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RESEARCH ARTICLE Open Access

Identification of ovarian cancer associated genes
using an integrated approach in a Boolean
framework
Gaurav Kumar1,2, Edmond J Breen3 and Shoba Ranganathan1,4*

Abstract

Background: Cancer is a complex disease where molecular mechanism remains elusive. A systems approach is
needed to integrate diverse biological information for the prognosis and therapy risk assessment using mechanistic
approach to understand gene interactions in pathways and networks and functional attributes to unravel the
biological behaviour of tumors.

Results: We weighted the functional attributes based on various functional properties observed between cancerous
and non-cancerous genes reported from literature. This weighing schema was then encoded in a Boolean logic
framework to rank differentially expressed genes. We have identified 17 genes to be differentially expressed from a
total of 11,173 genes, where ten genes are reported to be down-regulated via epigenetic inactivation and seven
genes are up-regulated. Here, we report that the overexpressed genes IRAK1, CHEK1 and BUB1 may play an
important role in ovarian cancer. We also show that these 17 genes can be used to form an ovarian cancer
signature, to distinguish normal from ovarian cancer subjects and that the set of three genes, CHEK1, AR, and LYN,
can be used to classify good and poor prognostic tumors.

Conclusion: We provided a workflow using a Boolean logic schema for the identification of differentially expressed
genes by integrating diverse biological information. This integrated approach resulted in the identification of genes
as potential biomarkers in ovarian cancer.

Background
The development of gene expression microarrays more
than a decade ago has led to the study of changes in the
mRNA transcripts in disease-related tissues. These tran-
scriptomic analyses from microarrays experiments served
as the proxy for protein expression, and thereby revealed
important properties of gene sets related to tissue-
specificity [1,2]. It has also facilitated the understanding
of living cells at a systemic level by linking molecules
to biological functions and thus bridging the genotype-
to-phenotype gap via understanding the organisation of
biological pathways [3] and the network of protein inter-
actions [4]. In a seminal review, Hanahan and Weinberg
[5] introduced six “hallmarks of cancer” (i.e. self-sufficient

in growth signals, insensitivity to growth inhibition, evad-
ing apoptosis, tissue invasion and metastasis, sustained
angiogenesis and limitless replicative potential), while a
seventh hallmark (stemness) of cancer was concluded
through gene expression analysis [6,7]. The remarkable
progress in cancer research suggests that hallmarks for
cancer need to be extended further by including repro-
gramming of cellular metabolism to support neoplastic
proliferation, acquired cellular properties to avoid immune
destruction and genomic instability [8]. In recent years,
researchers have made an effort to provide their micro-
array experiments for further studies through freely avail-
able public repositories such as Gene Expression Omnibus
(GEO) [9] and ArrayExpress [10].
The knowledge acquired over the years of research

suggests that the cancer cells harbour genetic defects
that alter the balance of cell proliferation and cell death
[11]. This has led to the compilation of a cancer gene
list, which has increased steadily over the last two
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decades. This disease is also highly variable with mul-
tiple heterogeneous genetic and epigenetic changes
which makes it ideal to study cancer by integrating data
from multiple experiments to understand its causes at
the cellular level. Therefore, the identification and char-
acterisation of susceptible genes associated with cancer
is one of the greatest challenges in today’s biological and
medical research. This challenge is partly due to the
limitation of statistical methods on which a hypothesis
about the value of a statistical parameter is made for the
detection of genes effects and their interactions, as mul-
tiple biological components work in a concerted fashion.
Moreover, biological systems are highly enriched with
examples of combinatorial regulation and influence as
molecules in signalling pathway and gene regulatory
pathway jointly affect the cellular state [12]. In order to
explore the combinatorial influence of multiple factors,
Boolean-based logic is a popular approach for SNP asso-
ciation studies [13,14] and in cancer [12,15,16].
In this study, an integrated systems approach is used

to identify diseased-associated genes that are either not
reported or poorly characterized in the ovarian tumor
samples. We have estimated weights for the functional
attributes associated with the known cancer gene list.
These weights are then combined using a Boolean logic
schema, to calculate the probability-based rank asso-
ciated with differentially and non-differentially expressed
genes. Finally, we have mapped high scoring ranks of
differentially expressed genes on the co-expression gene
interaction network to validate disease-associated genes
(Figure 1). This study suggests that of the 17 shortlisted
genes flagged as significant, the overexpressed genes
IRAK1, CHEK1 and BUB1 may play an important role in

ovarian cancer. Using survival analysis, we also report
that the set of three genes, CHEK1, AR, and LYN, can be
used in the prognosis of ovarian tumors.

