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Summary 15 

Blue catfish Ictalurus furcatus Lesueur, the largest catfish in North America, produces 16 

pectoral stridulation sounds (distress calls) when attacked and held. They have both fish 17 

and bird predators, and the frequency spectrum of their sounds is better matched to 18 

hearing of birds than to that of unspecialized fish predators with low frequency hearing. It 19 

is unclear whether their sounds evolved to function in air or water. We categorized the 20 

calls and how they change with fish size in air and water and compared developmental 21 

changes in call parameters with stridulation motions captured with a high-speed camera. 22 

Stridulation sounds consist of a variable series of pulses produced during abduction of the 23 

pectoral spine. Pulses are caused by quick rapid spine rotations (jerks) of the pectoral 24 

spine that do not change with fish size although larger individuals generate longer, higher 25 

amplitude pulses with lower peak frequencies. There are longer pauses between jerks, 26 

and therefore fewer jerks and fewer pulses in larger fish that take longer to abduct their 27 

spines and therefore produce a longer series of pulses per abduction sweep. Sounds 28 

couple more effectively to water (1400 times greater pressure in Pascals at 1m), are more 29 

sharply tuned and have lower peak frequencies than in air. Blue catfish stridulation 30 

sounds appear to be specialized to produce under-water signals although most of the 31 

sound spectrum includes frequencies matched to catfish hearing but largely above the 32 

hearing range of unspecialized fishes. 33 

Key Words: sound production, bioacoustics, distress sounds, Ictaluridae, predator-prey, 34 

pectoral spine, anti-predator adaptation 35 

36 



Introduction 37 

Catfishes are one of the most successful groups of fishes with over 3,000 species 38 

(Ferraris, 2007). They have highly modified pectoral spines that can be bound, locked 39 

and rubbed to produce stridulation sounds (Fine and Ladich, 2003). A number of species 40 

produce sounds in disturbance, courtship and agonistic situations (Abu-Gideiri and Nasr, 41 

1973; Heyd and Pfeiffer, 2000; Kaatz et al.,2010; Lechner et al., 2010; Papes and Ladich, 42 

2011; Pfeiffer and Eisenberg, 1965; Pruzinszky and Ladich, 1998). Additionally, many 43 

species produce sounds with extrinsic muscles that cause rapid swimbladder vibration 44 

(Kaatz and Stewart, 2012; Ladich, 2001).  North American freshwater catfishes form a 45 

single family, the Ictaluridae and produce stridulation sounds but do not possess 46 

swimbladder muscles. Despite their importance in natural systems, fisheries and 47 

aquaculture (Irwin et al., 1999; Michaletz and Travnichek, 2011), little work has been 48 

devoted to acoustic communication or sound production in this family. A single study 49 

found stridulatory sounds in agonistic behavior in the brown bullhead Ameiurus 50 

nebulosus Lesueur (Rigley and Muir, 1979), and hand-held sounds and the morphological 51 

basis of sound production have been described in domesticated (Fine et al., 1996; Fine et 52 

al., 1997) and wild (Vance, 2000) channel catfish, Ictalurus punctatus Rafinesque. These 53 

sounds are produced when catfish are held, and they have been interpreted as distress 54 

calls since pectoral stridulation motions were observed when channel catfish were 55 

captured tail-first in the mouth of a largemouth bass but were not produced before the 56 

catfish was attacked (Bosher et al., 2006). Additionally, largemouth bass avoid channel 57 

catfish in preference to bluegill sunfish and goldfish in a choice situation (Sismour et al., 58 

2013), supporting Forbes’ dangerous prey hypothesis (Forbes, 1989) . 59 

The pectoral spine base of catfishes has derived dorsal, anterior and ventral 60 

processes not found in other fish taxa (Fine et al., 1997; Hubbs and Hibbard, 1951; Kaatz 61 

et al., 2010). These processes mate with complimentary structures on the pectoral girdle 62 

and control specialized functions including stridulation. The medial surface of the dorsal 63 

process in channel catfish has a ridged profile that rubs against a rough but featureless 64 

surface on the cleithrum (Fine et al., 1997). Each forward sweep (abduction) of the spine 65 

produces a series of pulses (Fine et al., 1997). Based on the logic of cricket stridulation, 66 

Fine et al. (1997) posited that contact of individual ridges would be responsible for pulse 67 



generation although they stated there would be insufficient time for a ridge to make, lose 68 

and re-contact the cleithrum between pulses. In work with mochokid catfishes using a 69 

high-speed camera, Parmentier et al. (2010) established that pulses are generated by a 70 

series of quick rotation movements or “jerks” of the pectoral spine separated by pauses.  71 

