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METHODOLOGY Open Access

AGROBEST: an efficient Agrobacterium-mediated
transient expression method for versatile gene
function analyses in Arabidopsis seedlings
Hung-Yi Wu1,2, Kun-Hsiang Liu3,4, Yi-Chieh Wang1, Jing-Fen Wu1, Wan-Ling Chiu3,4,5, Chao-Ying Chen2,
Shu-Hsing Wu1, Jen Sheen3,4 and Erh-Min Lai1,2,3,4*

Abstract

Background: Transient gene expression via Agrobacterium-mediated DNA transfer offers a simple and fast method
to analyze transgene functions. Although Arabidopsis is the most-studied model plant with powerful genetic and
genomic resources, achieving highly efficient and consistent transient expression for gene function analysis in
Arabidopsis remains challenging.

Results: We developed a highly efficient and robust Agrobacterium-mediated transient expression system, named
AGROBEST (Agrobacterium-mediated enhanced seedling transformation), which achieves versatile analysis of diverse
gene functions in intact Arabidopsis seedlings. Using β-glucuronidase (GUS) as a reporter for Agrobacterium-mediated
transformation assay, we show that the use of a specific disarmed Agrobacterium strain with vir gene pre-induction
resulted in homogenous GUS staining in cotyledons of young Arabidopsis seedlings. Optimization with AB salts in plant
culture medium buffered with acidic pH 5.5 during Agrobacterium infection greatly enhanced the transient expression
levels, which were significantly higher than with two existing methods. Importantly, the optimized method conferred
100% infected seedlings with highly increased transient expression in shoots and also transformation events in roots
of ~70% infected seedlings in both the immune receptor mutant efr-1 and wild-type Col-0 seedlings. Finally, we
demonstrated the versatile applicability of the method for examining transcription factor action and circadian reporter-
gene regulation as well as protein subcellular localization and protein–protein interactions in physiological contexts.

Conclusions: AGROBEST is a simple, fast, reliable, and robust transient expression system enabling high transient
expression and transformation efficiency in Arabidopsis seedlings. Demonstration of the proof-of-concept experiments
elevates the transient expression technology to the level of functional studies in Arabidopsis seedlings in addition to
previous applications in fluorescent protein localization and protein–protein interaction studies. In addition, AGROBEST
offers a new way to dissect the molecular mechanisms involved in Agrobacterium-mediated DNA transfer.

Keywords: Agrobacterium, Arabidopsis, Transient transformation, Gene expression, Innate immunity, Gain-of-function

Background
Agrobacterium-mediated DNA transfer is currently the
most facile and versatile method to deliver gene constructs
into the nucleus for gene function analysis in diverse plant
species [1-3]. Although stable integration of physiologically
active and regulated transgenes is the ultimate goal,

transient gene expression via Agrobacterium-mediated
DNA transfer in different plant tissues offers a simple and
fast method to analyze transgene functions, which is
amenable for high-throughput screens. The transient ex-
pression assay is also ideal for systematic dissection of the
exquisite and complex processes of Agrobacterium–plant
interactions and DNA transfer events [4-7].
Agrobacterium tumefaciens is a soil phytopathogen that

naturally infects plant wound sites and causes crown gall
disease via delivery of transferred (T)-DNA from bacterial
cells into host plant cells through a bacterial type IV
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secretion system (T4SS) [8]. Although Agrobacterium is
considered a wound-associated pathogen, it can transfer
DNA into diverse host cells or tissues under unwounded
conditions [9-13]. Interestingly, most of the Arabidopsis
mutants that are resistant to Agrobacterium transformation
identified by root explant assays remain highly transform-
able by floral dip transformation [14]. The mechanisms and
plant factors involved in Agrobacterium-mediated trans-
formation may differ between wounded and unwounded
cells or different tissues. However, the mechanisms under-
lying Agrobacterium infection in unwounded cells/tissues
have not been explored.
In plant biology research, Arabidopsis mesophyll-

protoplast transfection [15,16] and Agrobacterium-medi-
ated leaf infiltration in Nicotiana benthamiana [17] are
the well-established and commonly used platforms for
transient gene expression analysis. The Arabidopsis
mesophyll-protoplast transient expression system allows
for versatile and high-throughput analyses of diverse
gene functions and signal transduction pathways; ad-
vanced skills with training and practice are essential for
successful use of this powerful tool for gene function
studies [16,18,19]. Agrobacterium-mediated transient ex-
pression methods by leaf infiltration have been devel-
oped for a wide range of plants including Nicotiana,
lettuce, tomato, and Arabidopsis [20-23]. However, the
use of 4- to 5-week-old adult plants with manual infiltra-
tion has limited application in high-throughput analyses.
Furthermore, although Arabidopsis is the most-studied
model plant with superbly annotated genome sequences
and powerful genetic and genomic resources mostly
available for the Columbia (Col) accession, achieving
highly efficient and consistent transient expression in
Col by adult leaf infiltration is challenging [22,24].
The use of young seedlings for Agrobacterium-mediated

transient expression assays will greatly simplify and
amplify the power of the method. Indeed, Agrobacterium-
mediated transient expression in Arabidopsis seedlings
has been recently developed for fast and robust analysis
of protein subcellular localization and protein–protein
interactions [25-27]. The system’s requirement for high-
density Agrobacterium cells and vacuum infiltration [27]
or chemical treatment (e.g., the addition of surfactant
Silwet L-77) [26] to achieve high cellular transformation
efficiency could induce innate immunity and stress re-
sponses in plants, which globally alters cellular, physio-
logical, and signaling processes and severely retards
growth [28,29]. Thus, developing a system that circum-
vents a plant defense barrier may be a key to enhance
transient expression efficiency in Arabidopsis seedlings.
Furthermore, such a fast, robust, and highly efficient
transient expression system could support gain-of-
function studies of diverse genes and signaling pathways
in planta.

