

Virginia Commonwealth University VCU Scholars Compass

VCU's Medical Journal Club: The Work of Future Health Professionals

2021

The COVID-19 Vaccine Development Landscape

Areebah Ahmed Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/mjc

Part of the Medicine and Health Sciences Commons

© The Author(s)

Downloaded from

https://scholarscompass.vcu.edu/mjc/5

This Article Presentation is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in VCU's Medical Journal Club: The Work of Future Health Professionals by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

COVID-19 VACCINE DEVELOPMENT

Areebah Ahmed

Article Name:

The COVID-19 Vaccine Development Landscape

Tung Thanh Le et. al

COVID-19

- January 11, 2020
 - Publication of the genetic sequence of SARS-CoV-2
 - Led to the rapid development of vaccine for the virus
- About two months later...
 - o March 16, 2020
 - The first COVID-19 vaccine began human clinical trials

The Coalition for Epidemic Preparedness Innovations (CEPI)

- Headquarters in Oslo, Norway
- A global coalition consisting of public, private, and philanthropic organizations
- Support and fund acceleration of vaccine development during epidemic diseases

April 8, 2020

COVID-19 VACCINES

- **115** Vaccine Candidates
 - 78 are <u>confirmed</u> and <u>active</u>
 - **73** of which are currently in <u>preclinical</u> or <u>exploratory</u> stages
 - **37** <u>unconfirmed</u>
 - Many vaccine developers plan for human testing trials in 2020

• Current Vaccines in Clinical Development

- Moderna: mRNA-1273
 - Began clinical testing 2 months after sequence identification
- <u>CanSino Biologicals</u>: Ad5-nCoV
- o <u>Inovio</u>: INO-4800
- <u>Shenzhen Geno-Immune Medical Institute:</u> LV-SMENP-DC and pathogen-specific aAPC

lable 1 Clinical-phase vaccine candidates for COVID-19			
Candidate	Vaccine characteristics	Lead developer	Status
mRNA-1273	LNP-encapsulated mRNA vaccine encoding S protein	Moderna	Phase I (NCT04283461)
Ad5-nCoV	Adenovirus type 5 vector that expresses S protein	CanSino Biologicals	Phase I (NCT04313127)
INO-4800	DNA plasmid encoding S protein delivered by electroporation	Inovio Pharmaceuticals	Phase I (NCT04336410)
LV-SMENP-DC	DCs modified with lentiviral vector expressing synthetic minigene based on domains of selected viral proteins; administered with antigen-specific CTLs	Shenzhen Geno-Immune Medical Institute	Phase I (NCT04276896)
Pathogen- specific aAPC	aAPCs modified with lentiviral vector expressing synthetic minigene based on domains of selected viral proteins	Shenzhen Geno-Immune Medical Institute	Phase I (NCT04299724)

. . .

aAPC, artificial antigen-presenting cell; CTL, cytotoxic T lymphocyte; DC, dendritic cell; LNP, lipid nanoparticle; S protein, SARS-CoV-2 spike protein. Source: ClinicalTrials.gov website; WHO.

Diversity in Vaccine Development Platforms

• Technology platforms include...

- Nucleic Acid (DNA/RNA)
- Virus-Like Particle
- Peptide
- Viral Vector (replicating and non-replicating)
- Recombinant Protein
- Live attenuated virus and inactivated virus approaches
- It is possible that some vaccines may be most effective with specific populations such as elderly, pregnant women, and children

Recombinant protein

Peptide-based

Unknown

Analysis of Current Vaccine Platforms

- Vaccines focused on <u>DNA</u> or <u>mRNA</u>
 - offers promising versatility of antigen manipulation & speed
- Vaccines based on <u>Viral Vectors</u>
 - long-term stability, high level of protein expression, and induces strong immune responses
- Vaccines based on <u>Recombinant Proteins</u>
 - Previously licensed vaccines for other diseases
 - **Pro**: ability for large scale production due to the existing vaccines

Definition: substances that may be added to a vaccine in order to produce a strong immune response to the vaccine

• **Pros**: potential for lower viable doses & enhance immunogenicity

• GlaxoSmithKline, Seqirus, Dynavax

Specifics in SARS-CoV-2 Vaccine Development

- Information about the specific antigens being used in vaccine development is limited
 - Available information describes the induction of neutralizing antibodies against the viral spike (S) protein, preventing uptake via the human ACE2 receptor
- Current research has not yet determined how the S protein relates to its various other forms and COVID-19

Fig. 2 | **Profile of COVID-19 vaccine developers by type and geographic location.** For partnerships, the location is that of the lead developer. *Excluding China.

72% - private/industry developers

28% - academic, public sector, and other non-profit organizations

46% - developers in North America 18% - China

18% - Asia (excluding China) **18%** - Europe

Conclusion

- Possible vaccines may be available by early 2021
 - Emergency use ONLY
- Average vaccine development usually takes around 10 years
 - Ebola Virus : 5 year development of a vaccine
- Development of COVID-19 Specific Animal Models
 - ACE2-transgenic mice
 - Hamsters
 - ferrets
 - non-human primates

Discussion Questions

- Is it more likely for developers in another country, such as China, to finalize a vaccine before the US?
- How do you think the current lack of a vaccine will affect the rate of the spread of the virus?

Thanh Le, T., Andreadakis, Z., Kumar, A., Gómez Román, R., Tollefsen, S., Saville, M., & Mayhew, S. (2020). The COVID-19 vaccine development landscape. *Nature reviews. Drug discovery*, *19*(5), 305–306. <u>https://doi.org/10.1038/d41573-020-00073-5</u>