 A Propafenone 1.127 0.755 A
Cyclosporine 4.788 0.992 A Ribavirin 2.928 0.949 A
Daunorubicin 2.559 0.928 A Risperidone 1.021 0.735 A
Dofetilide 3.228 0.962 A Sprycel 0.917 0.715 A
Hycamtin 1.16 0.762 A Tiagabine −2.125 0.107 I
Imatinib 1.837 0.863 A Tobramycin 4.012 0.982 A
Irinotecan 1.287 0.784 A Vinorelbine 3.295 0.964 A
Lenalidomide −1.628 0.164 I Zoledronic acid 2.792 0.942 A
Mitoxantrone 2.082 0.889 A

Inactive group
Acitretin −2.385 0.084 I Lamotrigine −3.637 0.026 I
Allopurinol −1.102 0.249 I Latanoprost −0.038 0.491 I
Alprazolam −2.209 0.099 I Le�unomide −1.467 0.187 I
Altretamine −1.527 0.178 I Loratadine −2.907 0.052 I
Amlodipine −0.004 0.499 I Lorazepam −2.892 0.053 I
Bexarotene −2.322 0.089 I Mesalamine −3.105 0.043 I
Buspirone 0.36 0.589 A Misoprostol −0.17 0.458 I
Carbamazepine −4.109 0.016 I Nabilone 1.131 0.756 A
Carmustine −4.441 0.012 I Nabumetone −1.483 0.185 I
Celecoxib −1.132 0.244 I Naproxen −4.037 0.017 I
Chantix 0.949 0.721 A Nicardipine 0.558 0.636 A
Clonazepam −1.456 0.189 I Nitric oxide −3.517 0.029 I
Clozapine 0.327 0.581 A Nitroglycerin −3.265 0.037 I
Cysteamine −6.532 0.001 I Olanzapine −0.006 0.499 I
Deferasirox 0.062 0.516 A Oxcarbazepine −2.257 0.095 I
Desloratadine −2.321 0.089 I Oxybutynin 0.131 0.533 A
Desvenlafaxine −1.86 0.135 I Phentermine −1.992 0.12 I
Diclofenac −0.314 0.422 I Propofol −2.077 0.111 I
Didanosine −0.853 0.299 I Riluzole −5.256 0.005 I
Entacapone 0.009 0.502 A Ritonavir −0.438 0.392 I
Estazolam −3.203 0.039 I Selegiline −0.388 0.404 I
Femara −2.381 0.085 I Tacrine −0.196 0.451 I
Feno�brate −0.079 0.48 I Telbivudine −0.065 0.484 I
Flurbiprofen −3.028 0.046 I Temazepam −2.125 0.107 I
Fluvoxamine −2.285 0.092 I Temozolomide 0.312 0.577 A
Gabapentin −4.73 0.009 I Terbina�ne 0.013 0.503 A
Gadoversetamide 0.613 0.649 A alidomide −1.799 0.142 I
Guanfacine −6.447 0.002 I eophylline anhydrous 0.306 0.576 A
Indomethacin −1.603 0.168 I Valsartan −3.183 0.04 I
Iopromide −0.36 0.411 I Venlafaxine −0.794 0.311 I
Isocarboxazid −2.376 0.085 I Ziagen −0.435 0.393 I
Isradipine −1.116 0.247 I Zidovudine −1.208 0.23 I



8 Journal of Chemistry

T 1: Continued.

Compound DF Prob(A) Class. Compound DF Prob(A) Class.
Ketoprofen −3.277 0.036 I Zolmitriptan −2.13 0.106 I
Lamivudine −3.59 0.027 I Zolpidem 0.006 0.502 A
Prob(A): probability of activity. DF: discriminant function. Class.: clasiffication as active or inactive.

T 2: Classi�cation matrix obtained with the selected discriminant function (DF) and internal cross-validation analysis.

DF 𝜆𝜆 (Wilks) Training set Test set Total
Active (%) Inactive (%) Active (%) Inactive (%) %

Model selected 0.573 81.8 80.8 76.6 68.8 77.0
CV1 0.596 75.7 77.9 86.6 69.6 77.4
CV2 0.576 84.8 86.8 76.6 76.1 81.1
CV3 0.657 75.8 77.9 70.0 76.1 75.0
CV4 0.598 84.8 83.8 76.6 73.9 79.8
CV5 0.617 81.8 76.5 83.3 54.3 74.0
CV average 0.609 80.6 80.6 78.6 70 77.5

F 6: Pharmacological distribution diagram for compounds
causing dyspnea as a side effect. e plot represents expectancy (E)
versus DF function (the black and white bars are the active and
inactive compounds, resp.).