Pattern-triggered immunity (PTI) induced by a microbe-
or pathogen-associated molecular pattern (MAMP or
PAMP) is the first line of active defense in both plants and
animals against pathogens [28-30]. Previous studies have
suggested that Agrobacterium-mediated transformation effi-
ciency may be compromised when plants recognize Agro-
bacterium MAMPs by corresponding pattern-recognition
receptors (PRRs) to trigger PTI and block Agrobacterium
infection [22,24]. The elongation factor Tu (EF-Tu) recep-
tor mutant efr-1, which cannot sense EF-Tu MAMP,
showed increased Agrobacterium-mediated transient ex-
pression efficiency, as did transgenic Arabidopsis express-
ing a potent bacterial effector AvrPto to suppress PTI
signaling with agroinfiltration of 4- to 5-week-old leaves
[22,24]. However, whether these immune-compromised
Arabidopsis plants are amenable to increase Agrobacterium-
mediated transient expression efficiency in young seed-
lings has not been tested. Defining the condition for
reliable and highly efficient transformation in healthy
Col-0 seedlings will be extremely valuable but has never
been achieved.
In this study, we systematically investigated various bio-

logical factors and growth variances to define a combin-
ation of key factors that contribute to the unprecedentedly
high transient transformation and reporter gene expression
efficiency in Arabidopsis seedlings. As a result of these
investigations, we developed an optimized AGROBEST
(Agrobacterium-mediated enhanced seedling transform-
ation) method that enabled high transient transform-
ation and expression efficiency in both efr-1 mutant and
Col-0 Arabidopsis seedlings. Importantly, we demon-
strated the versatile applicability of AGROBEST in gain-
of-function studies for the MYB75 transcription factor
in specific target-gene activation and for GIGANTEA (GI)
reporter gene expression regulated by the Arabidopsis cir-
cadian clock. The AGROBEST method is a fast, simple,
reliable, and versatile tool for systematic gene function
analysis and a new tool for dissecting the Agrobacterium-
mediated DNA transfer processes.

Results
Cotyledons of young Arabidopsis EF-TU receptor mutant
is highly susceptible to Agrobacterium-mediated transient
transformation
Environmental and biological factors such as growth
conditions, host plants, and Agrobacterium strains can
affect the transformation efficiency. We first evaluated
the transient expression efficiency of selected Arabidopsis
ecotypes and mutants defective in pattern-recognition
receptors (PRRs) with a disarmed A. tumefaciens strain
C58C1(pTiB6S3ΔT-DNA) [31] containing a pCH32 helper
plasmid [32] and abbreviated as C58C1(pTiB6S3ΔT)H. The
T-DNA vector pBISN1 harboring the gusA-intron [12] was
transformed into C58C1(pTiB6S3ΔT)H to infect 4-d-old
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seedlings, and β-glucuronidase (GUS) activity was deter-
mined to monitor transient expression efficiency at 3 days
post-infection (dpi). We consistently observed 100% of ana-
lyzed EF-Tu receptor mutant efr-1 seedlings were success-
fully transformed, with strong and homogenous GUS
staining in cotyledons, with 4-fold higher GUS activity in
efr-1 than wild-type Col-0 seedlings (Figure 1A and B,
Additional file 1: Table S1). The flagellin receptor mutant,
fls2, and the Ws ecotype that is highly susceptible to
Agrobacterium transformation in the root explant [14] and
a natural fls2 variant [33] showed similar transient GUS ex-
pression efficiency as the Col-0, so the fls2 mutant contrib-
utes little to enhancing Agrobacterium-mediated transient
transformation (Figure 1A and B). Our seedling transient
expression results confirm and further support that EFR
but not FLS2 is an important factor limiting Agrobacterium-
mediated transient expression efficiency previously observed
by agroinfiltration of Arabidopsis adult leaves [24,34,35].

Buffered medium at pH 5.5 with AB salts is critical for
high transient expression efficiency
To exploit this transient expression system for higher effi-
ciency, we tested several factors including pre-induction
and co-cultivation conditions. Pre-induction with acetosyr-
ingone (AS) in AB-MES medium (ABM50 and ABM200
methods) and continuous addition of AS to stimulate vir
gene expression during the infection process are required
for efficient transient GUS expression. Because AB-MES
medium (pH 5.5) is the optimized medium for vir gene
induction [36,37], we tested whether mixing AB-MES
(pH 5.5) with an equal volume of commonly used plant
culture MS medium (1/2 MS, 0.5% sucrose (w/v),
pH 5.5), named ABM-MS (1/2 AB-MES, 1/4 MS, 0.25%
sucrose (w/v), pH 5.5) in the presence of AS could pro-
duce high transient expression efficiency. Strikingly,
GUS activity was strongly expressed in all seedlings and
was 20-fold higher with co-cultivation in ABM-MS than
in MS medium alone (Figure 2A, Additional file 1: Table S1).
To avoid over-staining, the reaction time for histological
GUS staining shown in Figure 2 was limited to 6 hr
instead of overnight for the result in Figure 1A.
Key components in AB-MES are AB salt (17.2 mM

K2HPO4, 8.3 mM NaH2PO4, 18.7 mM NH4Cl, 2 mM
KCl), minerals (1.25 mM MgSO4, 100 μM CaCl2, 10 μM
FeSO4), glucose (2% w/v), and buffering with MES
(50 mM) to pH 5.5. We thus tested whether one of these
components is responsible for the increased transient
expression efficiency. The addition of AB salts with MES
buffered at pH 5.5 in MS medium was sufficient to re-
sult in comparable levels of GUS expression as with
ABM-MS (Figure 2B). Therefore, AB salts alone, pH 5.5
buffered by MES, or both, are critical for the increased
transient expression efficiency. Strikingly, all MS media
with the addition of AB salts buffered with MES or

sodium phosphate at pH 5.5 showed comparable and
strong GUS activity as that with ABM-MS (Figure 2C).
However, omitting AB salts resulted in ~50% reduction
in GUS activity, and no GUS activity was detected with
MS medium buffered with sodium phosphate at pH 7.0
in the presence or absence of AB salts. Thus, buffered
pH at 5.5 and the presence of AB salts in MS co-
cultivation medium are the two key factors for this high
transient expression efficiency. We named this opti-
mized infection method AGROBEST (Agrobacterium-
mediated enhanced seedling transformation).

Disarmed Agrobacterium strain C58C1(pTiB6S3ΔT)H

enables highly efficient AGROBEST-mediated transient
expression in Col-0 seedlings
Next, we tested whether the AGROBEST method optimized
with efr-1 seedlings could also improve Agrobacterium-
mediated transient transformation in wild-type Col-0
seedlings. Because the use of C58C1(pTiB6S3ΔT)H as