They described the mechanism of sound generation as similar to a railroad break 72 

(Parmentier et al., 2010). More recent work in the blue catfish, Ictalurus furcatus, 73 

(Mohajer et al. submitted) has modified this interpretation, demonstrating jerks generate 74 

sound by a stick-slip mechanism as in spiny lobsters (Patek, 2001; Patek, 2002) in which 75 

the jerk transfers energy from the dorsal-process ridges to the cleithrum of the fused 76 

pectoral girdle (Fine et al., 1997; Shaefer, 1984), which in turn excites the girdle to 77 

radiate one sound pulse for each jerk. Multiple ridges likely make contact during each 78 

pulse, but the number has not been established. 79 

Blue catfish have both aquatic and aerial predators (Duvall, 2007) and produce 80 

stridulation sounds in both media. Sympatric underwater predators are likely to have 81 

unspecialized auditory systems capable of perceiving low frequencies (Ladich and Fay, 82 

2013), and aerial predators such as birds hear higher frequencies (Dooling, 1982) and will 83 

be better tuned to catfish stridulation sounds. On the other hand, catfishes have bony 84 

connections (Weberian ossicles) between the swimbladder and the ears and are sensitive 85 

to higher frequencies (Ladich and Fay, 2013) that would be useful in intraspecific 86 

communication. Therefore, the primary goal of this study was to compare acoustic 87 

properties of blue catfish stridulation sounds in air and water and to determine how 88 

sounds change with fish size. High-speed photography synchronized with sound 89 

production was also used to describe developmental changes in sound-generating pectoral 90 

motions.  91 

 92 

Results 93 

Blue catfish recorded in air ranged in length and weight from 12.5 cm TL and 11.6 g to 94 

52.5 cm TL and 1327 g. Twenty-five of 27 fish (93%) produced sounds in air, and the 95 

two silent fish had severe skin lesions. Twenty of these fish were recorded in air with the 96 

high-speed camera synchronized to sound allowing us to correlate developmental 97 

changes in motion with changes in sound production. These fish were recorded outside 98 



the sound-proof booth, and these recordings were not included in regressions of sound 99 

parameters. Video recordings from individuals that produced regular pulses, designated 100 

pulsers, were utilized in this study (See Mohajer et al., submitted). Finally ten additional 101 

fish ranging in size from 16 cm TL and 20.5 g to 32.5 cm TL and 218 g were recorded in 102 

shallow water in the James River.  103 

Sounds in air 104 

Blue catfish hold their pectoral fins in a forward abducted position at rest. 105 

Stridulation occurs during abduction, and therefore blue catfish first adduct their pectoral 106 

fins silently before producing a stridulatory-abduction sweep. Sweeps can be made by 107 

either left or right pectoral spines individually or by a series of alternating lefts and rights 108 

in rapid succession, and higher pulse repetition rates resulted from successive sweeps 109 

produced by both fins. Sweep sound duration varied from 71 to 355 ms (mean ± SD, 110 

136.5 ± 47.1) and contained 5 to 24 pulses (11 ± 3.6) (Fig. 1, Table 1) with various 111 

temporal patterns in inter-pulse interval and amplitude in both water and air (Fig. 2). 112 

Patterns were not stereotyped, and pulse repetition rate increased and decreased at 113 

different points in a sweep. Pulse amplitude often varied by 10 dB or more within a 114 

sweep and tended to be low in initial pulses, increase in the middle of the sweep and 115 

decrease toward the end. Pulse repetition rate varied from 23 to 156 pulses per second 116 

(88.1 ± 33.9).  117 

Individual pulses varied from 1 to 15 ms (5.2 ± 2.4) in duration and started with a 118 

low-amplitude half-cycle that could be positive or negative (though generally positive 119 

with a fish facing the microphone). Amplitude rapidly reached a peak (typically the next 120 

full cycle) followed by an exponential decay to background levels before the next pulse 121 

(Fig. 1). Sonograms indicate a series of wide-band pulses with weak energy at 20 kHz.  122 

The frequency spectra indicate a clear peak frequency, which varied from 312 to 2379 Hz 123 