Regarding the interpretation of results, it is noteworthy
the presence of the autocorrelation indices in the DF (4).
Autocorrelation indices enable the representation of the
molecule as a vector that can be compared with the vectors of
other molecules at a given position or lag (lag = 1,2,3…).is
singular molecular frame has a further desirable property; it
is independent of the orientation of the molecule; in other
words, it is a real topological index or graph invariant. is
approach has also the advantage that there are many different
ways to de�ne a particular alignment of molecules (structure,
shape, and function) although, contrary to other topological
indices, they do not enable the interconnection between
the vector values and the original molecules; that is, they
are not bijective. In addition, autocorrelation indices allow
weighting the graph vertices by different parameters such as
electronegativity and atomic mass.

In our case, the indexes at (4), namely, ATS2e, MATS2v,
MATS8e, and MATS1p, are weighted by polarizabilities, van
der Waals volumes, and electronegativity. Moreover, the �rst
and third indices (ATS2e andMATS8e) contribute positively
to dyspneagenesis, while the second and forth (MATS2v and
MATS1p) contribute negatively. is indicates that, roughly
speaking, molecules containing big and highly polarizable
heteroatoms (such as S and Cl) as, for example, Mitotane and
Biotin (see Figure 3) would be in general less dypsneagenic,
whereas molecules containing highly electronegative atoms,
such as �uorine, would be more dypsneagenic, as, for
instance, Capecitabine, Clofarabine, and Ticagrelor.

It can be noticed that molecules showing dyspnea as
side effect usually have saturated allicyclic rings (such as
Piperazine or Morpholine), as, for example, Irinotecan,
Tobramycin, Dipyridamole, and Sildena�l (see Figure 4),
which are isolated from each other or separated from aro-
matic rings if exist. On the contrary, the inactive molecules
exhibit in general many aromatic rings and show high
conjugation, as, for instance, Alclofenac and Mitotane (see
Figures 3 and 4).

A very basic structural factor, the number of branches
(vertices with valence 3 or 4 in the simple graph) play
also a signi�cant role. ere seem to be a threshold of
about 9 branches separating the active from the inactive
compounds. Indeed, the low branching molecules (number
of branches below 9) are, in more than 80% of cases, inactive,
as, for instance, Amifostine, Estazolam, Nitric Oxide, and
Nitroglycerin… (see Figure 5). On the contrary, highly
branched compounds (number of branches above 9) may be
either active or not, as for example, Tobramycin, Vinorelbine,
and Atovaquone (see Figures 4 and 5). In other words, a
branching threshold above 9 is a necessary but not a sufficient
condition.

In summary, we �nd the following features regarding the
active-inactive compounds, related to TIs in the model and
visual analysis of the structures in the data set.
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T 3: Results of prediction of dyspneagenicity through the discriminant function DF for the test set.

Compound DF Prob(A) Class. Compound DF Prob(A) Class.
Active group

Acamprosate 0.778 0.685 A Dirithromycin 5.284 0.995 A
Acyclovir −0.704 0.331 I Dobutamine 0.347 0.586 A
Alimta −1.216 0.229 I Eszopiclone 1.195 0.768 A
Ambrisentan 0.207 0.552 A Flecainide 1.192 0.767 A
Amiodarone 0.76 0.682 A Fluoxetine −3.256 0.037 I
Atenolol 0.427 0.605 A Ipratropiumbromide 0.519 0.627 A
ATP 2.634 0.933 A Labetalol −0.665 0.34 I
Bortezomib 2.13 0.894 A Methamphetamine −2.018 0.117 I
Clarithromycin 4.786 0.992 A Mirtazapine 1.098 0.75 A
Clofarabine 2.441 0.92 A Nimodipine 0.44 0.608 A
Clopidogrel −2.056 0.114 I Oxycodone 0.447 0.61 A
Cyanocobalamin 5.267 0.995 A Propranolol 0.477 0.617 A
Cytarabine 0.946 0.72 A Sildena�l 3.672 0.975 A
Dexrazoxane −0.056 0.486 I Ticagrelor 2.593 0.93 A
Dipyridamole 3.748 0.977 A Trova�oxacin 1.574 0.828 A