Figure 1 Transient transformation assays in different
Arabidopsis ecotype/genotypes. Four-day-old Arabidopsis seedlings
were infected with Agrobacterium strain C58C1(pTiB6S3ΔT)H carrying
pBISN1, which was pre-incubated in AB-MES (pH5.5) supplemented
with 200 μM acetosyringone (AS) to induce vir gene expression.
Seedlings were co-cultivated with pre-induced A. tumefaciens cells
with final OD600 = 0.02 in the MS medium (1/2 MS, 0.5% sucrose (w/v),
pH 5.5) containing 50 μM AS and determined for transient GUS
expression levels by overnight GUS staining (A) and quantitative
GUS activity (B) at 3 dpi. The GUS activity obtained from Col-0
seedlings was set to 100% and that of Ws, efr-1, and fls2 is relative
to that of Col-0. Data are mean ± SD GUS activity from two biological
replicates. Similar results were obtained from at least two independent
experiments. Values significantly different from that obtained with
Col-0 are denoted (*P = 0.058 by Student’s t test).
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compared with other disarmed or virulent A. tumefaciens
strains produced higher transient expression levels
with leaf agroinfiltration of various plants [23], we also
tested whether C58C1(pTiB6S3ΔT)H is a more superior
strain in our system. We compared C58C1(pTiB6S3ΔT)H

with the wild-type virulent strain C58 or C58-derived
disarmed strain GV3101(pMP90) [38] for their transient
expression efficiency in efr-1 and Col-0 seedlings using both
sub-optimal ABM50 and optimized AGROBEST methods.
Remarkably, Col-0 seedlings infected by all transfer-
competent strains achieved significantly higher transient

expression efficiency by AGROBEST than ABM50 (Figure 3A
and B). Moreover, Col-0 seedlings infected by AGROBEST
showed higher transient expression than efr-1 seedling
infected by ABM50 (Figure 3A and B). No GUS stains
could be detected in control seedlings without infection
(MOCK) or infected with ΔvirB2, a strain lacking the key
component of the type IV secretion system (T4SS) essen-
tial for T-DNA/effector translocation [8,39]. Therefore,
the GUS activity detected was indeed from T-DNA gene
expression inside the plant cells. Strikingly, 5- to 15-fold
higher GUS activity was observed in efr-1 or Col-0

Figure 2 Optimization of Agrobacterium pre-culture and infection media for efficient transient expression efficiency. Four-day-old Arabidopsis
efr-1 seedlings infected with Agrobacterium C58C1(pTiB6S3ΔT)H carrying pBISN1 were grown in various pre-culture and co-cultivation media to test
their effects on transient GUS expression efficiency measured by GUS staining and quantitative GUS activity. (A) Various pre-culture and infection media
in the absence or presence of vir gene inducer AS at the indicated concentration. (B) Effect of factors in AB-MES medium on increased transient
expression efficiency. (C) Effect of AB salts, pH and buffering systems on transient GUS expression efficiency. Data for relative quantitative GUS activity
are mean ± SD of 3 independent experiments. Values significantly different from that infected by ABM50 (A) or condition 1 (B and C) are denoted
(*P < 0.05, **P < 0.01, ***P < 0.005 by Student’s t test).
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seedlings infected with C58C1(pTiB6S3ΔT)H than with
C58 or GV3101(pMP90) (Figure 3A and B). The root
length was significantly shorter for Arabidopsis seedlings
infected with C58, ΔvirB2, or GV3101(pMP90) at 3 dpi in
all combinations or with C58C1(pTiB6S3ΔT)H by the
AGROBEST method as compared with uninfected seed-
lings (MOCK) (Figure 3C). Notably, seedlings infected
with C58C1(pTiB6S3ΔT)H showed no or little inhibition
of root elongation in efr-1 seedlings with the AMB50
method, which achieves fair although not the highest tran-
sient expression efficiency.

AGROBEST achieves higher transient expression efficiency
than existing methods in both efr-1 and Col-0 seedlings
We also compared AGROBEST with previously devel-
oped methods [26,27] for their transient expression

efficiency in both Col-0 and efr-1 seedlings. Remarkably,
all Col-0 seedlings infected by the AGROBEST showed
~10-fold increased transient expression efficiency than
with two existing methods, the FAST method [26] and
the method by Marion et al. [27] with either GUS
(Figure 4A) or luciferase (LUC2) (Figure 4B) used as re-
porters. Interestingly, both AGROBEST and the Marion
et al. method achieved significantly higher transient ex-
pression activity in efr-1 than in Col-0, efr-1 seedlings
remained poorly transformed by the FAST method
(Figure 4A and B). As a result, AGROBEST conferred at
least 40-fold and 3-fold higher transient expression effi-
ciency in efr-1 seedlings than with FAST and the Marion
et al. methods, respectively (Figure 4A and B). However,
we detected no increased transient expression activity in
infected seedlings of the dexamethasone (DEX)-induced

Figure 3 Transient transformation of the Arabidopsis seedlings by various Agrobacterium strains. Four-day-old Arabidopsis Col-0 and efr-1
seedlings infected with different Agrobacterium stains carrying pBISN1 by ABM50 or ABM-MS (named as AGROBEST) were compared by GUS staining
(A), quantitative GUS activity (B), and root length (C) at 3 days post-inoculation (dpi). Data for quantitative GUS activity are mean ± SD of at least 4
biological replicates from 2 independent experiments. Values significantly different from that infected with wild-type C58 are denoted (*P < 0.05,
**P < 0.01 by Student’s t test). Data for root length measurement are mean ± SEM of 4-6 biological replicates from 2–4 independent experiments.
Statistics was analyzed by ANOVA and means annotated with the same letter (a-c) are not significantly different; those with different letters are
significantly different (P < 0.05). Seedlings grown in the same co-cultivation medium without Agrobacterium infection are indicated (MOCK).
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AvrPto transgenic line than in Col-0 seedlings with the
AGROBEST method (Figure 4C), despite a significantly
higher transient expression efficiency than Col-0 de-
tected in adult leaves by agroinfiltration [22]. The
AvrPto transgenic line germinated at the same rate and
grew to a similar size as Col-0 and efr-1, but growth was
arrested with the addition of DEX at 3 days old. This
finding is consistent with previous studies showing that
overexpression of AvrPto can also interfere with growth
hormone signals and trigger cell death by interrupting
the diverse functions of BAK1 and BKK1 in multiple re-
ceptor complexes, not restricted to PRRs [40].

