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Langevin dynamics for the transport of flexible biological macromolecules
in confined geometries
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Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond,
Virginia 23284, USA

(Received 19 August 2010; accepted 16 November 2010; published online 14 January 2011)

The transport of flexible biological macromolecules in confined geometries is found in a variety of
important biophysical systems including biomolecular movements through pores in cell walls, vesi-
cle walls, and synthetic nanopores for sequencing methods. In this study, we extend our previous
analysis of the Fokker–Planck and Langevin dynamics for describing the coupled translational and
rotational motions of single structured macromolecules near structured external surfaces or walls
[M. H. Peters, J. Chem. Phys. 110, 528 (1999); 112, 5488 (2000)] to the problem of many inter-
acting macromolecules in the presence of structured external surfaces representing the confining
geometry. Overall macromolecular flexibility is modeled through specified interaction potentials be-
tween the structured Brownian subunits (B-particles), as already demonstrated for protein and DNA
molecules briefly reviewed here. We derive the Fokker–Planck equation using a formal multiple time
scale perturbation expansion of the Liouville equation for the entire system, i.e., solvent, macro-
molecules, and external surface. A configurational–orientational Langevin displacement equation is
also obtained for use in Brownian dynamics applications. We demonstrate important effects of the
external surface on implicit solvent forces through formal descriptions of the grand friction tensor
and equilibrium average force of the solvent on the B-particles. The formal analysis provides both
transparency of all terms of the Langevin displacement equation as well as a prescription for their
determination. As an example, application of the methods developed, the real-time movement of
an α-helix protein through a carbon nanotube is simulated. © 2011 American Institute of Physics.
[doi:10.1063/1.3525381]

I. INTRODUCTION

The modeling of flexible biological macromolecules rep-
resents a critical problem in the understanding of a vari-
ety of cellular processes, including cell signal pathways, en-
zymatic actions, regulation, transcription, and many others.
These cellular processes are often the result of specific, di-
rected changes in macromolecular conformations made pos-
sible by their inherent flexibility.

Following polymer kinetic theory approaches, nonrigid
structured biological macromolecules have been successfully
modeled as flexibly connected rigid subunits based on the par-
ticular internal bonding behavior of the system. For example,
proteins have been effectively modeled as flexibly connected
rigid, Brownian subunits.1–7 Similarly, DNA and RNA have
been modeled as flexibly connected rigid elements based on
their internal bonding behavior.8–14

In addition to inherent flexibility, many important appli-
cations of biological macromolecular dynamics involve the
presence of a fixed, external surfaces. For example, both
DNA and protein cellular physiological processes involve
their movement through pores.15–17 In addition, recently pro-
posed DNA sequencing devices involve threading the macro-
molecule through structured nanochannels for molecular
sequence determination.18 The challenge for computational
molecular modeling for these systems is maintaining the

a)Electronic mail: mpeters@vcu.edu.

molecular detail necessary to describe relatively complex be-
havior along with the relatively long times that are necessary
for a realistic description of the phenomena.

In previous papers, we have developed a formal, statisti-
cal mechanics approach to describe the long-time dynamics
of rigid macromolecules in the presence of external surfaces
including the detailed molecular structure of the particle and
surface.19–21 The method is based on a molecular derivation
of the Fokker–Planck (FP) equation that describes in a general
fashion the dynamics of Brownian particles in a host solvent.
We demonstrated that important effects associated with sol-
vent averaging in the presence of an external surface are sys-
tematically accounted for by the FP equation; these include
the so-called hydrodynamic interactions between the particle
and surface, hydrophobic effects due to the specific solvent
molecular configurations in the system, and configurationally
dependent solvent dielectric effects.

Fundamentally, the Fokker-Planck equation is equivalent
to the so-called Langevin equation, and either may be used
to derive a phase-space (momentum and configuration) finite-
difference, displacement equation for use in applications.22, 23

The computational technique has also been termed coarse-
grained molecular dynamics due to the averaging process that
takes place over the solvent phase (implicit solvent methods)
and the retention of the molecular structure and forces as-
sociated with the rigid elements.24–28 The parameters of the
FP or Langevin equation are determined via separate molec-
ular dynamic studies, correlation methods, and/or analytical

0021-9606/2011/134(2)/025105/11/$30.00 © 2011 American Institute of Physics134, 025105-1
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approximations.1–7, 24–31 The Langevin displacement equation
allows relatively larger time steps than molecular dynamics,
usually at least 2 orders of magnitude larger, and a significant
reduction in the number of atoms to solely those of the par-
ticle and external surface, the latter as a result of the formal
averaging process over the solvent phase.