(1127.5 ± 348.2) (Fig. 1), and the peak frequency was close to the center frequency 124 

calculated by Raven (Table 1). Typical spectra (Fig. 1, bottom) had most energy in the 125 

first peak although there were often several additional peaks about 10 dB down from the 126 

first one. At higher frequencies the spectrum flattened out and slowly decreased but 127 

continued above background levels. The similarity between center frequency and peak 128 

frequency indicated that the sound energy is symmetrical about the peak frequency 129 



despite the asymmetry in frequency response, which included considerably higher 130 

frequencies. The pulses were impulsive (rapid rise time) and suggested a combination of 131 

a forced response and resonance. Peaks occurred at odd multiples (third, fifth and 132 

seventh) of the first peak in the example shown (Fig. 1). The first peak was at 882 Hz 133 

with subsequent peaks at 2485, 4501 and 6121 Hz. Three, five and seven times 882 134 

would yield 2646, 4410 and 6174 respectively.  135 

Peak amplitude within a sweep varied from 51 to 81 dB re: 20 μPa at 10 cm (62.1 136 

± 5.9) and decreased an average (mean ± SE) of 3.6 ± 0.18 dB by 20 cm (paired t3 = 14.8, 137 

p = 0.0015), indicating that the walls of the sound-proof booth were channeling the 138 

signal. Presuming spherical spreading and a loss of 6 dB per distance doubled (6 dB/DD 139 

or a decay of 20 log r), the source level would be 20 dB less than the values measured at 140 

10 cm and would therefore vary from 31 to 61 dB at 1 m. Ranges in pulses within a 141 

sweep varied by as little as 2 to as much as 17 dB in different individuals (6.9 ± 3.3). 142 

Changes in acoustic parameters with fish size: air 143 

Sound pressure level at 10 cm increased linearly from 51 to 81 dB re: 20 μPa with TL (r2 144 

= 0.5379, p <0.0001, Fig. 3). Amplitude range in dB within individuals did not vary with 145 

fish size (r2 = 0.045, p = 0.307). Both center frequency and peak frequency declined from 146 

about 2 kHz to about 500 Hz with TL (r2 = 0.3705, p = 0.0012 and r2 = 0.4122, p = 147 

0.0005, respectively) (Fig. 3).  148 

Developmental changes in patterning of stridulation sounds were supported by 149 

high-speed photography of spine motion. Sweep sound duration increased linearly from 150 

71 to 355 ms with TL (r2 = 0.487, p = 0.0001), which corresponded with increases in fin 151 

sweep duration measured with the camera, ranging from 60 to 350 ms (r2 = 0.523, p = 152 

0.0075). Abduction rotation varied from 12 to 40° and did not change with TL (r2 = 153 

0.027, p = 0.628). Each pulse was generated by a rapid jerk motion. Jerks were of short 154 

duration, 1-2 ms over rotations of mostly 2-3°, and jerk rotation and duration did not 155 

change with TL (jerk duration r2 = 0.059, p = 0.498; jerk rotation r2 = 0.0146, p = 0.739). 156 

Sound pulses were considerably longer than jerk durations and increased linearly with TL 157 

(r2 = 0.6799, p = <0.0001, Fig. 4). Therefore once excited, the pectoral girdle continued 158 

to vibrate despite a stationary spine. The number of sound pulses per sweep decreased 159 

from 24 to 5 with TL (r2 = 0.193, p = 0.028), as did the number of photographed jerks, 160 



which decreased from 19-5 (r2 = 0.621, p = 0.0005). Pulse rate decreased from 156 to 23 161 

pulses per second with TL (r2 = 0.6528, p = <0.0001, Fig. 4), which was determined 162 

largely by increased pauses between jerks in larger fish; pauses increased from 5 to 18 ms 163 

(r2 = 0.6373, p = 0.0056).  164 

 165 
Description of sounds in water 166 

Underwater stridulation sounds had a somewhat similar pulsatile appearance on 167 

sonograms and oscillograms (Fig. 5) although there were differences in waveform, 168 

amplitude and frequency spectra. Stridulation sounds were more robust underwater and 169 

varied between 122 and 145 dB re: 1 μPa at 1 m (131.4 ± 5.4). Frequency spectra from a 170 

stridulation sound recorded at 0.5 m indicated most energy in a narrower band between 171 

127 and 3878 Hz, with a peak at 854 Hz (Fig. 5). Levels dropped about 60 dB between 172 

854 and 3875 Hz. High frequencies were strongly diminished in water as reflected in the 173 

waveform, which looks “cleaner” without higher frequency energy present in air (Fig. 1, 174 

5). Attenuation between 0.5 and 1 m averaged 9 dB (Paired t9 = 12.42, p < 0.0001), 175 

indicating excess attenuation above cylindrical (3 dB per distance doubled, DD) and even 176 

spherical spreading (6 dB/DD) despite the shallow depth of no more than 1 m. Spectra 177 

from the same stridulation pulses indicated environmental filtering with a 10 dB decrease 178 

in peak energy and highest frequencies reaching background levels by 4 kHz or less (Fig. 179 