Impact of seedling age and infection time on transient
expression efficiency of AGROBEST in efr-1 seedlings
Because the highest transient expression efficiency in
efr-1 seedlings can be achieved by infection with C58C1
(pTiB6S3ΔT)H by AGROBEST, we chose this combin-
ation to test the versatility and applicability of AGROB-
EST. For example, dissecting the minimal infection time
(from 1–5 days) and range of seedling age (from 3- to 6-
d-old) applicable for efficient transient expression is of
interest. We tested different ages of Arabidopsis efr-1 seed-
lings infected at different dpi and noted that GUS signals
were barely detectable at 1 dpi but gradually reached a

Figure 4 AGROBEST enables high transient expression levels in Col-0. Four-day-old Arabidopsis seedlings were infected with Agrobacterium
strain C58C1(pTiB6S3ΔT)H carrying pBISN1 (A and C) or 35S::LUC2 (B), and transient expression activity was determined at 3 dpi. (A) Transient
GUS expression efficiency of Col-0 and efr-1 seedlings by AGROBEST, FAST and Marion et al. methods. Data for quantitative GUS activity are mean
± SD of 3 biological replicates. Values significantly different from those obtained with Col-0 by AGROBEST are denoted (*P < 0.05 by Student’s t
test). (B) Transient luciferase expression efficiency of Col-0 and efr-1 seedlings by AGROBEST, FAST and Marion et al. methods. Seedlings infected
by C58ΔvirB2 carrying 35S::LUC2 were used as a background control and those without Agrobacterium infection are indicated as MOCK. Luciferase
activity of Col-0 obtained by AGROBEST was set to 100% and that of others is relative to activity of Col-0 by AGROBEST. Data are mean ± SD of 3
biological replicates. Values significantly different from those obtained with Col-0 by AGROBEST are denoted (**P < 0.01, by Student’s t test). (C)
Transient GUS expression efficiency of Col-0, AvrPto transgenic line, and efr-1 by AGROBEST. For dexamethasone (DEX) treatment, 3-d-old seedlings
were treated with 10 μM DEX for 1 day and the following 3 days infected by the AGROBEST method. Quantitative GUS activity from DEX-induced
Col-0 seedlings by AGROBEST was set to 100% and that of others is relative to activity of DEX-induced Col-0 seedlings with AGROBEST. Data are mean ± SD
GUS activity from 4 repeats (2 biological repeats from each of 2 independent experiments). Values significantly different from that obtained with Col-0 are
denoted (**P< 0.01 by Student’s t test). Seedlings grown in the same co-cultivation medium without Agrobacterium infection are indicated (MOCK).
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plateau at 3 or 4 dpi (Figure 5A). When 5- or 6-d-old
seedlings were infected, we observed transient GUS ex-
pression in true leaves at 3 or 4 dpi. Although strong
GUS staining could still be detected in seedlings at 4 or
5 dpi, these seedlings often showed bleached lesions in
cotyledons (Figure 5B), which explained the lack of GUS
expression in part of the cotyledons at 4 or 5 dpi
(Figure 5A). At 3 dpi, the bleached lesions were more
visible when the transformation was performed with
5- or 6-d-old seedlings than with 3- or 4-d-old seed-
lings. Thus, the use of younger seedlings for AGROB-
EST may be more desirable for maintaining plants in
healthy and physiological conditions.
To test the minimal infection time for GUS detection

and to avoid plant damage due to prolonged Agrobacterium
infection, the co-cultivation medium was replaced with
fresh medium containing antibiotics (100 μM Timentin) at
1 or 2 dpi to inhibit bacterial growth. In 4-d-old seedlings,
we detected low levels of GUS signals with an additional 2
or 3 days of cultivation after Timentin treatment at 1 dpi
(Figure 6). Importantly, with Timentin treatment at 2 dpi,
seedlings with 1 to 3 days of additional cultivation remained
healthy (without bleached lesions) and showed strong GUS
signals in cotyledons. Because Agrobacterium cells were
mostly killed when true leaves emerged from infected seed-
lings, the newly grown true leaves were not efficiently trans-
formed. Therefore, the use of 4-d-old seedlings infected for
2 days followed by an additional 1 to 3 days of cultivation
with Timentin is the optimal condition to transiently ex-
press genes for functional studies.

Widespread transient transformation events in different
organs and cell types
The high transient expression efficiency with AGROB-
EST was mostly evident with strong and homogeneous
GUS signals detected in cotyledons of 100% infected
Col-0 or efr-1 seedlings (Figures 3A, 4A and 7A, Add-
itional file 1: Table S1). When 7-d-old seedlings were
used for infection, strong GUS signals were also detected
in true leaves, as shown in efr-1 seedlings (Figure 7B).
However, in roots, GUS signals could be detected in ~70%
of Col-0 or efr-1 seedlings infected by AGROBEST
(Additional file 1: Table S1) and mostly appeared in lateral
root initiation sites or in the elongation zone (Figure 7C
and D). In addition to analyzing the GUS reporter, we de-
termined the expression of fluorescent proteins as reporters
at cellular and subcellular levels using efr-1 seedlings. With
expression of the Venus-intron or NLS-RFP driven by the
CaMV 35S promoter, fluorescent protein signals were
widely detected in cotyledon cells (Figure 7E and F), mainly
in epidermal pavement cells but also in guard cells and
mesophyll cells (Figure 7G-I). For roots, epidermal cells
consistently showed fluorescent protein signals (Figure 7J).
Therefore, the AGROBEST seedling transformation

system allows for high transient gene expression and,
potentially, functional analysis in diverse tissues and cell
types in Arabidopsis seedlings.

Studies of protein subcellular localization and protein–
protein interactions
Because Arabidopsis plants are less amenable for transient
expression analysis, both fluorescent protein localization
and bimolecular fluorescence complementation (BiFC)
studies are often conducted in protoplasts via transfection
or in N. benthamiana leaves via agroinfiltration because
of the high transient expression efficiency [16,17]. Here,
we co-infected two A. tumefaciens strains carrying a bin-
ary vector for 35S::Venus-intron or 35S::NLS-RFP in efr-1
seedlings and detected both cytoplasmic and nuclear
fluorescence signals for Venus and nuclear localization of

Figure 5 Impact of seedling age and infection time on
transient expression. (A and B) Different ages of Arabidopsis efr-1
seedlings were infected with C58C1(pTiB6S3ΔT)H carrying pBISN1 by
the AGROBEST method and analyzed for GUS activity (A) and
morphologic features (B) at different dpi.
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NLS-RFP in separate or the same cells (Figure 7K).
Our assay is also feasible for BiFC studies, which is
supported by the interaction of two known interacting
proteins, F-box protein TIR1 (transport inhibitor
response 1) and ASK1 (Arabidopsis Skp1-like protein)
[41], in the nucleus (Figure 7L). Thus, AGROBEST
is an ideal system for subcellular localization and
protein-protein interaction studies.