Because of the practical need to computationally study
flexible macromolecules in confined geometries for relatively
long times, the analysis given here extends our previous the-
oretical studies to flexible macromolecules in the presence of
fixed external surfaces. The flexibility, in this case, arises from
a general set of interaction potentials between rigid, Brown-
ian subunits of the macromolecule. In particular, we derive
both a FP and associated Langevin displacement equation for
these systems for use in applications including computations.
The specific parameters of the FP and Langevin equation are
shown to be physically transparent, and a prescription for their
determination is provided that is critical to encompassing a
wide range of applications. In addition, the formal scaling
analysis that we utilize provides important physical limita-
tions on the use of the FP and Langevin equations in any given
system.

II. LIOUVILLE EQUATION

The Liouville equation provides the complete molec-
ular description of the system dynamics in terms of a
probability density function for finding all of the system
molecules with particular positions and velocities at any time,
t. We denote the entirety of generalized coordinates as q
= {q1, q2, . . . , qs}, the associated conjugate momenta as p
= {p1, p2, . . . , ps}, and a probability density function, f , in
this multidimensional space as

f (q, p, t)dqdp,

which represents the number of occurrences or “phase points”
of the system between (q, p) and (q + dq, p + dp) at any
time t. The total number of phase points must satisfy a simple
conservation relation that can be written in terms of the total
Hamiltonian, H , as

∂ f

∂t
= −

s∑
i=1

[
∂ H

∂pi

∂ f

∂qi
− ∂ H

∂qi

∂ f

∂pi

]
. (1)

Now, consider the generalized coordinates necessary for the
description of M interacting, structured Brownian particles in
a host solvent, including an external, structured surface as de-
picted in Fig. 1 and given explicitly as

(q, p) ≡ (rN , pN , RM ,�M , PM , PM
� ). (2)

Here (rN , pN ) refer to the position and momentum set of sol-
vent molecules (r1, r2, ..., rN , p1, p2, ..., pN ), and (RM , PM )
represent the center of mass positions and momenta of the
B(Brownian)-particles. Also, �M and PM

� are short-hand
notation for the set of Euler angles or their equivalent
(φ1, ψ1, θ1, ..., φM , ψM , θM ) and associated conjugate mo-
menta (Pφ1 , Pψ1 , Pθ1 , ..., PφM , PψM , PθM ) for B-particles, re-
spectively; it is to be understood that these are not vectors in
the usual sense. For our system, assuming pairwise additivity

r

r

FIG. 1. Example illustration and notation for interacting Brownian particles
in a confined geometry.

of the interaction forces, the Hamiltonian or total energy can
be expressed as

H = T +
N∑

i=1

N∑
j=1
j<i

u f f (ri , r j )

+
N∑

i=1

M∑
l=1

∑
kl

u f p(ri , Rl ,�l ; ākl )

+
N∑

i=1

∑
s

u f w (|ri − rs |)

+
M∑

l=1

∑
kl

∑
s

u pω(rs, Rl ,�l ; ākl )

+
M∑

l=1

∑
kl

⎡
⎢⎣ M∑

m=1
m<l

∑
km

u pp(Rl, Rm,�l ,�m ; ākl , ākm )

⎤
⎥⎦ ,

(3)

where T is the total kinetic energy; u f f is the solvent–solvent
interaction potential; u f p is the solvent–particle interaction
potential; u pω is the particle–external surface interaction po-
tential; u pp is the particle–particle interaction potential. Note
that the specific potential function expressions may vary de-
pending on particle and solvent type. Also, ri and r j are
location vectors for fluid molecules i and j, respectively, rs

is the location vector for the sth surface molecule, ākl is
the location vector of the kth molecule or atom of the lth
B-particle in a frame of reference fixed with respect to the
B-particle and with origin at the center of mass, Rl (see
Fig. 1). The locator vectors ākl are constants and fix the par-
ticular molecular structure of the lth B-particle; they are as-
sumed known a priori.