Methods
Identification of differentially expressed genes
We extracted and analysed TCGA (The Cancer Genome
Atlas) level 3 (Batch 9) ovarian serous cystadenocarcinoma
data from the Affymetrix platform [17]. TCGA gene ex-
pression data are normalised, annotated and validated for
expression variation relevant to the tissue types and with
the type of array platforms, thus increasing the robustness
in analysing expression data. Rather than a fold-change, we
have calculated the differential expression of each gene by
considering the percentage of false prediction (pfp) ≤5%
using the RankProd R package [18]. RankProd uses the
rank product non-parametric method to indentify up/
down-regulated genes under one condition against the
other (in our case tumor vs. normal ovarian samples). This
is based on the null hypothesis that the order of all items is
random and the probability of finding a specific item
among the top r of n items in a list is p = r/n. Multiplying
these probability leads to the identification of the rank

product RP ¼
Y
i

ri
ni
, where ri is the rank of the item and ni

is the total number of items in the ith list. The smaller the
RP value, the smaller the probability that the observed
placement of the item at the top of the list is due to chance.

Relevant functional attributes in the disease condition
Although microarrays measure the relative abundance of
mRNA transcripts, their translated proteins are likely to

Figure 1 Ranking genes in a Boolean logic framework. Schematic representation of the workflow used to rank genes in a Boolean framework
for identifying potential biomarkers in ovarian cancer.
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be differentially present in diseased tissue. Moreover, the
extent of differential protein concentration under the dis-
ease condition is quite difficult to estimate due to the het-
erogeneity of cells in the tumor sample. Therefore, we
considered a Boolean combination of six proteins func-
tional attributes for searching genes associated with ovar-
ian cancer, where the causative effects are not additive but
combinatorial as well as non-linear. These functional attri-
butes are tissue specificity (TS), transcription factors (TFs),
post-translation modifications (PTMs), protein kinases
(PKs), secreted proteins (SPs) and whether the protein is a
hub in the interactome, with node connectivity greater
than four (i.e. node connectivity > = 5) along with the gene
attribute of methylation (METH), in cancer vs. non-cancer
associated genes.
We hope to capture the underlying enabling factors

for cancer, by considering the above protein functional
attributes. Large-scale data analysis supports the fact
that disease genes are generally tissue-specific and
are over-expressed in those tissues where changes
in gene expression result in pathology [19]. TFs are
DNA-binding proteins regulating gene expression and
thereby control cell development, differentiation and
growth [20] and their aberrant activity has been impli-
cated in the cancer disease condition [21]. Oncogenic
conversion of normal cells into cancerous cells involves
changes in transcription factor, e.g. c-Fos component of
TF c-Jun/JUN/AP-1 is crucial for the estrogen receptor
α (ERα) mediated transcription in breast cancer [22].
PTMs of key regulatory or structural proteins are
known to play an important role in the progression of
cancer by activation of signalling pathways, enhanced
proliferation and impaired cell division and death [23].
PTMs contributing to tumorigenesis include phosphor-
ylation, acetylation, methylation, glycosylation, prolyl
isomerisation, hydroxylation, oxidation, glutathionyla-
tion, sumolyation and ubiquitination. For example, clin-
ical evidence suggests that phosphorylation, acetylation
and sumolyation of ERα lead to prostate and breast
cancer in humans [24]. PKs are important signalling
molecules for maintaining normal tissue architecture
and function, hence mutation in these genes are a com-
mon cause of human cancer (http://www.sanger.ac.uk/
genetics/CGP/Kinases/) [25]. Recent developments in
proteomic analyses suggest an increasingly large num-
ber of genes overexpressed in ovarian cancer, of which
several encode secreted proteins [26]. For example,
the high expression of prostasin [27] and osteopontin
[28] are recorded in the serum of ovarian cancer
patients. Highly connected proteins, i.e. hubs are shown
to be essential in connecting diverse functional mod-
ules inside the cell [29]. Also, epigenetic inactivation of
tumor-suppressor genes due to methylation is well
known in carcinogenesis [30].