AGROBEST for the expression analysis of a circadian clock
reporter gene
Encouraged by the high transient expression efficiency
with AGROBEST, we next tested its applicability in gene
function/regulation study in physiological contexts. Most
Arabidopsis genes express rhythmically under various
thermocycles, photocycles, or circadian clock conditions
[42]. Reporter genes driven by promoters of the circadian
genes are commonly used to monitor the regulation of cir-
cadian genes. To test whether circadian rhythm could be
monitored in transiently transformed seedlings, a circadian
reporter (GI::LUC2) constructed by fusing the promoter of
the circadian gene GIGANTEA (GI) with the luciferase
gene (LUC2) [43] was used. Four-day-old Arabidopsis efr-1
seedlings were infected with Agrobacterium delivering GI::
LUC2 for 3 days under 16-h/8-h light/dark cycles and then
transferred to MS medium in the presence of 100 μM
Timentin and 0.5 mM luciferin under continuous light to

monitor real-time bioluminescence for 5 days. In contrast
to constant low levels of bioluminescence from seedlings
infected with a vector control, Arabidopsis seedlings
infected with Agrobacterium delivering GI::LUC2
showed clear circadian oscillation at slightly length-
ened period for at least 5 days (Figure 8). The observed
transiently expressed GI circadian cycle is indistin-
guishable from the stable GI expression in GI::LUC2
transgenic Arabidopsis plant (TP) [43], although with
lower amplitude. The comparable circadian oscillation
between the stable and transient expression of the GI::
LUC2 indicated that the slightly longer period we
observed was unlikely a result of the Agrobacterium
infection. This result indicated the applicability of
AGROBEST for transient expression of circadian rhythm
reporter in Arabidopsis seedlings without detectable inter-
ference by Agrobacterium infection.

AGROBEST for functional assays of transcription factor
MYB75
Next, we tested AGROBEST for gain-of-function studies.
For a proof of concept, we transiently expressed a tran-
scription factor MYB75 because of its well-established
function in anthocyanin accumulation by upregulating a
key gene encoding chalcone synthase (CHS) in the
anthocyanin synthesis pathway [44]. Four-day-old efr-1
Arabidopsis seedlings were infected for 3 days after
Timentin treatment for an additional 3 days to determine
the effect on MYB75 transient expression. MYB75 mRNA
level in infected seedlings was 60-, 400-, and 200-fold
higher when the expression was driven by single (1X35S)
and double (2X35S) CaMV 35S promoter and super pro-
moter, respectively, than in seedlings expressing control
vectors (Figure 9A). CHS mRNA level was increased 4-
and 3-fold in 2X35S::MYB75 and super::MYB75 seedlings,
respectively (Figure 9B). However, CHS expression was
not increased in 1X35S::MYB75 seedlings despite its
60-fold higher MYB75 expression, which suggests a
threshold expression level or the requirement of other
MYB75-modulated co-activators for CHS activation.
Importantly, consistent with increased CHS expression,
high level of anthocyanin (purple coloration) was readily
detectable in cotyledons of 2X35S::MYB75 and super::
MYB75 seedlings but not in seedlings infected with a
vector control, 1X35S::MYB75, or super::gusA-intron
(Figure 9C). No increase of anthocyanin accumulation from
super::gusA-intron seedlings indicated that the specificity of
the observed anthocyanin phenotype was due to the transi-
ent expression of MYB75 rather than a secondary effect
from the infection or the overexpression of any foreign pro-
tein. Importantly, AGROBEST also enables the transient
expression of MYB75 to monitor its downstream CHS
expression and anthocyanin accumulation in Col-0 seed-
lings. We show that transient expression of MYB75 driven

Figure 6 Impact of Timentin treatment on transient GUS
expression efficiency. Four-day-old Arabidopsis efr-1 seedlings were
infected with Agrobacterium C58C1(pTiB6S3ΔT)H carrying pBISN1 by
the AGROBEST method at 1 or 2 dpi before Timentin treatment. GUS
staining was performed at 0 to 3 days after Timentin treatment.
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by the 2X35S promoter results in significantly higher of
MYB75 mRNA levels than vector control in Col-0
seedlings (Figure 10A). Remarkably, CHS mRNA levels
were also upregulated in 2X35S::MYB75 seedlings
(Figure 10B), in which a moderate increase in antho-
cyanin accumulation was also detected (Figure 10C).
This result strongly suggested the broad application of
AGROBEST for gain-of-function studies not limited to
the immune-compromised mutant.

Discussion
AGROBEST enables high transient transformation and
expression efficiency in intact Arabidopsis young seedlings
In this study, we developed a simple, fast, reliable, and
robust transient expression system named AGROBEST
and uncovered the key factors enabling 100% of infected
seedlings with high transgene expression efficiency in
Arabidopsis seedlings. Remarkably, AGROBEST appears
to achieve the highest transient expression efficiency in

Figure 7 Transient transformation events in different organs and cell types. (A-D) Four-day-old (A and C-D) or 7-d-old (B) Arabidopsis efr-1
seedlings were infected with C58C1(pTiB6S3ΔT)H carrying pBISN1 by the AGROBEST method and analyzed for GUS staining. GUS staining was
detected in true leaves (B, indicated by asterisk), cotyledons (A and B), main roots near lateral initiation site (C), and elongation zone (D). (E-L)
Confocal microscopy of 4-day-old Arabidopsis efr-1 seedlings infected with C58C1(pTiB6S3ΔT)H carrying various vectors for transient expression of
indicated fluorescent proteins by the ABM200 method. Fluorescence signals for 35S::Venus-intron or 35S::NLS-RFP were detected in cotyledons
(E and F). Venus-intron signals were detected in different types of cells, including epidermal cells (G), guard cells (H), mesophyll cells (I) of
cotyledon, and root epidermal cells (J). (K) Subcellular localization of Venus-intron and NLS-RFP by co-infection of 2 Agrobacterium strains
expressing 35S::Venus-intron or 35S::NLS-RFP. (L) Protein–protein interaction by BiFC of nYFP-ASK1 and TIR1-cYFP. Images show fluorescence alone
(K) and/or merged with bright field (E, F, J and L) or chloroplast fluorescence (G-I). Scale bars are 2 mm (A and B), 0.5 mm (C and D), 100 μm
(E, F and J), 50 μm (L) and 20 μm (G-I and K). BiFC, bimolecular fluorescence complementation.
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the EF-Tu receptor efr-1 mutant as compared to the
wild-type Col-0, flagellin receptor mutant fls2, and DEX-
inducible AvrPto transgenic line. This result is consistent
with a previous finding in agroinfiltrated Arabidopsis
adult leaves showing increased transient GUS expression
efficiency in efr-1 [24]. Because of no detectable pheno-
type impairing the growth and development in the efr
mutant [24], the use of the efr mutant has an advantage
over DEX-inducible AvrPto in seedling stages. Thus,
more selected elimination of specific PRRs such as EFR
with minimal effects on hormonal signaling, cell death
and seedling growth may be a preferred system for Agro-
bacterium-mediated high transient expression efficiency.
Interestingly, N. benthamiana leaves, which are com-
monly used for Agrobacerium-mediated transient trans-
formation, also lack the EFR receptor [45].
Unexpectedly, we discovered that AGROBEST also en-

ables high transient expression efficiency in wild-type Col-0
seedlings. The significantly higher transient expression ac-
tivity by AGROBEST than the FAST and Marion et al.
methods likely accounts for the success of our gain-of-
function experiments, which have not been shown previ-
ously [26,27]. Of note, efr-1 seedlings remained poorly
transformed by FAST method as compared with the sig-
nificantly increased transient expression in efr-1 by
AGROBEST or the Marion et al. method. The reason