The total kinetic energy, T , is given by the sum of the
translational and rotational kinetic energies as

T =
N∑

i=1

1

2

p2
i

mi
+

M∑
l=1

[
1

2

Pl
2

Ml
+ Trotl

]
, (4)

where mi is the mass of the i th solvent molecule, Ml is the
mass of the lth B-particle, and the rotational kinetic energy of
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the lth B-particle can be expressed in terms of the generalized
momenta as19

Trotl
= 1

2

1

I1̄l
sin2θl

[sinψl (Pφl − cos θl Pψl ) + cos ψlsin θl Pθl ]
2

+1

2

1

I2̄l
sin2θl

[cos ψl (Pφl − cos θl Pψl ) − sin ψlsin θl Pθl ]
2

+ 1

2

1

I3̄l

P2
ψl

, (5)

where the principal moment Iīl
is the ī th component of the

moment of inertia of the lth B-particle in the body-fixed
frame. Note that the principal moments of inertia are assumed
constant for each B-particle. The functional dependencies
shown for the interaction potentials can be seen as follows.

For example, we have that (Fig. 1)

u f p = u f p(|ri − (akl + Rl)|), (6)

where akl is the locator vector with respect to the laboratory
frame. Relative to the lth B-particle frame, we have

akl = Sl · ākl , (7)

where Sl is the transformation matrix that relates the locator
vector of the lth B-particle frame, ākl , to the laboratory or
inertial frame, akl . Now, Sl depends explicitly on the Euler
angles or their equivalent, i.e., in component notation

akli
=

∑
j̄

eli j̄
ākl j̄

(8)

and the transformation matrix is given by19

[eli j̄
] =

⎡
⎢⎣

cos φl cos ψl − sin φl cos θl sin ψl − cos φl sin ψl − sin φl cos θl cos ψl sin φl sin θl

sin φl cos ψl + cos φl cos θl sin ψl − sin φl sin ψl + cos φl cos θl cos ψl − cos φl sin θl

sin θl sin ψl sin θl cos ψl cos θl

⎤
⎥⎦ . (9)

Because each B-particle is assumed rigid, the locator vectors,
ākl , in the lth B-particle frame are constants. Thus, we can
write that

u f p = u f p(ri , Rl ,�l ; ākl ). (10)

A similar analysis applies to u pω and u pp, and their functional
dependencies follow as shown in Eq. (3). Note that other ex-
ternal field potentials, such as electrical potentials that “drive”
charged particles, can be included with the u pp term.

III. FOKKER–PLANCK EQUATION

To formally obtain the FP equation for this system,
a multiple time scale analysis of the Liouville equation is
developed.19, 32–34 First, the Liouville equation is nondimen-
sionalized or scaled to obtain19

∂ f ∗

∂t∗ = (−N−1
K n L∗

f + γ L∗
p) f ∗, (11)

where NK n = r0/R0 ,γ = m/M , and L∗
f and L∗

p are partic-
ular nondimensional Liouville operators for this system, and
the ∗ indicates a dimensionless variable. In the Knudsen num-
ber definition, r0 is a characteristic length scale for the fluid
intermolecular interaction force and, for an isolated Brown-
ian particle, R0 is a characteristic length scale for the inter-
action force between the macromolecule and the fluid, often
taken as the effective overall macromolecular diameter. Fun-
damentally, R0 is the length scale over which the potential
of force acting on a B-particle changes by order of kT . This
force also includes particle–particle forces and particle–wall
forces. This length scale is important in establishing exis-

tence of what is called a Markov-type FP equation that will
be obtained below.19 In addition, another important parame-
ter, shown below, is the mass ratio term γ = m/M , where M
is a characteristic mass for the B-particles and m is a charac-
teristic mass of a solvent molecule.

The nondimensional Liouville operators L∗
f and L∗

p for
this system are defined as

L∗
f =

N∑
i=1

[
p∗

i · ∂

∂r∗
i

( N∑
j=1
j<i

u∗
f f +

M∑
l=1

∑
kl

u∗
f p

+
∑

s

u∗
f w

)
· ∂

∂p∗
i

]
(12)

L∗
p =

M∑
l=1

[
P∗

l · ∂

∂R∗
l

+ ∂T ∗
rotl

∂P∗
�l

· ∂

∂�l
− ∂T ∗

rotl

∂�l
· ∂

∂P∗
�l

− ∂

∂R∗
l

( N∑
i=1

∑
kl

u∗
f p +

∑
kl

∑
s

u∗
pω

+
∑

kl

M∑
m=1
m<l

∑
km

u∗
pp

)
· ∂

∂P∗
l

− ∂

∂�l

( N∑
i=1

∑
kl

u∗
f p +

∑
kl

∑
s

u∗
pω

+
∑

kl

M∑
m=1
m<l

∑
km

u∗
pp

)
· ∂

∂P∗
�l

]
. (13)
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We also introduce the reduced or contracted distribution func-
tion for the B-particles only as


(RM , PM ,�M , PM
� , t)

=
∫

allrN ,pN

f (rN , pN , RM , PM ,�M , PM
� , t)drN dpN . (14)

Now, the mass ratio is typically very small so that the distribu-
tion function can be expanded in terms of γ and introducing
multiple time scales (τ0, τ1, τ2, ...), we can write 19, 32–34

f ∗ = f ∗(rN , pN , RM , PM ,�M , PM
� , τ0, τ1, τ2, . . .)