Data integration from multiple experiments
We extracted functional attributes via a text-mining ap-
proach. The cancer gene list was obtained by combining
data from the Atlas of Genetics and Cytogenetics in On-
cology and Haematology [31] and Futreal et al. [32],
while information related to secreted proteins, tissue-
specificity and protein’s post-translation modifications
was obtained from HPRD [33]. Human protein kinases
were extracted from the Human Kinome [34]. Tran-
scription factors were extracted from TRED [35], HPRD
[33] and TargetMine [36] databases. Gene methylations
in ovarian samples were extracted from the studies
reported by Mankoo et al. [37]. We considered the pres-
ence/absence of interaction in our high-confidence (HC)
interactome dataset (detailed below) for differentially
expressed genes, as biological pathways and networks of
protein interactions are key paradigms to link molecules
to biological functions. Therefore, interaction data were
collected from BIND [38], BioGrid [39], DIP [40], HPRD
[33], IntAct [41] and MINT [42] databases and merged
into a single coherent interaction set after removing du-
plicate entries. Human protein interaction networks
were further analysed to create a HC dataset by consid-
ering true interaction protein pairs as follow:

1. If binary interaction among proteins is known to be
present in more than one databases.

2. Interacting protein pairs are true, if the interaction is
verified from more than one detection method such
as biochemical, biophysical, imaging techniques and/
or protein complementation assay (PCA).

3. If interacting protein pairs have known protein
domain interaction mentioned in 3did [43] and iPfam
[44] databases.

4. PMIDs [45] were used as a proxy to support true
interactions confirmed by more than one
independent study.

These filters were used to define a HC protein inter-
action set to study the network properties of molecular
functions and biological processes of interacting pro-
teins. In this study, scoring schema for interactions were
considered for those protein nodes with more than four
interactions, as this is the empirical value of hubs sug-
gested in gene co-expression stability in the analysis of
protein interaction networks [46]. Therefore, we
weighted such highly connected protein nodes encoded
by the known cancerous genes.

Weighting schema for Boolean-based probability
calculation
We used phi-correlation (rΦ) as a measure of association
between the functional attributes of the cancerous genes.
This is one of the powerful methods to detect the
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association strength between two categorical data having
binary values. Moreover, computationally it is related to
the chi-square (χ2) value:

rϕ ¼
ffiffiffiffiffi
χ2

N

r
;

where N is the total number of genes.

Scoring schema on the weighted functional attributes for
ranking genes
We used the Boolean algorithm proposed by Nagaraj
and Reverter [15] for ranking the differentially expressed
genes in ovarian samples, with our own set of Boolean
variables representing relevant functional attributes in
the disease condition. The particular combination across
the seven Boolean variables i.e. functional attributes for
a given differentially and non-differentially expressed
genes, was decomposed into its root. For example, if a
given gene has four known functional attributes, then 24

Boolean states are known to exist containing (24-1)
roots, i.e. all possible combinations of Boolean states at
the positions of known functional attributes, excluding
the Boolean value with all zero status. The probability of
each root is simply the average sum of all the weights
associated with known functional attributes calculated
via rΦ. These root probabilities are then used to rank
the differentially and non-differentially expressed genes
by summing up all the probability values associated with
the individual roots.

Validation set
We retrieved the raw expression data for 153 ovarian
tumor samples from the Gene Expression Omnibus
entry GSE1349, containing samples in four tumor stages
[9]. Raw expression values for each probe were trans-
formed to log-scale with base 2. Probe IDs were con-
verted to Entrez Gene IDs using AILUN [47]. For genes
with multiple probes, the probes with the highest vari-
ance across the samples were used to describe the ex-
pression value for the genes. Probes with multiple or
without Gene IDs were removed from the analysis.
Pearson’s correlation coefficients were calculated based
on the co-expression values alone, to define the pair-
wise gene co-expressions. We have taken a Pearson’s
coefficient > 0.5 to define a link between co-expressed
genes in the gene expression network.

Network analysis of human signalling
We performed network analysis using the manually
curated human signalling network [48]. The signalling
network was pruned to contain associations between pro-
teins alone and hence, small molecules were removed
from the network, resulting in 1522 protein nodes and

4276 edges. The R package, igraph [49] was used for the
network analysis. The Ingenuity Pathway Analysis system,
(IPA, www.ingenuity.com) was further considered, to in-
terpret the interaction of cancerous genes in humans.

Clinical characterization using survival analysis
For the high scoring Boolean-based differentially expressed
genes, we performed Kaplan-Meier survival analysis using
the Cox-Mantel log-rank test, implemented as an R pack-
age. The significance of these genes in the normal and
tumor samples were evaluated from the Welch two sample
t-test. A less conservative P-value < 0.1 was considered for
the statistical significance of genes in the ovarian tumor
sample classification. The clinical data were downloaded
from the TCGA data portal.