6). The spectrum at 0.5 m is relatively smooth exhibiting a gradual decrease between 180 

peak energy and high frequency drop-off (Fig. 6). However by 1 m the spectrum was 181 

considerably more variable, exhibiting several regions with increased and decreased 182 

energy levels. A Q10dB value (peak frequency/bandwidth 10 dB down from the peak) 183 

indicated a decrease from 1.02 to 0.85 reflecting a flatter spectrum at the greater distance. 184 

Comparison at different frequencies (measurements at 100 Hz intervals) indicated energy 185 

levels below 1 kHz were generally 10-15 dB greater at 0.5 than 1 m (Fig. 7). At higher 186 

frequencies data were highly variable. An approximate midpoint between the peaks and 187 

valleys above 1 kHz would indicate a decrease of about 6 dB above and 12.5 dB below 1 188 

kHz. 189 

An attempt at comparing sound levels in air and water by converting source levels 190 

to Pascals (Pa). The conversion required dividing the Pa measured at 10 cm by 10, 191 



equivalent to a 20 dB decrease to calculate pressure at 1 m. Extrapolated pressure in air at 192 

1 m averaged (mean ± SE) 0.0032 ± 0.0005 Pa compared to 4.5104 ± 1.0229 Pa in water, 193 

indicating a 1410 fold greater pressure in water than air. Greater long-distance 194 

propagation therefore indicates that stridulation sounds coupled more efficiently into 195 

water than to air. 196 

 197 

Changes in acoustic parameters with fish size: water 198 

Sounds in water came from a smaller number of individuals with a smaller size range 199 

than those recorded in air. Yet size trends for sound parameters were generally similar 200 

with fish size (Fig. 4, Table 2).  Although some regressions had slopes or intercepts that 201 

were significant between air and water (Table 2), many data points overlapped so that not 202 

all differences may be meaningful biologically. Sound pressure level at 1 m increased 203 

from about 128 to 153 dB re: 1 μPa with TL (r2 = 0.8204, p = 0.0003, Fig. 3); correlations 204 

were higher and slopes were greater in water than in air (Table 2) suggesting that larger 205 

fish with larger pectoral girdles become increasingly effective at radiating sounds into 206 

water. Decibel levels in air and water are not directly comparable, but we have already 207 

provided evidence that the signal is considerably more robust in water.  208 

Sweep duration increased from 47 to 216 ms in water (r2 = 0.4794, p = 0.0265) 209 

and overlapped considerably with values in air (Fig. 4); adjusted means for a 25 cm TL 210 

individual were similar (107 ms in air and 111 ms in water).  Pulses per sweep varied 211 

over two fold in different individuals and overlapped with values in air. There was not a 212 

significant size effect in pulses per sweep in water unlike in air, but comparisons over the 213 

same size range indicate little change to 30 cm in air with the decrease depending on 214 

larger individuals. Pulses per second decreased more sharply in water than air, but 215 

adjusted means were quite similar (115 in air and 122 in water). Pulse duration changed 216 

non-significantly from 3 to 7 ms in water (p = 0.0896), and durations were shorter in air 217 

with adjusted means of 3.3 ms in air and 4.3 ms in water, a 27% difference. Unlike in air 218 

peak and center frequency did not vary with fish size in water, and values were lower 219 

than in air (Table 2): adjusted means of 939 Hz in water and 1331 Hz in air.  220 

 221 

Discussion 222 



Blue catfish stridulation sounds consist of a series of pulses produced during 223 

abduction of the pectoral spine and remaining rays.  Unlike channel catfish, which tend to 224 

have their pectoral fins adducted as the default position (and thus in the ready position for 225 

stridulation), the blue catfish carries them in a more forward position and adducts them 226 

silently before producing the sonic abduction. There are numerous catfishes that produce 227 

both adduction and abduction stridulation pulses (Heyd and Pfeiffer, 2000; Ladich, 228 

1997), and it is possible that the blue catfish represents an intermediate stage in 229 

transformation from abduction only sounds to stridulating in both directions. Fine et al 230 

video recorded one adduction sound out of 256 in channel catfish (Fine et al., 1996) 231 

indicating that there is no mechanical impediment to producing adduction sounds, which 232 

would require amended neural commands. 233 

High-speed videos reveal that individual pulses are produced during a series of 234 

quick jerk movements, invisible to the human eye, during abduction (Parmentier et al., 235 