= f ∗(0) + γ f ∗(1) + γ 2 f ∗(2) + · · · (15)

The expansion procedure has been presented in detail
previously19 and only the final results are given here for
the sake of brevity. In general, the expansion is conducted
through second order in mass ratio and time scales, leading
to a Fokker–Planck equation for the total space-time behav-
ior of the contracted distribution function for the B-particles,
written in dimensional form as

∂


∂t
+

M∑
l=1

{
Pl

Ml
· ∂


∂Rl
+

[
〈F fl 〉eq

− ∂

∂Rl

( ∑
kl

∑
s

u pω +
∑

kl

M∑
m=1
m<l

∑
km

u pp

)]
· ∂


∂Pl

+ ∂Trotl

∂P�l

· ∂


∂�l
+

[
〈T fl 〉eq − ∂

∂�l

(
Trotl

+
∑

kl

∑
s

u pω +
∑

kl

M∑
m=1
m<l

∑
km

u pp

)]
· ∂


∂P�l

}

= kT
M∑

l=1

{
∂

∂Pl
·
(

ζTl ·
[



P
MlkT

+ ∂


∂Pl

]

+ ζT Rl ·
[



1

kT

∂Trotl

∂P�l

+ ∂


∂P�l

])

+ ∂

∂P�l

·
(

ζRl ·
[



1

kT

∂Trotl

∂P�l

+ ∂


∂P�l

]

+ ζRTl ·
[



Pl

MlkT
+ ∂


∂Pl

])}
, (16)

where k is Boltzmann’s constant, T is absolute temperature,
and Trotl

is the rotational kinetic energy of the lth B-particle
given by Eq. (6). The force and torque acting on the lth B-
particle by the fluid are defined, respectively, by

F fl ≡ − ∂

∂Rl

[ N∑
i=1

∑
kl

u f p

]
, (17)

T fl ≡ − ∂

∂�l

[ N∑
i=1

∑
kl

u f p

]
. (18)

Further, 〈F fl 〉eq and 〈T fl 〉eq are the equilibrium average force
and torque, respectively, acting on the lth B-particle by the

fluid. The equilibrium averages are defined as

〈A〉eq ≡
∫

allrN ,pN

A

× heq(rN , pN ; RM , PM ,�M , PM
� , t)drN dpN , (19)

where heq is a marginal or conditional local fluid equilibrium
distribution function with given variables for the B-particles
and in the presence of an external surface.19 For an isolated
B-particle, the local equilibrium force and torque acting on
the particle by the fluid vanish, but they are finite when other
B-particles or surfaces are present.19 Nonequilibrium local
fluid distribution functions have also been included, such as
those due to bulk fluid flow or external forces.35, 36 Note that
the equilibrium fluid force acting on the B-particles can often
be broken down into different contributions depending on the
nature of the interaction potential. For example, an electro-
static force interaction between a polar solvent, such as water,
and the B-particles leads to the local dielectric behavior of
the fluid in the configuration space of the B-particles, and the
accompanying nonpolar force interactions, such as van der
Waals and Born force interactions, lead to the so-called hy-
drophobic effect.

The translational, rotational, and coupled translational–
rotational friction tensors in Eq. (16) are defined by

ζTl ≡ 1

kT

∫ ∞

0
[〈F fl (s)F fl (0)〉eq − 〈F fl 〉2

eq]ds, (20)

ζT Rl ≡ 1

kT

∫ ∞

0
[〈F fl (s)T fl (0)〉eq

−〈F fl 〉eq〈T fl 〉eq]ds, (21)

ζRTl ≡ 1

kT

∫ ∞

0
[〈T fl (s)F fl (0)〉eq

−〈T fl 〉eq〈F fl 〉eq]ds, (22)