Figure 8 Monitoring Arabidopsis circadian rhythm by transient
expression of GIGANTEA::luciferase (GI::LUC2). Four-day-old Arabidopsis
efr-1 seedlings were infected with Agrobacterium C58C1(pTiB6S3ΔT)H

carrying a vector (pCAMBIA1390) or p1390-GI-LUC2 by the AGROBEST
method for 3 days in a 16-h/8-h light/dark cycle (75 μmol m-2 s-1), then
transferred to 1/2 MS liquid medium in the presence of 100 μM
Timentin and 0.5 mM luciferin and grown under continuous light at
40 μmol m-2 s-1 for up to 5 days. The GI::LUC2 transgenic Arabidopsis
plant (TP) cultured in identical conditions without Agrobacterium
infection was a positive control. Real-time bioluminescence signals were
photographed and the luciferase intensity is shown as mean ± SEM
from 12 seedlings expressing GI::LUC2. Similar results were obtained from
at least 3 independent experiments. The white and gray regions indicate
subjective light and dark periods, respectively.

Figure 9 Transient expression of MYB75 increases anthocyanin accumulation. Four-day-old Arabidopsis efr-1 seedlings were infected
with Agrobacterium C58C1(pTiB6S3ΔT)H carrying a vector (pCAMBIA1390), 35S::MYB75, 2X35S::MYB75, super::MYB75, or super::gusA-intron by the
AGROBEST method. At 3 dpi, co-cultivation medium was replaced with MS medium containing 100 μM Timemtin for additional incubation for
3 days. qRT-PCR of relative expression of MYB75 (A) and CHS (B) with representative data shown with mean ± SD from 3 technical repeats. Similar
results were obtained from three independent experiments. Zeiss inverted microscopy of anthocyanin accumulation in seedlings (upper panels)
and cotyledons (lower panels) and quantification (C). Data for anthocyanin content are mean ± SD from 4 repeats (2 biological repeats from
each of 2 independent experiments, 20–30 seedlings for each biological repeat), Values significantly different from that obtained with vector are
denoted (**P < 0.01, by Student’s t test).
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underlying this discrepancy is unknown, but the yellowish
and retarded-growth seedlings after co-cultivation with
Agrobacterium in the dark for 2 days by the FAST method
may contribute to the observed phenotype. Our AGROB-
EST method, applying a lower density of Agrobacterium
cells (OD600 0.02 as opposed to OD600 0.5 for the FAST
method and OD600 2 for the Marion et al. method) for co-
cultivation with seedlings without any mechanical treat-
ment (e.g., vacuum infiltration) or chemical treatment
(e.g., the addition of surfactant Silwet L-77) offers advan-
tages to maintain infected seedlings with normal growth
and a physiological state without injury. The success of
transiently expressing the circadian rhythm reporter in
Arabidopsis seedlings may open a new platform to rapidly
test the circadian behaviors of Arabidopsis mutants,
bypassing the process of introducing a circadian reporter
gene into the mutants by crossing. Most remarkably,
AGROBEST allows for high transient expression of the
MYB75 transcription factor and subsequently upregu-
lates the expression of its downstream gene CHS in
both efr-1 and Col-0 seedlings. This result suggested the
broad application of AGROBEST to study transcription
factor action.

Widespread and differential transient transformation
events in different organs and cell types
AGROBEST has a breakthrough performance by enab-
ling high and homogeneous transient GUS expression
efficiency in shoots of 100% infected Col-0 or efr-1 seed-
lings. The successful transient expression in roots, al-
though with less efficient transformation events (~70%
of seedlings with GUS staining in roots), is also remark-
able and not previously detected [26,27]. Interestingly,
preferential transformation events occurring at the initi-
ation sites of lateral roots or the root elongation zone of
infected intact seedlings were also previously detected in
wounded Arabidopsis roots [46]. High transformation
of Arabidopsis roots may require further loosening or
opening of cell walls or wounding, which was not
included in our infection conditions. Because we ob-
served similar transient expression levels and trans-
formation efficiency in roots of Col-0 and efr-1
seedlings (Additional file 1: Table S1), EFR may play no
or little role in seedling root transformation efficiency
under our infection conditions. Consistently, EFR is
expressed at low levels in Col-0 seedling roots [47],
which were not responsive to the EF-Tu peptide elf26,

Figure 10 Transient expression of MYB75 increases anthocyanin accumulation in Col-0 seedlings. Four-day-old Arabidopsis Col-0 seedlings
were infected with Agrobacterium C58C1(pTiB6S3ΔT)H carrying a vector (pCAMBIA1390), 2X35S::MYB75, or super::gusA-intron by the AGROBEST
method. At 3 dpi, co-cultivation medium was replaced with MS medium containing 100 μM timemtin for additional incubation for 3 days.
qRT-PCR of relative expression of MYB75 (A) and CHS (B) with representative data shown with mean ± SD from 3 technical repeats. Similar results
were obtained from three independent experiments. Zeiss inverted microscopy of anthocyanin accumulation in seedlings (upper panels) and
cotyledons (lower panels) and quantification (C). Data for anthocyanin content are mean ± SD from 3 independent experiments (20–30 seedlings
for each biological repeat, 3 biological repeats for each independent experiment). Values significantly different from those obtained with vector
are denoted (**P < 0.01, by Student’s t test).
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as evidenced by limited induction of immune marker genes
and callose deposition in the roots of Col-0 seedlings [48].
Because the flg22 peptide derived from Agrobacterium fla-
gellin is inactive in Arabidopsis [24,34,35] and the flagellin
receptor mutant exhibited similar transformation efficiency
as Col-0 in our seedling assays, the flagellin receptor FLS2
may not be involved in Agrobacterium-triggered plant in-
nate immune responses and therefore did not compromise
Agrobacterium-mediated transient gene expression. Future
investigations could examine whether the absence of the
peptidoglycan receptor [49] or yet-to-be identified recep-
tors in recognizing additional MAMPs such as polysac-
charides [50] could increase the transformation efficiency
in seedling roots.