2010; Mohajer et al. submitted) when ridges on the underside of the dorsal process rub 236 

against a groove in the cleithrum (Fine et al., 1997). Sounds are produced by a slip-stick 237 

mechanism when abduction force exceeds static friction from the two rubbing surfaces 238 

(Patek, 2001) causing a quick forward motion, the jerk (Parmentier et al., 2010). The jerk 239 

in turn transfers energy to the pectoral girdle, the sound radiator (Fine et al., 1997). 240 

Stridulatory abduction motions are several times longer than the preceding adductions 241 

because of pauses, and pauses with no spine movement comprise 86% of abduction time 242 

(Mohajer et al. submitted). The pauses, in fact, determine the temporal pattern of the 243 

sounds (Mohajer et al., submitted), which is quite variable and changes developmentally. 244 

Larger fish produce louder calls at lower frequencies owing to a more massive pectoral 245 

girdle (Duvall, 2007) that would have a lower natural frequency. Both sweep duration 246 

and pulse duration increase with fish TL, and high-speed camera data indicate that time 247 

to abduct the spine increases in larger individuals, whose muscles are longer and should 248 

take longer to contract (Connaughton et al., 2000; Wainwright and Barton, 2005; Miano 249 

et al., 2013). The number of jerks and pulses per sweep as well as pulse rate decrease 250 

with fish size. However, jerk duration does not change although sound pulses (jerk 251 

sounds) increase in duration with fish size.  Therefore jerks in larger fish excite the more 252 

massive pectoral girdle to vibrate for a longer period before amplitude decay, and pauses 253 



between jerks become longer in larger individuals accommodating the longer sound 254 

pulse. Longer pauses likely result from a change in neural output. 255 

Many acoustic parameters in water showed similar developmental trends found in 256 

recordings in air. Some of the differences likely result from the smaller range in fish size 257 

in the water samples. Amplitude will be discussed below. Other notable differences are 258 

pulse duration, which is shorter in water and peak, center and upper frequencies, which 259 

decrease in water. Sharpness of tuning increases in water. Many of these differences 260 

parallel findings on Atlantic croaker recorded in both media (Fine et al., 2004). Peak 261 

frequency in croaker sounds does not differ between air and water because it is 262 

determined by sonic muscle contraction-relaxation time, which is not affected by acoustic 263 

loading. Croaker sounds in water are more sharply tuned (higher Q) and damp more 264 

quickly than in air, similar to the more sharply tuned frequency spectrum and shorter 265 

pulses in the blue catfish. In air where the system is less tuned, the broader response at 266 

lower frequencies appears to excite other modes at higher frequencies. With increased 267 

loading in water the catfish spectrum decreases from > 20 kHz to about 4 kHz, and the 268 

peak-frequency tuned mode apparently does not excite higher modes in water. Parallels 269 

are noteworthy since the different radiators, the pectoral girdle in catfishes and the 270 

swimbladder in Atlantic croaker, appear to be affected similarly in both media. 271 

The acoustic properties of channel catfish sounds from domesticated stocks (Fine 272 

et al., 1996; Fine et al., 1997) share similarities to those of blue catfish, and unpublished 273 

work on scaling of acoustic parameters to channel catfish size show similar trends to this 274 

current findings in blue catfish. There are a few marked differences between the two 275 

species. Channel catfish sounds came from domesticated fish that have smaller spines 276 

and pectoral girdles than wild individuals (Fine et al., 2014). The frequency spectrum of 277 

channel catfish sounds tend to separate into several bands, whereas blue catfish spectra 278 

are more continuous for unknown reasons related to the structure of the pectoral girdle. 279 

Channel catfish sounds tend to be more variable, and many individuals failed to make 280 

sounds when held. Over 90% of blue catfish and 100% of fish without skin lesions 281 

sampled in this study stridulated, suggesting that the calls may serve a more important 282 

role in the life history of wild blue catfish. Sounds in blue catfish may be used for 283 

intraspecific communication (currently unknown) and likely have an as yet undefined 284 



role in avoiding predation. In an experiment with large juveniles (> 40 cm TL) utilizing 285 

an intruder blue catfish introduced to a resident, stridulation sounds were not heard 286 

(Morgan, 2014).  Additionally, diel underwater recordings were made in the tidal fresh-287 

water James River in a location where blue catfish are plentiful (monthly recordings for 288 