ζRl ≡ 1

kT

∫ ∞

0
[〈T fl (s)T fl (0)〉eq − 〈T fl 〉2

eq]ds. (23)

Note that the friction tensors, Eqs. (20)–(23), will depend on
the separation distance and orientation of the lth B-particle
with respect to other B-particles and surfaces present. In con-
tinuum fluid mechanics, this latter effect is known as “hy-
drodynamic interactions.” In general, the friction tensors can
be determined from the above integrals through equilibrium
canonical molecular dynamics for any given B-particles’ po-
sitions and orientations in the system. Equations (16)–(23)
are the central result of the Brownian approximation for this
system. The host fluid must quickly relax to the potential
field created by the B-particles; a condition that exists for
small Knudsen numbers, NK n << 1. Mathematically, the in-
tegrals in Eqs. (20)–(23) converge rapidly under these condi-
tions, and the friction tensors are referred to as “memoryless”
and the associated FP equation is referred to as “classical”
or Markovian.37 Note that during the short-time solvent re-
laxation period, there can be no significant change in the B-
particles’ positions or orientations.

Now, the numerical or finite-difference solution to the FP
equation leads to a Brownian dynamics (BD) algorithm, or
long-time, BD time step, for determining the macromolecular
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displacements.22, 23 In deriving finite difference forms for use
in applications, it is useful to express the FP equation in terms
of the angular momenta in the laboratory frame, L, rather than
the conjugate momenta, P�. The transformations have been
presented in detail previously, and here we simply present the
results for the sake of brevity.20 Accordingly, the FP equation
can be re-expressed in terms of angular momentum as

D


Dt
= kT

M∑
l=1

{[
Gpl GLl

] [
ζTl ζT Rl

ζRTl ζRl

] [
Q pl 


QLl 


]}
, (24)

where

D
Dt

≡ ∂

∂t
+

M∑
l=1

[
Pl

Ml
· ∂

∂Rl
+ F′

l · ∂

∂Pl

+ω1l

∂

∂φ1l

+ ω2l

∂

∂φ2l

+ ω3l

∂

∂φ3l

+ T ′
1l

∂

∂L1l

+ T ′
2l

∂

∂L2l

+ T ′
3l

∂

∂L3l

]
, (25)

Gpl ≡ ∂

∂Pl
, (26)

GLl ≡ ∂

∂Ll
, (27)

Qpl ≡ Pl

MlkT
+ ∂

∂Pl
, (28)

QLl ≡ ωl

kT
+ ∂

∂Ll
, (29)

and

F′
l ≡ 〈F fl 〉eq

− ∂

∂Rl

( ∑
kl

∑
s

u pω +
∑

kl

M∑
m=1
m<l

∑
km

u pp

)
, (30)

T′
l ≡ (T ′

θl
, T ′

φl
, T ′

ψl
) ≡ 〈T fl 〉eq

− ∂

∂�l

( ∑
kl

∑
s

u pω +
∑

kl

M∑
m=1
m<l

∑
km

u pp

)
. (31)

Note that it is understood that the angular velocities, ωl , in the
laboratory frame are to be expressed in terms of the angular
momentum as

ωl ≡ Ll · I−1
l , (32)

where Il is the moment of inertia tensor for the lth Brown-
ian particle expressed in the laboratory frame. Also, note that
(ω1l , ω2l , ω3l ) and (T ′

1l
, T ′

2l
, T ′

3l
) appearing in Eq. (25) are the

Cartesian components of the angular velocity and torque, re-
spectively, in the space-fixed or laboratory frame. The Carte-
sian components are related to the (θl, φl , ψl ) components
given in Eq. (31) above as20

T1l = Tθl cos φl − Tφl cot θl sin φl + Tψl csc θl sin φl , (33)

T2l = Tθl sin φl + Tφl cot θl cos φl − Tψl csc θl cos φl, (34)

T3l = Tφl . (35)

We have also used the transformation relations between the
Euler angles and rotations about the Cartesian frame as20

∂

∂φ1l

= cos φl
∂

∂θl
− cot θl sin φl

∂

∂φl

+ csc θl sin φl
∂

∂ψl
, (36)

∂

∂φ2l

= sin φl
∂

∂θl
+ cot θl cos φl

∂

∂φl

− csc θl cos φl
∂

∂ψl
, (37)

∂

∂φ3l

= ∂

∂φl
. (38)

The friction tensors in Eq. (25) are now given completely in
the space-fixed Cartesian frame. For example,