Results and discussion
We used a systems biology approach to integrate diverse
data resources as described in the Methods section. 2157
genes were identified to be differentially expressed in the
tumor condition using the RankProd R package at a per-
centage of false positives: pfp ≤ 5%. The rank product
method ensures ranking of expressed genes within each
replicate (i.e. individual sample) and then computes the
product of ranks across the replicates (i.e. multiple sam-
ples). Its distribution is then estimated by randomly per-
muting the observed ranks. Using this distribution, pfp is
estimated. A cutoff of pfp ≤ 5% ensures that the observed
data falls within two standard deviations of the mean,
effectively translating to a p-value ≤ 0.05, expressing the
probability that results at least as extreme as the above
thresholds obtained in a sample were not due to chance.
A total of 11,173 genes were considered in the TCGA
expression set. This analysis suggested that 1353 and 804
genes were up-regulated and down-regulated respectively
(Figure 2 and Additional file 1). An estimation of the
weight was carried out via a simple observation of known
functional attributes present between cancerous and non-
cancerous genes. Table 1 lists the different functional attri-
butes used as weights in this study. An odds-ratio analysis
of differentially and non-differentially expressed genes
showed no apparent differences (Additional file 2). This
suggests that no single functional attribute can be selected
alone in the classification of genes as a potential bio-
marker for the prognosis of the ovarian tumor condition.
Moreover, cancer is well established as a disease model
where the cellular system is abnormal leading to an un-
controlled cell division. Hence, a synergistic approach is
needed to encapsulate the various functional attributes to-
gether for the understanding of the cancerous state.
Figure 1 illustrates the workflow used for ranking genes.
A Boolean framework for measuring unknown interac-
tions between different biological entities and for the
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classification of genes in disease conditions have been
reported by earlier studies [12,15].
In this study, seven functional attributes, such as epi-

genetic inactivation (CpG gene methylation), protein
post-translation modification, protein kinase, secreted
protein, tissue-specificity, transcription factor and hub
proteins in an interactome (protein node connectivity
of 5 and above) were considered for the classification in
the Boolean logic framework. We defined the Boolean
logic for each gene, corresponding to the selected func-
tional attributes (Table 2 and Additional file 2). These
Boolean values were then decomposed to their roots to
calculate the overall probability based on their functional
attribute weights (detailed in the Methods section).
Nagaraj and Reverter [15] have reported an average Bool-
ean probability score of 0.219 (ranging from 0.002 to
0.687) for known cancer genes, compared to an average
score of 0.081 (ranging from 0.000 to 0.589) for the other
genes, indicating an average 2.71-fold enrichment using
their Boolean logic, in their exhaustive study of 21,892

Figure 2 Differential gene expression in the TCGA ovarian dataset. Affymetrix TCGA gene expression dataset in ovarian tumor samples (class 1)
vs. normal samples (class 2): A. Up-regulated genes and B. Down-regulated genes. RankProd analysis of differential gene expression at a percentage of
false prediction (pfp)≤ 5% is shown.

Table 1 Phi-correlation (rΦ) weights calculated for the
functional attributes such as methylation, post-translation
modifications, protein kinase, secretory proteins, tissue-
specificity, protein interaction nodes with connectivity > =5
and transcription factor in cancerous vs. non-cancerous
genes associated with ovarian cancerous tumor samples

Functional Attributes Phi-correlation value P-value

Methylation 0.021944 0.0803

Post-translation modifications 0.046598 0.0004

Protein kinase 0.037870 0.0030

Secretory proteins 0.036727 0.0026

Tissue specificity 0.038675 0.0019

Interactome (node connectivity > =5) 0.072986 0.0001

Transcription factor 0.048745 0.0002
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genes in colorectal cancer. In order to identify differential
and non-differential gene expression as potential biomar-
kers with high confidence, we have set an empirical prob-
ability score greater than 0.5 as a cut-off, which is more
than twice their reported average Boolean probability
score. At this cut-off value, we were able to identify 17
differentially expressed genes (Table 2), whereas non-
differential expression is noted for 48 genes (Additional

file 3). In the TCGA expression dataset, we found seven
(IRAK1, STC2, CDC7, CHEK1, KLK6, BUB1 and CHEK2)
and ten (IGF1R, DAB2, IGFBP7, FOXL2, LCN2, CLU,
LYN, PGR, AR and VIM) genes to be up-regulated and
down-regulated, respectively, using RankProd analysis.
In the validation dataset genes IGFBP7 and LCN2 are ab-
sent. Figure 3 compares the known functional attributes
present in proteins encoded by differentially and non-
differentially expressed genes. Moreover, we have verified
the importance of these differentially expressed genes by
mapping to their biological pathways (Additional file 4).