Key factors for high transient transformation/expression
efficiency
During this course of our method development, we also
uncovered new factors critical for the high transient trans-
formation/expression efficiency in Arabidopsis seedlings.
One factor is the addition of AB salts in MS medium buff-
ered with acidic pH 5.5 during Agrobacterium infection,
which allows for significantly higher transient expression
efficiency than in MS medium alone. Another break-
through is the use of the disarmed A. tumefaciens strain
C58C1(pTiB6S3ΔT)H, which offers the highest transient
expression efficiency with the least adverse impact on
plant growth over other tested strains. Root growth was
severely inhibited on infection with other tested A. tume-
faciens strains including the transfer-incompetent ΔvirB2.
These data indicate that the transport of T-DNA and
T4SS effectors into plant cells by a virulent C58 strain
may not suppress host immune responses like that ob-
served in T3SS effectors from Pseudomonas syringae [51].
We observed that C58C1(pTiB6S3ΔT)H achieved higher
transient expression efficiency in both Col-0 and efr-1
seedlings than other A. tumefaciens strains tested. The
agent also had little impact on root growth inhibition of
infected seedlings by the ABM50 method (Figure 3). The
results suggested that the A. tumefaciens strain C58C1
(pTiB6S3ΔT)H is the main factor affecting the root growth
difference. EFR may play a minor role in root growth in-
hibition because we observed slightly stronger root growth
inhibition in Col-0 than efr-1 seedlings infected with
C58C1(pTiB6S3ΔT)H. This finding is consistent with lim-
ited root growth inhibition detected in Col-0 seedlings in
response to EF-Tu peptide elf18 as compared with strong
root growth inhibition induced by flg22 [47]. The observed
inverse association of root growth inhibition and transient
expression efficiency suggested that C58C1(pTiB6S3ΔT)H

may circumvent a plant defense barrier to enable high
transient expression levels in Arabidopsis seedlings.
However, interestingly, root length was significantly lower
in Col-0 and efr-1 seedlings with C58C1(pTiB6S3ΔT)H

infection than in uninfected seedlings (MOCK), despite
the significantly higher transient expression efficiency with
the AGROBEST than the ABM50 method (Figure 3).
Thus, although C58C1(pTiB6S3ΔT)H remains a strain
causing the least inhibition in seedling root growth as
compared to other A. tumefaciens strains, whether the ob-
served root growth inhibition results from PTI contribut-
ing to reduce transient expression efficiency requires
future investigation. Other factors in addition to PTI may
contribute to the enhanced transient expression efficiency
by AGROBEST.
C58C1(pTiB6S3ΔT)H has been known to achieve high

transformation efficiency in several plant species including
Arabidopsis, but the underlying mechanism is not known.
The nomenclature of Agrobacterium strains used in plant
transformation experiments is often simplified, which
causes confusion and could sometimes be misleading.
C58C1(pTiB6S3ΔT)H is often simplified as C58C1 in
the plant community. C58C1 is in fact named after curing
pTiC58 from the wild-type virulent strain C58, and rifam-
picin (Rif)-resistant strains are selected from C58C1 for
convenient use to acquire various disarmed Ti plasmids
transferred from different Agrobacterium strains [52,53].
Therefore, C58C1(pTiB6S3ΔT)H is a Rif-resistant C58C1
harboring the octopine-type Ti plasmid pTiB6S3 with the
removal of the T-DNA region [31] and containing a
pCH32 helper plasmid with increased expression of
virulence genes virG and virE2 [32]. GV3101(pMP90) is
a C58-derived disarmed strain, in which pMP90 is a
nopaline-type Ti plasmid, pTiC58, with the removal of
T-DNA [38]. Therefore, in theory, C58C1(pTiB6S3ΔT)H

should share the same chromosomal background with
GV3101(pMP90) and only differ in the use of different
Ti plasmids and the presence of the helper plasmid
pCH32. Future work to determine which genetic factor(s)
contribute to increased transient expression efficiency
with less growth inhibition by C58C1(pTiB6S3ΔT)H will
shed light on understanding the molecular mechanisms
underlying the observed high transient transformation
and expression efficiency.

Conclusions
In this study, we developed a valuable and novel method,
named AGROBEST, and uncovered the key factors enab-
ling this unprecedented high transient transformation and
reporter gene expression efficiency in the immune recep-
tor mutant efr-1 and in wild-type Col-0 Arabidopsis seed-
lings. The applicability for transient expression of MYB75
in activating downstream gene expression in a Col-0
background further suggested that AGROBEST may be
a feasible method to use in examining transcription
factor actions or gain-of-function studies in different
Arabidopsis ecotypes/genotypes. Because most plants do
not harbor EFR, which is only present in Brassicaceae
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[24], the established method may be applicable in other
plant species. This fast, sensitive, and quantitative
assay was routinely used with culture plates, which are
easily scaled up for quick and systematic screens. Im-
portantly, this method nicely compliments the commonly
used Arabidopsis mesophyll-protoplast transfection
[15,16] and Agrobacterium-mediated leaf infiltration in
N. benthamiana [17] for gene functional studies and
provides advantages for its high reproducibility with-
out advanced skills. Furthermore, AGROBEST may be
an alternative method for evaluating Agrobacterium
virulence and discovering and dissecting gene func-
tions involved in various steps of Agrobacterium-
mediated DNA transfer. The method may help unravel
the mechanisms underlying Agrobacterium infection in
unwounded cells/tissues.

Methods
Materials and growth condition
Strains, plasmids, and primer sequences used in this
study are in Additional file 2: Table S2 and Additional
file 3: Table S3. The bacterial growth conditions and
procedures for plasmid and mutant constructions are
described in Additional file 4: Methods S1. Arabidopsis
thaliana plants included ecotype Columbia-0 (Col-0),
Wassilewskija (Ws-2), T-DNA insertion mutants efr-1
(SALK_044334) and fls2 (SALK_093905) and the DEX-
inducible AvrPto transgenic line generated in a Col-0
background were obtained from the Arabidopsis Bio-
logical Resource Center (Ohio). Seeds were sterilized in
50% bleach (v/v) containing 0.05% Triton X-100 (v/v)
for 10 min, rinsed 5 times with sterile water, and incu-
bated at 4°C for 3 days. For germination, 10 seeds were
transferred to 1 ml 1/2 MS liquid medium (1/2 MS salt
supplemented with 0.5% sucrose (w/v), pH 5.5 [pH ad-
justed to 5.7 by KOH but pH 5.5 after autoclaving], in
each well of a 6-well plate. Germination and growth
took place in a growth room at 22°C under a 16-hr/8-hr
light–dark cycle (75 μmol m-2 s-1).