ζRT
.=

⎡
⎢⎣

ζRT11l
ζRT12l

ζRT13l

ζRT21l
ζRT22l

ζRT23l

ζRT31l
ζRT32l

ζRT33l

⎤
⎥⎦ , (39)

where the x–x component is

ζRT11l
≡

∫ ∞

0
[〈T1 fl

(0)F1 fl
(s)〉eq

−〈T1 fl
〉eq〈F1 fl

〉eq]ds, (40)

etc. For an isolated B-particle, Eq. (25) is in agreement with
the FP equation given by Condiff and Dahler.38

IV. SMOLUCHOWSKI AND LANGEVIN
DISPLACEMENT EQUATIONS

Now, we will derive the short-time solution to the
FP equation that leads to the finite difference form of
the associated Langevin equation as shown by Ermak and
McCammon.22 First, we define the following dimensionless
variables based on the B-particle characteristics and denoted
by asterisk symbols as


 = 
∗ n0

(R0 MkT )3l
, (41)

Pl = P∗
l (MkT )1/2, (42)

Rl = R∗
l R0, (43)

t = t∗t0 = t∗[R0/(kT/M)1/2], (44)

Ll = L∗
l R0(MkT )1/2, (45)

ωl = ω∗
l [(kT/M)1/2/R0], (46)

F′
l = F′∗

l (kT/R0), (47)

T′
l = T′∗

l (kT ), (48)

ζTl = ζ ∗
Tl
ζ0, (49)

ζT Rl = ζ ∗
T Rl

R0ζ0, (50)
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ζRTl = ζ ∗
RTl

R0ζ0, (51)

ζRl = ζ ∗
Rl

R2
0ζ0. (52)

Substituting the dimensionless variables into the FP equation,
Eq. (24), yields

D∗
∗

D∗t∗ = 1

NSt

M∑
l=1

{[
G∗

Pl
G∗

Ll

]

×
[

ζ ∗
Tl

ζ ∗
T Rl

ζ ∗
RTl

ζ ∗
Rl

] [
Q∗

Pl

∗

Q∗
Ll


∗

]}
, (53)

where NSt is the particle Stokes number

NSt = ζ−1
0 M

R0/(kT/M)1/2
= trelax

t0
. (54)

The particle Stokes number is the ratio of the particle relax-
ation time, ζ−1

0 M , to the characteristic time constant, t0. The
particle Stokes number is important in establishing conditions
of the diffusion or Smoluchowski limit of the FP equation, as
shown below.

Now, because of the highly coupled nature of linear and
angular momenta for this problem, some approximations are
necessary, even for small times, to effect solutions of the FP
equation. These approximations include: 1) isotropic parti-
cle assumptions where linear and angular momenta can be
decoupled39 and 2) Stokes number expansions where parti-
cle inertial effects are small. As pointed out by Harris,39 any
isotropy assumption is only required to be within the order
of the mass ratio expansion, and therefore, the terminology
“nearly isotropic” is more appropriate. Expansion of the FP
equation in Stokes number leads to the diffusion limit or
Smoluchowski equation, as shown previously by Dickinson
et al.23 for interacting Brownian particles. The Stokes num-
ber expansion solution to the FP equation has been presented
in detail previously,20 and here we simply present the essential
results for the sake of brevity.

For small Stokes numbers, we seek a solution for the
configurational–orientational distribution function defined as

n∗(R∗M ,�M , t∗) =
∫ ∫


∗dP∗M dL∗M (55)

and we write the expansion solution as


∗ =
∞∑

n=0

εn
∗(n) , ε → 0 + . (56)

Substituting Eq. (56) into Eq. (53) leads to the following
problems:

0(ε◦) :
M∑

l=1

{[
G∗

Pl
G∗

Ll

] [
ζ ∗

Tl
ζ ∗

T Rl

ζ ∗
RTl

ζ ∗
Rl

] [
Q∗

Pl

∗(0)

Q∗
Ll


∗(0)

]}
= 0

(57)

0(ε′) :
D
(0)

Dt

=
M∑

l=1

{[
G∗

Pl
G∗

Ll

] [
ζ ∗

Tl
ζ ∗

T Rl

ζ ∗
RTl

ζ ∗
Rl

] [
Q∗

Pl

∗(1)

Q∗
Ll


∗(1)

]}
. (58)

Now, following the steps given previously, the Smoluchowski
equation is obtained as20

∂n

∂t
= ε

M∑
l=1

[∂/∂Rl ∂/∂�l]