Protein kinases
Protein kinases are important regulators of cell function
and belong to a functionally diverse gene family. They
affect the activity, localisation and overall function of other
proteins by adding a phosphate group and thereby control
the activity of cellular processes. Kinases are particularly
important in signal transduction and co-ordination of
complex functions such as cell cycle and pathological con-
ditions. Identification of IRAK1 as a differentially expressed
gene in ovarian cancer suggests its important role in this
disease. It is a putative Ser/Thr kinase known to partially
interact with transcription factor, NF-κB. Activation of NF-
κB leads to cell proliferation, survival and migration [50].
Over-expression of this gene suggests indirect cell survival
and proliferation in the ovarian tumor condition. Similarly,
IGF1R is a receptor with tyrosine kinase activity, which
binds an insulin-like growth factor. It is over-expressed in
most malignant tissue, acting as an anti-apoptotic agent by
enhancing cell survival [51,52]. LYN is a non-receptor tyro-
sine kinase, phosphorylating caspase 8, rendering it inactive

Figure 3 Functional attributes presented in various proteins encoded by differential/non-differential gene expression in the TCGA
data. Histogram representing functional attributes such as Meth (methylation), PK (protein kinase), TF (transcription factor), TS (tissue specificity),
PTM (post-translation modification), SP (secreted-proteins) and Hub (protein interactions where node connectivity > =5) presented in proteins
encoded by differentially (in blue)/non-differentially (in pink) expressed genes.

Table 2 Boolean-based probability scores for ranking the
17 differentially expressed genes

Gene symbol Gene ID Up Down Boolean values Rank

KLK6 5653 1 0 1011001 0.697808

IRAK1 3654 1 0 0111010 0.607561

CDC7 8317 1 0 0111010 0.607561

CHEK1 1111 1 0 0111010 0.607561

BUB1 699 1 0 0111010 0.607561

CHEK2 11200 1 0 0111010 0.607561

STC2 8614 1 0 1011010 0.584684

DAB2 1601 0 1 0011011 0.743532

VIM 7431 0 1 0011011 0.743532

FOXL2 668 0 1 0011101 0.735481

LCN2 3934 0 1 1011001 0.697808

PGR 5241 0 1 0011110 0.644578

AR 367 0 1 0011110 0.644578

IGF1R 3480 0 1 0111010 0.607561

LYN 4067 0 1 0111010 0.607561

IGFBP7 3490 0 1 1011010 0.584684

CLU 1191 0 1 1011010 0.584684
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and thereby assisting apoptosis of the inflammatory cell
[53]. In the absence of the normal expression of LYN, ac-
tive caspase 8 may prevent the tumor cells from undergo-
ing apoptosis.
Other important kinases in cell survival and prolifera-

tion during tumorigenesis are associated with key cell
cycle proteins. CDC7 (cell-division cycle 7 homolog of
S. cerevisiae) and BUB1 (budding uninhibited by benzi-
midazoles 1 homolog of S. cerevisiae) encode protein

kinases which induce G1/S transition and are involved
with the spindle checkpoint function, respectively during
cell mitosis. CDC7 is known to be overexpressed in the
epithelial ovarian carcinoma, resulting in tumor progres-
sion, genomic instability and accelerated cell division
[54]. On the other hand, BUB1 overexpression induces
aneuploidy and tumor formation [55]. CHEK1 (check-
point kinase 1) is an another important cell-cycle mol-
ecule of Ser/Thr protein kinase family mediating signals

Figure 4 Co-expression of up-regulated genes. Schematic representation of up-regulated. Schematic representation genes: A. BUB1, B. CDC7, C.
CHEK1, D. CHEK2, E. KLK6, F. IRAK1 and G. STC2. Edges are colour-coded to highlight the range of pearson’s correlation coefficient in co-expression
network: black (> 0.7), slate grey (0.65 - 0.7), navy blue (0.60 - 0.65), slate blue (0.55- 0.60), dark green (0.50 – 0.55), dark olive green (0.45 - 0.05), yellow
(0.40 – 0.45), indian red (0.35 -0.40), peru (0.30 -0.35). Refer to Additional file 5 for co-expressed neighbors and their associated co-expression Pearson’s
correlation values.
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from ATM and ATR cell cycle proteins involved in the
DNA damage response and associated with chromatin in
the meiotic prophase I. The importance of this protein
in tumor invasiveness has been suggested by researchers
in lung, bladder, liver, prostate, gastric, brain, cervical
and colorectal cancers and B-cell lymphoma [56-58].
CHEK2 (checkpoint kinase 2) is yet another important
cell cycle protein which regulated key proteins during
cell division. It interacted with BRCA1 (breast cancer 1)
to restore survival in response to DNA damage with
known association with endometrial cancer risk [59].
We observed overexpression of IRAK1, BUB1, CDC7,
CHEK1 and CHEK2 genes in TCGA samples at a high
Boolean probability score of 0.607561, together with the
co-expression of other key cell-cycle molecules in an in-
dependent validation expression set GSE1349 suggesting
their association in ovarian cancer (Figure 4 and Additional
file 5). The presence of high probability up-regulated genes
in the co-expression network (Pearson’s correlation coeffi-
cient > 0.5) is shown in Additional file 6. The co-expression
network of downregulated genes is available from
Additional file 7.