Inactive group
Acecainide 1.21 0.77 A Cibenzoline −1.924 0.127 I
Aceclofenac −0.952 0.279 I Cocaine −0.577 0.36 I
Acipimox −0.692 0.334 I Disul�ram 0.386 0.595 A
Acivicin −0.901 0.289 I Ergocalciferol 0.107 0.527 A
Acrivastine −0.907 0.288 I Flolan −0.493 0.379 I
Adefovir 3.246 0.963 A Folic acid 0.54 0.632 A
Ademetionine 1.008 0.733 A Gonadorelin 4.554 0.99 A
Adiphenine −1.527 0.179 I Lisinopril −1.382 0.201 I
Ajmaline 0.635 0.654 A Lisuride −0.846 0.3 I
Albendazole −5.145 0.006 I Loxoprofen −3.178 0.04 I
Alclofenac −3.074 0.044 I Metaproterenol −1.194 0.233 I
Alfentanil 0.078 0.52 A Methyl phenidate −1.979 0.121 I
Amifostine −3.844 0.021 I Mitotane −7.45 0.001 I
Aminophenazone 0.998 0.731 A Pantothenic −3.674 0.025 I
Aminorex −4.244 0.014 I Penicillamine −4.915 0.007 I
ASA −2.311 0.09 I Procainamide −0.23 0.443 I
Ascorbic acid 1.378 0.799 A Pyridoxine −1.065 0.256 I
Balsalazide −1.582 0.171 I Repaglinide 1.438 0.808 A
Beza�brate −0.573 0.361 I iamine −1.881 0.132 I
Biotin −5.031 0.006 I Tretinoin −3.889 0.02 I
Bucillamine −3.581 0.027 I Troglitazone 2.314 0.91 A
Carnidazole 0.668 0.661 A Valproic acid −6.145 0.002 I
Cefpodoxime −0.139 0.466 I
Prob(A): probability of activity. DF: discriminant function. Class.: classi�cation as active or inactive.

(a) Above 80% of compounds not showing dypsnea as a
side effect show less than 9 branches in their simple
graphs.

(b) e dypsneagenic molecules usually have saturated
heterocyclic rings (such as piperazine or morpholine)
while compounds not exhibiting dyspnea in general
exhibit many aromatic rings with a high level of
conjugation.

(c) e presence of highly polarizable (MATS1p) and
large Van der Waals volume atoms (such as S or Cl)
(MATS2v) diminish the dyspnea effect.

One of the most interesting consequences of the QSAR
analysis we have just described is that it can be applied as
a �lter to avoid selecting dypsnea�inducing drugs. A good
way to proceed is to use the pharmacological distribution
diagrams (PDDs). Figure 6 shows the PDD obtained for our
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F 7: Receiver operating characteristic curve (ROC) for (4).
Training set is represented by white points and random classi�er
by black points. TPF (true positive fraction)= sensitivity and FPF
(false positive fraction) = 1-speci�city, for different thresholds of
class function (between −1.0 and +1.0).

data set. As can be seen from the diagram, those compounds
with DF values between 0.5 and 5.5 are clearly dyspnea
inducers, those between 0.5 and −7 are generally dyspnea
not inducers. Finally, are those compounds located between
−3 and −2.5 are uncertain (not classi�ed). Of course, if we
are trying to identify possible compounds showing dyspnea
as side-effect, we must search in the DF ranges between −3
to −2.5 and 0.5 to 5.5. e drugs outside these ranges are
not dyspnea inducers. As it is arranged, the model enables
not missing any potential dypsneagenic; that is, in this case
sensitivity was preferred over speci�city, just to prevent the
risk of dyspnea.

Receiver operating characteristic curve for the training
set is shown in Figure 7 for (4). e area under the curve
(AUC) is 0.9046, which accounts for the high accuracy of
model.

4. Conclusions

e results outlined in this work clearly point toward the
efficacy of molecular topology in the prediction of a very
important drug side effect: the induction of dyspnea. As
far as authors’ knowledge, this is the second time that
molecular topology has been applied to the identi�cation of
drug side effects [29]. Furthermore, it is the �rst time that
dyspnea, as a side effect, has been so accurately predicted by
a mathematical model, what opens the pathway to the design
of drugs free from this undesirable side effect.
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