[
DTl DT Rl

DRTl DRl

]

×
[

∂n/∂Rl − nF′
l

∂n/∂�l − nT′
l

]
+ 0(ε2), (59)

where we have dropped the asterisk notation for the sake of
simplicity. A Brownian dynamics or numerical solution to the
Smoluchowski equation can be obtained by deriving an ana-
lytical solution for its short-time behavior. In doing this, we
consider that at time t = 0, the positions and orientations of
the B-particles are exactly known, i.e.,

n =
∏

l

δ(Rl − R0
l )δ(�l − �0

l ) , at t = 0, (60)

where δ is the Dirac delta function. Now for very small times t
(t > 0), we can assume that all spatial and orientational func-
tions are approximately constant at their initial values, i.e.,

F′
l
∼= F′0

l , (61)

T′
l
∼= T′0

l , (62)

DJl
∼= D0

Jl
, J = T, T R, RT, R, (63)

etc., where the superscript (0) indicates the known initial val-
ues. The solution to Eq. (53) under these conditions can be
readily obtained as20

n(qM , t) =
∏

l

1

(4π tε)3 Det[D0
l ]1/2

× exp

{
− 1

4tε
[ql − q0

l ][D0
l ]−1[ql − q0

l ]†
}
, (64)

where ql ≡ (Rl ⊕ �l ) is a (1 × 6) vector and the 6 × 6 grand
diffusion tensor, D0

l , is defined by

[
D0

l

] ≡
[

D0
Tl

D0
T Rl

D0
RTl

D0
Rl

]
. (65)

For each B-particle, Eq. (64) represents a multivariate Gaus-
sian function with mean q0

l and variance–covariance

〈Cil (D0
i jl , t)C jl (D0

i jl , t)〉 = 2D0
i jl tε. (66)

Finally, following Ermak and McCammon,22 we can use Eqs.
(64) and (66) to put the solution in the form of translational
and rotational displacement equations for the lth B-particle as

Ril = R0
il

+ εt

⎡
⎣∑

j

(D0
i j Tl

F ′0
jl + D0

i j T Rl
T ′0

jl )

⎤
⎦

+ Cil (D0
i jl , t) , (1 ≤ i ≤ 3 , 1 ≤ j ≤ 6), (67)

φil = φ0
il

+ εt

⎡
⎣∑

j

(D0
i j RTl

F ′0
jl + D0

i j Rl
T ′0

jl )

⎤
⎦

+ Cil (D0
i jl , t) , (4 ≤ i ≤ 6 , 1 ≤ j ≤ 6), (68)
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where Cil (D0
i jl

, t) is a multivariate, Gaussian random number
with zero mean and variance-covariance given by Eq. (66).

The general BD algorithm given above for confined sys-
tems is still relatively straightforward. The body-fixed molec-
ular structure and potentials of the interacting B-particles
and confining surfaces are specified. The implicit effects of
the solvent are apparent through: 1) the definition of the
diffusion tensors as proportional to the inverse friction ten-
sors, Eqs. (20)–(23), and 2) the equilibrium average force
and torques acting on the lth B-particle by the solvent, as
given in Eqs. (19), (30), and (31). Specifically, using the
marginal, local fluid equilibrium distribution function devel-
oped previously19, we can write the local equilibrium average
force and torque expressions as

〈F fl 〉 ≡
∫

allrN ,pN

{
− ∂

∂Rl

[ N∑
i=1

∑
kl

u f p

]}

× exp[−H f ]drN dpN

/
∫

allrN ,pN

exp[−H f ]drN dpN , (69)

〈T fl 〉 ≡
∫

allrN ,pN

{
− ∂

∂�l

[ N∑
i=1

∑
kl

u f p

]}

× exp[−H f ]drN dpN

/
∫

allrN ,pN

exp[−H f ]drN dpN , (70)

where the fluid-side Hamiltonian is given from Eq. (3) as

H f =
N∑

i=1

(1/2)p2
i /mi +

N∑
i=1

N∑
j=1
j<i

u f f (ri , r j )

+
N∑

i=1

M∑
l=1

∑
kl

u f p(ri , Rl ,�l ; ākl )

+
N∑

i=1

∑
s

u f w (|ri − rs |). (71)

As an example, Roux and Simonson40 and Wagoner and
Baker41 used the above equations, in the absence of confined
geometries, to examine implicit solvation forces by further
decomposing the interaction potentials in terms of polar (elec-
trostatic) and nonpolar (Born repulsive and van der Waals)
contributions. The above relations, Eqs. (69)–(71), allow for
the study of polar and nonpolar solvation forces for interact-
ing B-particles in confining geometries.