Serine proteases
Serine proteases are proteolytic enzymes, hydrolysing
the peptide bond of protein substrates via a nucleophilic
serine residue in the active site [60]. Serine proteases
play diverse roles in human health, from non-specific

digestion to highly regulated functions like embryonic
development, immune response and blood coagulation.
Moreover, insufficient or excess protease activity can
promote significant pathologies like cancer, inflamma-
tion, hemophilia, heart attack, stroke, pancreatitis and
parasite infection [61]. We suggest the potential use of
KLK6 (kallikrein-related peptidase 6) as a potential bio-
marker for ovarian cancer based on its high Boolean
probability score (0.697808) (Figure 4). KLK6 is a serine
protease with diverse functional roles inside the cell. It
has been suggested that overexpression of this protein
leads to the loss of cell-cell adhesion in skin cancer
(melanoma) [62]. Moreover, a recent study reports the
up-regulation of KLK6 in colon cancer and its use as a
potential biomarker and therapeutic agent [63].

Secreted proteins
Secreted proteins are secreted from the cell into the extra-
cellular space and have important biological regulatory
roles with the potential for therapeutics. STC2 (Stanniocal-
cin 2) is a secreted homodimeric glycoprotein that is
expressed in a variety of tissues. STC2 is known to promote
the epithelial-mesenchymal transition and invasiveness in
human ovarian cancer under inadequate oxygen supply to
the tissue [64]. Our results show that STC2 is a significant
up-regulated gene, promoting ovarian cancer. On the other
hand, CLU (clusterin) and LCN2 (lipocalin 2) are down-
regulated genes in our analysis. CLU encodes a protein

Table 3 GO biological process terms of 17 differentially expressed genes mapped to the hallmarks of cancer

Gene/cancer hallmark HM1 HM2 HM3 HM4 HM5 HM6 HM7 HM8 HM9 HM10

KLK6 GC G, GC G, GC

IRAK1 GC GC GC GC

CDC7 G G,GC G, GC GC G

CHEK1 G G G G, GC G

BUB1 G GC

CHEK2 G, GC G, GC

STC2 GC GC L L

DAB2 GC G, GC GC GC

VIM GC GC

FOXL2 GC GC GC GC

LCN2 L L

PGR GC

AR GC GC G, GC

IGF1R G, GC G, GC G, GC G, GC G GC

LYN GC GC GC GC GC GC

IGFBP7 G, GC G G, GC G

CLU GC GC GC

HM1: sustain growth signal, HM2: escape growth suppressor i.e. insensitivity to growth inhibitor, HM3: active invasion and metastasis, HM4: limitless replicative
potential/enable replicative immortality, HM5: induce angiogenesis, HM6: resist cell death, HM7: cause genomic instability, HM8: deregulate cellular energetic,
HM9: avoid immune destruction, HM10: tumor promoting inflammation, G: GATHER [71], GC: GeneCards [72], L: literature (G details in Additional file 8 and GC and
L details in Additional file 9).

Kumar et al. BMC Systems Biology 2013, 7:12 Page 8 of 14
http://www.biomedcentral.com/1752-0509/7/12



which is secreted under stress conditions, that functions as
a strong anti-migratory and anti-invasive agent by inducing
the destruction of the actin cytoskeleton inside the cell
[65]. The decreased expression of CLU thus promotes the
cancerous disease condition. LCN2 encodes a 25 kDa
secretory protein involved with iron-transportation and
contributes to endometrial carcinoma [66]. Moreover, it is
a key molecule in various signalling pathways (Additional
file 4). Down-regulation of LCN2 due to epigenetic inacti-
vation may lead to ovarian carcinoma.