Agrobacterium infection in Arabidopsis seedlings
For AGROBEST infection assay, A. tumefaciens was freshly
streaked out from -80°C glycerol stock onto a 523 agar
plate for 2-day incubation at 28°C. A fresh single colony
from the plate was used to inoculate 5 ml of 523 liquid
medium containing appropriate antibiotics for shaking
(220 rpm) at 28°C for 20–24 hr. For pre-induction of A.
tumefaciens vir gene expression, A. tumefaciens cells were
pelleted and re-suspended to OD600 0.2 in various liquid
media including LB, LB-MES (LB with 10 mM MES,
pH 5.7) [53,54] or AB-MES (17.2 mM K2HPO4, 8.3 mM
NaH2PO4, 18.7 mM NH4Cl, 2 mM KCl, 1.25 mM MgSO4,
100 μM CaCl2, 10 μM FeSO4, 50 mM MES, 2% glucose
(w/v), pH 5.5) [37] with different concentrations of

acetosyringone (AS; 0, 50 or 200 μM) without antibiotics,
then shaken (220 rpm) at 28°C for 12–16 hr. Before infec-
tion, A. tumefaciens cells were pelleted and re-suspended
in desired co-cultivation liquid media to OD600 0.02. The
growth medium of Arabidopsis seedlings was replaced
with 1 ml A. tumefaciens cells freshly prepared above and
incubated in the same growth room until further analysis.
Three-day-old seedlings were treated with 10 μM DEX for
1 day before infection for the following 3 days. When the
removal of Agrobacterium cells was required, co-cultivation
medium was removed after the chosen infection time and
replaced with 1 ml freshly prepared MS medium containing
100 μM Timentin and incubated for additional days before
analysis. The procedures for the seedling transient trans-
formation assay using the method optimized by Marion
et al. and FAST Method developed by Li et al. were per-
formed [26,27] and described in Additional file 4: Methods
S1. Unless indicated, 10 seedlings grown in each well were
infected and 3 biological repeats were performed in each
independent experiment.

Plant RNA extraction and quantitative RT-PCR
RNA was extracted from Arabidopsis seedlings as de-
scribed [55]. An amount of 4 μg total RNA was used to
synthesize first-strand cDNA with SuperScript III Re-
verse Transcriptase (Invitrogen) and oligo dT primer.
Quantitative PCR involved the Applied Biosystems
QuantStudio 12 K Flex Real Time PCR machine and
Power SYBRR Green PCR Master Mix (Invitrogen). Ara-
bidopsis ACTIN 2 (At3g18780) or UBC21 (At5g25760)
was an internal control.

GUS staining and activity assays
Seedlings were stained with 5-bromo-4-chloro-3-indolyl
glucuronide (X-Gluc) at 37°C for 6 hr unless indicated
or quantified with a fluorescence substrate (4-methylum-
belliferyl-β-D-glucuronide [MUG]) as described [56]. For
MUG assay, fluorescence was determined using a 96
microtiter-plate reader (Bio-Tek Synergy Mx, 356 nm
excitation 455 nm emission with ±20 nm filter) and cal-
culation of specific GUS enzyme activity was based on
the standard curve of 0.5–500 pmole (0.5, 5, 50 and 500
pmole) 4-MU standards obtained from the same micro-
titer plate. For relative GUS activity, the fluorescence
signal value was normalized by an equal amount of pro-
teins with subtraction of the background fluorescence
signal detected by the mock control.

Confocal microscopy
Fluorescence signals were observed by use of a Zeiss
LSM 510 Meta Confocal microscope. Venus signals were
observed at 488-nm excitation with an HFT 488/514-nm
filter and emission with NTF 515- and BP 505- to 530-nm
filters. RFP signals were observed at 488-nm excitation
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with an HFT 405/488-nm filter and emission with NFT
545 and LP 650 filters.

Transient expression of MYB75 and anthocyanin content
assay
Four-day-old seedlings were infected with A. tumefaciens
strain C58C1(pTiB6S3ΔT)H carrying the control or
MYB75-expressing binary vector in ABM-MS liquid
medium for 3 days. The co-cultivation medium was then
replaced with 1 ml fresh MS medium (1/2 MS, 2% su-
crose (w/v), pH adjusted to 5.7 by KOH but pH 5.5 after
autoclaving) containing 100 μM Timemtin and then in-
cubated for 3 days. For anthocyanin content assay, seed-
lings were blot-dried briefly, weighed, ground into
powder with liquid nitrogen and mixed with 1 ml extrac-
tion buffer (0.12 M HCl, 18% isopropanol (v/v)). The mix-
ture was boiled for 90 sec and centrifuged at 16000 × g for
15 min. The supernatant was collected and measured at
OD535 (A535) and OD650 (A650). Anthocyanin content was
calculated as A535 - (2.2 ×A650)/fresh weight (g) [57].

Transient expression of GI::LUC2 and bioluminescence
measurement
Four-day-old seedlings were infected with A. tumefaciens
strain C58C1(pTiB6S3ΔT)H carrying p1390-GI::LUC2 or
empty vector (pCAMBIA1390) in ABM-MS co-cultivation
medium. At 3 dpi, each seedling was transferred to MS
medium (1/2 MS, pH adjusted to 5.7 by KOH but pH 5.5
after autoclaving) containing 100 μM Timentin and
0.5 mM luciferin in a black 96-well plate. Bioluminescence
activity was measured and analyzed as described [43].

Luciferase activity assay
Arabidopsis seedlings after infection were surface steril-
ized with 1% bleach (0.05% sodium hypochlorite) for 5–
10 min and washed with sterile water 3 times to remove
bacteria before assay. The washing step is essential to
minimize the background signals expressed in bacteria be-
cause of the use of intron-less LUC2 reporter. For photog-
raphy, 10 seedlings infected by each method were placed
in a clean 15-cm square Petri dish and covered with
100 μl 1 mM luciferin. Luciferase intensity was imaged by
use of the XENOGEN IVIS lumina system with 5-sec ex-
posure time. Bioluminescence assay involved the luciferase
assay system (Promega). Briefly, 10–15 seedlings after a
washing were blot-dried with tissue paper before being
frozen with liquid nitrogen and stored at -80°C. Seedlings
were ground into fine powder by liquid nitrogen, mixed
with 300 μl cell-culture lysis reagent (Promega), and cen-
trifuged at 16000 × g for 10 min at 4°C. Supernatant was
100× diluted with cell-culture lysis reagent. In total, 20 μl
cell lysate was mixed with 100 μl Luciferase Assay Reagent
and the signal was detected by use of lumat LB 9507
(Berthold Technologies). The bioluminescence signal was

normalized to the protein amount of each sample quanti-
fied by the Bradford protein assay (Bio-Rad).
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