10 minutes per hour over 24 hours). These included spring and summer months when 289 

mating would be expected, but no catfish sounds were heard (Morgan, 2014). It is 290 

premature to conclude that blue catfish do not make sounds during courtship and 291 

agonistic behavior since reproduction could be restricted to specific areas, and larger 292 

adults could potentially stridulate in agonistic conditions. At this point however, evidence 293 

only points to an anti-predator function. 294 

In addition to fish predators blue catfish are commonly consumed by aerial 295 

predators such as bald eagles and ospreys (Duvall, 2007). Blue catfish are also 296 

cannibalized by their own species (Chandler, 1998; Schlosser et al., 2011), and catfish 297 

have specialized hearing sensitive at low-thresholds and high frequencies (Ladich, 1999; 298 

Ladich and Fay 2013; Lechner et al., 2010; Papes and Ladich, 2011). Most fish predators 299 

that consume them would be less well tuned to the frequency spectrum of the blue catfish 300 

sounds than would bird predators (Dooling, 1982). This question of tuning brings up the 301 

question of whether the sounds evolved primarily for underwater or aerial use. The data 302 

demonstrate that the frequency spectrum is considerably sharper and the sound pressure 303 

in Pascals is about 1400 times greater at a meter underwater than in air. Sound pressure 304 

level in air averaged 62 dB re: 20 uPa at 10 cm, equivalent to 42 dB at 1 m, a low level 305 

particularly in small fish. In water however, the source level was 131.4 dB re: 1 µPa, and 306 

the oyster toadfish, Opsanus tau, often considered a “loud” fish for instance, produces a 307 

sound pressure level of 130 dB (Barimo and Fine, 1998) albeit using a swimbladder 308 

mechanism. 309 

Fine et al. demonstrated that the pectoral girdle is the primary acoustic radiator of 310 

channel catfish sounds (Fine et al., 1997). This coupled with increasing pectoral girdle 311 

dimensions with fish size (Duvall, 2007) explains the decreasing peak frequency in larger 312 

fish. Given the high acoustic impedance of water over air (Urick, 1975), girdle vibrations 313 

will couple more successfully into water and be audible at a much greater distance than in 314 

air. Even by 1 m however, environmental filtering changed the spectrum of the catfish 315 



sound compared to 0.5 m, albeit in a shallow site. Low frequency attenuation is likely due 316 

extinction of long wavelength sound in shallow water (Urick, 1975; Fine and Lenhardt, 317 

1983; Mann, 2006), and higher frequencies exhibit a series of peaks and troughs 318 

suggesting constructive and destructive interference from reflections from water 319 

boundaries. The wide-frequency band of stridulation pulses therefore provides 320 

redundancy ensuring that the call will likely be recognizable with distance (Fine and 321 

Lenhardt, 1983; Sisneros et al., 2004). Blue catfish are more common in deeper water 322 

where the call will suffer less environmental filtering. We suggest that stridulation sounds 323 

in blue catfish have evolved primarily for use in water and await experiments on the 324 

reactions of predators to these sounds. 325 

 326 

Materials and Methods 327 

Ictalurus furcatus were collected by electroshocking from tidal fresh-water regions of the 328 

James River near the Rice Center of Virginia Commonwealth University (VADGIF 329 

permit number 0444631). They were allowed to recover for 48-72 hours in 280 L aquaria 330 

before recording. Protocols were approved by the VCU Animal Care and Use Committee 331 

(IACUC #AD20216). 332 

Sounds were recorded in air and water. In-air sound recordings were made in a 333 

soundproof booth (IAC Controlled Acoustical Environments, Bronx, New York). Catfish 334 

were held by hand behind the pectoral fins and placed head-first 10 cm from the internal 335 

microphone of a Zoom Corporation (Tokyo, Japan) H4 portable digital recorder. This 336 

method avoids reflection and resonance problems associated with aquaria (Akamatsu et 337 

al., 2002; Parmentier et al., 2014). Sounds from several individuals were also recorded 20 338 

cm from the microphone to examine short distance propagation. In-water recordings were 339 

made from a shallow wing of the dock at the VCU Rice Center in the tidal fresh-water 340 

James River. This part of the dock is close to water level and allowed us to hold the fish 341 

in the water at a known distance from two HTI-94-SSQ hydrophones (High Tech Inc., 342 

Long Beach, Mississippi), one at 0.5 and the other 1 m from the fish. The fish and 343 

hydrophones were positioned approximately halfway between the surface and bottom of 344 

the water, which varied between 0.75 and 1 m in depth. Blue catfish are present at this 345 

depth although they occur more commonly in deeper water. We note that these acoustic 346 



conditions avoid reflection and resonance problems inherent in small tanks (Akamatsu et 347 

al., 2002; Parmentier et al., 2014) 348 

Sounds were sampled at 44.1 kHz (16 bit resolution), and the acoustic parameters 349 