Other types of proteins
We observed down-regulation of genes with high prob-
ability associated with phosphoproteins, transcription
factors and receptors due to epigenetic inactivation.
Phosphoprotein DAB2 is a mitogen-responsive agent, act-
ing as tumor suppressor in normal ovaian epithelial cells
and down-regulation of this gene modulates the TGF-β
signalling pathway [67]. FOXL2 (forkhead box L2) encodes
a transcription factor which helps in the normal develop-
ment of ovarian tissue. IGFBP7 (insulin-like growth factor
binding domain) is known as the tumor suppressor gene,
leading to lung cancer due to the epigenetic inactivation

[68]. PGR (progesterone receptor) encodes a protein play-
ing a central role in the reproductive system by maintain-
ing progesterone levels and ensuring normal pregnancy.
AR (androgen receptor) encodes a protein which functions
as a steroid hormone-activated transcription factor and
has been shown to be involved in prostate cancer [69] as
well as in ovarian cancer in association with p44 [70].
VIM (vimentin) encodes a protein that is responsible
for maintaining cell shape, integrity of the cytoplasm
and stabilizing cytoskeleton interaction. Thus, the
decreased expression of these genes could be indicative
of ovarian cancer.

Relevance to cancer
We have mapped these 17 differentially expressed genes
to gene ontology (GO) biological process terms collated
from the GATHER [71] and the GENECARDS [72] data-
bases as well as from the recent literature. The relevant
GO terms linking these genes to the cancer hallmarks
described by Hanahan and Weinberg [6] are presented in
Table 3, with detailed information in Additional file 8 and
Additional file 9. Each hallmark is associated with 1-13 of
the 17 differentially expressed genes (mean = 5.7) while

Figure 5 Differentially and non-differentially expressed genes with high Boolean scores mapped to the human signalling network. A.
Mapping of differentially expressed (with red labels) and non-differentially expressed (with blue labels) expressed genes from the TCGA data set
on the human signalling network. Node size represents the residual value of linearly regressed betweenness and eigenvector centralities. B.
Betweenness vs. eigenvector centrality plot of nine differentially expressed and 32 and non-differentially expressed genes identified in the human
signalling network.
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each gene maps to 1-6 hallmarks (mean = 2.8). While al-
most all the GO biological process terms could be unam-
biguously mapped to a cancer hallmark, the regulation of
apoptotic process (GO:0042981) for LYN maps to both
hallmark 3: active invasion and metastasis and hallmark 6:
resist cell death and is shown in italics in Table 3. For
STC2 and LCN2, the GeneCards biological process GO
terms were augmented with literature search and the rele-
vant references are provided in Additional file 9.
The complexity of cellular regulation is encapsulated in

the signalling network. Moreover, signalling network also
helps to understand the dynamics of oncogenic cross-talk
by determining the sites at which oncogenic signals occur
and through which oncogenic signals are transduced.
Therefore, differentially and non-differentially expressed
genes with high Boolean scores identified in the TCGA
dataset (listed in Table 2 and Additional file 3, respectively)
were mapped to the manually curated human signalling
network [48], shown in Figure 5. Nine of the 17 differen-
tially expressed genes and 32 of 48 non-differentially
expressed genes could be mapped to the signalling network

(Figure 5A). We have computed the importance of a node
in the signalling network using betweenness centrality (the
number of times a node acts as a bridge along the shortest
path between two other nodes) and the influence of a node
in the network using eigenvector centrality (relative scores
to all nodes in the network with connections to high-
scoring nodes receiving higher scored compared to low-
ranking nodes). A plot of the two signalling network cen-
trality measures (betweenness centrality and eigenvector
centrality; Figure 5B) suggests the importance of the differ-
entially expressed AR and the non-differentially expressed
MAP3K7 (mitogen-activated protein kinase kinase kinase
7, involved in stress response) genes, which have ten shared
interactions, from BioGraph [73], ranked 636 out of 18180
‘Gene’ concepts (top 3.50%) in BioGraph’s knowledge base.
Moreover, the nine differentially expressed genes (AR,
CHEK1, CHEK2, PGR, VIM, LYN, IRAK1, IGF1R and
DAB2) mapped to the signalling network were further
identified using the Ingenuity Pathway Analysis system to
visualize the interaction of these genes with the known
oncogenes (Figure 6). The central role played by CHEK1 in

Figure 6 Ingenuity Pathway Analysis visualization of oncogene interactions. Interaction of nine differentially expressed genes with high
Boolean scores in the human signalling network mapped to known oncogenes in the Ingenuity Pathway Analysis knowledge-based
expert system.

Kumar et al. BMC Systems Biology 2013, 7:12 Page 10 of 14
http://www.biomedcentral.com/1752-0509/7/12



the DNA damage response signalling network, has been
confirmed by Dai and Grant [74], where CHEK2, CDC7
and BUB1 have also been identified from the 17 differen-
tially expressed genes reported here.

