Hepatic Stellate Cell-Derived Cancer Associated Fibroblasts Sustain Tumor Growth in Intrahepatic Cholangiocarcinoma

Silvia Afio
Columbia University, sa2957@cumc.columbia.edu

Le-Xing Yu
Columbia University, ly2379@cumc.columbia.edu

Xin Chen
University of California, San Francisco, xin.chen@ucsf.edu

Robert F. Schwabe
Columbia University, rfs2102@cumc.columbia.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/hepa_cancers
Part of the [Medicine and Health Sciences Commons](http://scholarscompass.vcu.edu/hepa_cancers)

© The Author(s)
Hepatic Stellate Cell-Derived Cancer Associated Fibroblasts Sustain Tumor Growth in Intrahepatic Cholangiocarcinoma

Silvia Affó¹, Le-Xing Yu¹, Xin Chen², Robert F. Schwabe¹

¹ Department of Medicine, Columbia University, New York, NY 10032, USA.
² Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA

Background: Cholangiocarcinoma (CCA) is characterized by abundant cancer-associated fibroblasts (CAF). Clinical data suggest an inverse correlation between αSMA-positive CAF and survival in CCA. However, functional in vivo studies that determine whether CAF promote or restrict CCA are lacking. Objectives: To determine the cellular source and functions of CAF in intrahepatic CCA (ICC) in vivo. Methods and Results: Sleeping beauty-mediated overexpression of HA-tagged pT3-myr-AKT and pT3-EF1aH-YapS127A in the liver resulted in desmoplastic ICC with abundant αSMA-positive CAF and significant upregulation of fibrogenic genes Acta2 (34-fold) and Col1a1 (125-fold). Expression of hepatic stellate cell (HSC) markers Des and Lrat mRNA was significantly increased in ICC (11- and 3-fold, respectively). HSC origin of CAF was further supported by tracing studies in triple transgenic mice expressing LratCre and Cre reporter TdTom, which label >99% of HSCs in the liver, in combination with Col1a1-GFP, which labels collagen-producing fibroblasts. 92.95± 5.27% (n=10) of CAF were TdTom-positive, i.e. derived from LratCre+ HSC. To functionally manipulate HSC-derived CAF in vivo, we employed triple transgenic mice expressing LratCre, Cre-inducible iDTR and Cre reporter TdTom. By this approach, we depleted >90% CAF, as determined by TdTom fluorescence, qPCR for HSC markers Lrat, Lhx2 and Des, as well as Col1a1, but not portal fibroblast marker Msln. Short-term CAF depletion reduced fibrosis, tumor proliferation, as determined by Ki67 staining and qPCR for mKi67 and Ccnb1, and increased cell death in ICC. Conclusion: Our study suggest that the majority of CAF are HSC-derived, and HSC-derived CAF support the development of ICC by promoting tumor cell proliferation and survival.