(sweep duration, pulse duration, number of pulses per sweep, number of pulses per 350 

second, peak frequency, center frequency, and amplitude) were analyzed using Raven Pro 351 

v1.3. Sound parameters were regressed against fish total length (TL). A catfish pectoral 352 

stridulation sound sweep is defined as a series of pulses produced during abduction of 353 

either the right or left pectoral spine. Sounds from eight pectoral sweeps per individual 354 

were analyzed unless fewer were produced, and parameters were averaged and treated as 355 

an N of 1.  356 

Absolute sound pressure was measured in air and water. In air, a 90 dB re: 20 μPa 357 

500 Hz calibration tone produced using a function generator connected to a speaker was 358 

recorded. In-water, calibration utilized a 14 mV RMS tone measured with an oscilloscope 359 

and converted to dB re: 1 μPa (equivalent to 131 dB) using the hydrophone sensitivity 360 

calibration (-168.2 dB re: 1V/μPa). The true amplitude of the stridulation sounds (in 361 

absolute pressure units) is equal to the amplitude measured by Raven multiplied by an 362 

amplitude calibration constant. The value of this constant is equal to the true (known) 363 

amplitude of the test signal divided by the RMS amplitude measured by Raven. Since 364 

decibel levels in air and water are not directly comparable, levels from a sample of the 365 

fish recorded in air and water were converted to Pascals. Source levels at 1 m were 366 

available from underwater recordings, and sound pressure levels recorded at 10 cm in air 367 

were decreased by 20 dB to convert them to source levels at 1 m, assuming spherical 368 

spreading as described by 20 log r (Fine and Lenhardt, 1983; Mann, 2006; Urick, 1975). 369 

Pectoral stridulation motions were recorded with a video camera (Fastcam PCI R-370 

2, Photron, San Diego, CA) synchronized with sounds recorded in air through a 371 

triggerbox (NI BNC-2110, National Instruments, Austin, TX). Images were captured at 372 

1,000 or 2,000 frames per second. See Mohajer et al. (submitted) for more information.  373 

We determined the relationship of spine motion to sound with frame-by-frame analysis 374 

(0.5 or 1 ms per frame). Parameters measured were angular rotation and duration of fin 375 

sweeps, duration and angular rotation of small micro-movements (jerks), inter-jerk 376 

interval (the time from the beginning of one jerk to the next), and pause duration (time 377 



when the spine was stationary). Camera data in air were used to compare quantitative 378 

aspects of motion with equivalent sound parameters. 379 

Statistical analyses were performed using GraphPad Prism 5 (San Diego, CA). 380 

Sound parameters were scaled against fish TL using linear regression. A paired t test was 381 

used to compare sound attenuation (10 to 20 cm in air and 0.5 to 1 m in water) from 382 

recordings of the same individual. Regressions of parameters in air and water were 383 

compared using analysis of covariance (ANCOVA) with fish TL as the covariate, and an 384 

adjusted mean was calculated for a 25 cm TL fish using regressions from air and water to 385 

appreciate differences between the two media. The mean and standard deviation were 386 

used to describe acoustic parameters, and the mean and standard error were used when 387 

comparing means. 388 
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Figure Legends 531 
 532 
Fig. 1. Spectrogram (A) and oscillogram (B) showing pulse pattern, expanded 533 
oscillogram illustrating pulse waveform (C) and power spectrum (D) from a 49.5 cm TL 534 
1089 g blue catfish. Hann window, 3171 samples, 20 Hz bandwidth with 50% overlap. 535 
 536 
Fig. 2. Representative patterns of inter-pulse inteval and amplitude in individual 537 
stridulation sweeps from two blue catfish recorded in air (top) and two recorded in water 538 
(bottom). 539 
 540 
Fig. 3. Relationship of sound pressure level to total length in blue catfish recorded in air 541 
(dB re: 20 µPa at 10 cm) and water (dB re: 1 µPa at 1 m). 542 
 543 
Fig. 4. Relationship of sweep (abduction) sound duration (A), pulses per sweep (B), 544 
pulses per second (C), pulse duration (D), peak frequency (E), and center frequency (F) 545 
to total length in blue catfish recorded in air and water. 546 
 547 
Fig. 5. Spectrogram (A) and oscillogram (B) illustrating pulse pattern and waveform, and 548 
power spectrum (C) recorded underwater from a 28 cm TL 189 g blue catfish 1m from 549 
the hydrophone. Hann window, 3171 samples, 20 Hz bandwidth with 50% overlap. 550 
 551 
Fig. 6. Power spectra of the same stridulation sound recorded at 0.5 m (A) and 1 m (B) 552 
from a blue catfish, and background noise (C). Hann window, 3171 samples, 20 Hz 553 
bandwidth with 50% overlap. 554 
 555 
Fig. 7. Maximum decibel difference at 100 Hz intervals between spectra in Fig. 6 556 
recorded at 0.5 and 1 m from the hydrophone. 557 
 558 
 559 
 560 
 561 
 562 
 563 