Clinical characterization
Table 2 lists 17 genes, of which seven are up-regulated and
ten are down-regulated in ovarian cancer patients. The

expression patterns of these genes suggest that the sum of
the up-regulated gene expression values minus the sum of
the down-regulated gene expression values should be max-
imized in ovarian cancer patients compared to controls
without ovarian cancer (Additional file 10). Figure 7 shows
that this is indeed the case for the 38 ovarian clinical sam-
ples and seven normal samples in this dataset and that this
simple formula for the 17 genes identified here can be used

Figure 7 Ovarian cancer gene signature. Gene signature constructed from the expression values for each of genes given in Table 2, by substracting
the sum of the down-regulated gene expression values from the sum of the up-regulated gene expression values. A. Individual scores for each of the normal
and cancer patients. B. Mean signature values +/- (SEM) for the normal and cancer patients. Welch two sample t-test (t = -14.69, df = 8.45, p=2.621E-07).

Figure 8 Survival curves for ovarian cancer patients designated as being either high or low expression patients for genes CHEK1, AR
and LYN. The lower of the two lines in each survival plot indicates patient with poor prognosis. The combinational plot CHEK1 + AR-LYN
represents the sum of the expression values of CHEK1 and AR minus the expression of LYN. The p associated with each plot gives the p-value
from the log-rank test for equality between the low and high expression groups from R’s Kaplan-Meier estimate of survival.
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to successfully distinguish between normal and ovarian
cancer patients (p-value < 1.2E-06).
Survival analysis was carried out to suggest if any of

above 17 genes or their combinations, can be used in
the classification and prognosis of ovarian cancer, to
classify good and poor prognostic tumors. To demon-
strate the survival analysis across the 38 ovarian clinical
samples in this dataset, expression levels of each of the
17 genes were ranked from lowest to highest expression.
Tumor samples associated with the lower 50% of the ex-
pression values for a given gene were labelled as “low-
expression” for that gene; otherwise, they were labelled
as a “high-expression” sample for that gene. Log-rank
tests were then performed to suggest the difference be-
tween expected vs. observed survival outcomes for the
low- and high-expression tumor samples for each of the
genes. As there were only 38 ovarian tumor samples
with clinical data, we chose the less stringent log-rank
P-value of 0.1 and discovered three genes, CHEK1, AR
and LYN exhibit a prognostic value, based on this cut-off
level (see Figure 8).
In Figure 8, the lower of the two curves in each of the

four survival analysis plots indicates tumor samples asso-
ciated with poor prognosis. Interestingly, though the sur-
vival curves associated with gene AR indicate poor
prognosis is expected for tumor samples within the high
expression range of AR, from Table 2 we note that AR is
down-regulated in ovarian cancer. From Figure 8, it is
seen that high expression for up-regulated CHEK1 and
down-regulated AR and low expression for LYN leads to
poor prognosis. The clinical data thus suggests a prefer-
ence for limited down-regulation of AR. Therefore, com-
bining the expression levels of these three genes as
CHEK1+AR-LYN (Figure 8), then ranking this score from
lowest to highest values and associating the patients into
low and high expression groups, as before, gave greater
significance in the prognostic outcome for classifying good
and poor tumour outcomes than did the individual genes.
Biologically, this combination represents increased cell
cycle control, particularly for entry into mitosis (CHEK1),
decreased expression of the androgen receptor (AR),
whose expression levels have controversial reports as a
favourable prognostic factor in epithelial ovarian cancer
[75,76] and moderately decreased expression of LYN,
resulting in apoptosis of tumor cells.

Conclusions
We have statistically integrated gene expression and protein
interaction data by combining weights in a Boolean frame-
work to identify high scoring differentially expressed genes
in ovarian tumor samples. This has resulted in the identifi-
cation of important genes associated with critical biological
processes. We identified 17 differentially expressed genes
from a dataset of 11,173 genes, where seven and ten genes

were up- and down-regulated, respectively with significant
probability score in a Boolean logic schema. We report
three genes (IRAK1, CHEK1 and BUB1) to be significant in
ovarian tumor samples for the first time, to the best of our
knowledge. A recent study on ovarian cancer supports our
observation that the cell cycle proteins, CHEK1 and BUB1,
are over-expressed and are important to the tumor condi-
tion, lending support to our observation [75]. Our results
demonstrate the significance of multiple data types and
knowledge-guided integration of diverse biological informa-
tion to understand the molecular mechanisms associated in
ovarian cancer and their application in the discovery of bio-
markers. Network analysis of the human signalling path-
ways suggests the importance of the AR gene, which is
down-regulated in ovarian tumor samples, leading to can-
cer. We also showed that the expression levels of the 17
genes discovered in this analysis can be used to distinguish
between normal and ovarian cancer patients and that three
genes, CHEK1, AR and LYN in combination can be used to
classify good and poor prognostic tumors [77] from ovarian
cancer patients.
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