564 



Table 1. Acoustic parameters of stridulation sounds of blue catfish in air and water. N=25 565 
in air and 10 in water. 566 
 567 
Parameter (in air) Mean ± 1 SD Range 
Sweep duration 136.5 ± 47.1 ms   71-355 ms 
Pulses per sweep 11 ± 3.6 5-24 
Pulses per second 88.1 ± 33.9 23-156 
Pulse duration 5.2 ± 2.4 ms 1-15 ms 
Sound pressure level* 62.1 ± 5.9 dB 51-81 dB 
dB range (within sweeps) 6.9 ± 3.3 dB 2-17 dB 
Center frequency 1130.4 ± 345.9 Hz 409-2702 Hz 
Peak frequency 1127.5 ± 348.2 Hz 312-2379 Hz 
*re: 20 μPa at 10 cm 

  
   Parameter (in water) Mean ± 1 SD Range 
Sweep duration 93.8 ± 44.8 ms 47-216 ms 
Pulses per sweep 11.7 ± 2.7 7-23 
Pulses per second 141.6 ± 46.8 66-188 
Pulse duration 4 ± 0.9 ms 3-7 ms 
Sound pressure level* 140.2 ± 6.3 dB 128-153 dB 
Sound pressure level† 131.4 ± 5.4 dB 122-145 dB 
dB range within sweeps* 6.1 ± 3.1 dB 2-11 dB 
dB range within sweeps† 8 ± 2.6 dB 4-13 dB 
Center frequency at 0.5 m 1090.4 ± 438.8 Hz 775-3338 Hz 
Center frequency at 1 m 1197.8 ± 436.1 Hz 744-3889 Hz 
Peak frequency at 0.5 m 1106.9 ± 492 Hz 732-3889 Hz 
Peak frequency at 1 m 1300.8 ± 529.6 Hz 759-3892 Hz 
*re: 1 μPa at 0.5 m 

  †re: 1 μPa at 1 m 
   568 

 569 
 570 
 571 



20 

Table 2. Regression equations of acoustic parameters of stridulation sounds against fish total length, coefficients of determination, 572 
analysis of covariance, and adjusted means for a 25 cm TL blue catfish in air and water. SPL, sound pressure level; CF, center 573 
frequency; PF, peak frequency; SD, sweep duration; PD, pulse duration; P/Sw, pulses per sweep; PPS, pulses per second. 574 
 575 

     
Slopes 

 
Intercepts 

  Parameter 
 

Regression equation r2 p F p F p Adjusted mean 
SPL air Y = 48.11 + 0.3963TL 0.5379 < 0.0001 6.2851 0.0176 a a 58 dB 

 
water Y = 119.1 + 0.9560TL 0.8204 0.0003 

    
143 dB 

CF air Y = 1822 - 19.58TL 0.3705 0.0012 0.7688 0.3875 13.3433 0.0001 1331 Hz 

 
water Y = 1680 - 26.79TL 0.1905 0.2402 

    
939 Hz 

PF air Y = 1853 - 20.62TL 0.4122 0.0018 1.0198 0.3206 14.6729 0.0006 1319 Hz 

 
water Y = 1746 - 29.04TL 0.1245 0.2997 

    
936 Hz 

SD air Y = 29.91 + 3.028TL 0.4866 0.0001 1.1399 0.2939 < 0.0001 0.9936 107 ms 

 
water Y = -20.45 + 5.191TL 0.4794 0.0265 

    
111 ms 

PD air Y = 0.4894 + 0.1160TL 0.6799 < 0.0001 0.4682 0.4984 5.5907 0.0243 3.33 ms 

 
water Y = 2.174 + 0.08165TL 0.3179 0.0896 

    
4.25 ms 

P/Sw air Y = 16.41 - 0.1608TL 0.1927 0.0282 0.7669 0.3879 0.3687 0.548 12.3 

 
water Y = 11.32 + 0.01788TL 0.0015 0.9143 

    
11.8 

PPS air Y = 181.7 - 2.704TL 0.6527 < 0.0001 8.4812 0.0066 a a 115 

 
water Y = 288 - 6.654TL 0.7223 0.0018 

    
122 

a Because the slopes differed so much, it was not possible to test the intercepts. 576 
 577 
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