V. EXAMPLE APPLICATION: REAL-TIME MOTION OF
A BIOLOGICAL MACROMOLECULE THROUGH A
CARBON NANOTUBE

As discussed in Introduction, a contemporary application
of biological macromolecular motion in confined geometries
involves the threading of proteins or DNA through nanopores

FIG. 2. Illustration of the structured Brownian subunits for protein macro-
molecules. Only the first (N-terminal) and second residues are shown.

or nanochannels. Here we consider the movement of an α-
helix protein through a carbon nanotube using the methodol-
ogy developed above.

In modeling proteins using BD methods, the protein is
assumed to be comprised of structured, interacting rigid sub-
units. The protein model followed here was given previously
by Wu and Sung42 and is shown in Fig. 2. In this model, pep-
tide bonds between C(i) and N(i+1) amino acids are considered
to form rigid planar Brownian units (amide planes), where
i denotes the amino acid residue number. Thus, the amide
planes consist of atoms O(i), C(i), N(i+1), and H N(i+1). The
side-chain groups, denoted by R(i), vary with each of the 20
types of amino acids and are also considered separate Brow-
nian subunits as shown in Fig. 2. In the Wu and Sung model,
the α-carbon is considered to be part of the R-group. For the
sake of simplicity here, we consider the entire R-group to be
a rigid subunit, although one could further divide R groups
into specified rigid subunits depending on their structure and
bonding behavior.42 The α-carbon hydrogen is neglected in
simulations in order to not artificially restrict the R-group ro-
tational motions; it is added via geometric arguments for vi-
sualization purposes below. The amino-terminal group is in-
cluded with the first residue R-group. The carboxy-terminal
group constitutes the last Brownian subunit. The total number
of Brownian units is, therefore, two times the total number of
residues with the exception when Proline is present. Proline
forms an expanded amide group with no R-group.

Now, it is necessary to maintain fixed bond distances
and bond angles around each α-carbon that micromechani-
cally constitutes a tetrahedral joint as shown in Fig. 3. Fixed
bond distances and bond angles can be maintained by incor-
porating constraint equations into the algorithm, such as the
SHAKE algorithm43 used by Wu and Sung42 and the LINCS

FIG. 3. Nomenclature and illustration of the tetrahedral joint associated with
each α-carbon atom of the protein.
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FIG. 4. t = 0.0ns. α- helix placed inside nanotube.

method44 used, for example, by Ando et al.45 and Shen et al.2

in their atomistic BD simulations. Alternatively, following our
previous studies,46 we may employ “stiff” potential functions
to approximately maintain fixed bond distances and angles.
Specifically, for the tetrahedral joint, we can write for bond
distances and bond angles, respectively,

Ul = γl(rl − bl )
2

Uk = γk(αk − αl)
2,

where the subscript l denotes the bond between two speci-
fied atoms of the joint and the subscript k denotes the angle
between three specified atoms of the joint. Note that these po-
tential functions are included in the u pp terms of Eqs. (30)
and (31) and lead to both forces and torques acting on each
Brownian subunit attached to the joint. The specific constants
employed in the simulations reported here are as follows:


 Cβ − Cα − N αk = 109.7γk = 400 kcal/(mol radian2)

 Cβ − Cα − C αk = 111.0γk = 315 kcal/(mol radian2)

 N − Cα − C αk = 110 γk = 315 kcal/(mol radian2)
distance Cα − C bl = 1.51 Å γl = 1585 kcal/(mol Å2)
distance Cα − N bl = 1.46 Å γl = 1685 kcal/(mol Å2)
distance Cα − Cβ bl = 1.51 Åγl = 1560 kcal/(mol Å2).

In addition, we must maintain the positional relations be-
tween Cα(i) – C(i) and Cα(i) – N(i) bond vectors with their
respective amide plane attachments. This requires, for ex-
ample, that Cα(i) – C(i) be equivalent to the vector that bi-
sects C(i) − O(i) and C(i) − N(i+1) in the “downstream” amide
plane. A similar argument applies to the Cα(i) – N(i) bond
vector with the “upstream” amide plane. Stiff potential func-
tions are again used to maintain these positional relations (not
shown here for the sake of brevity). The specific values for γk

and γl given above were determined by trial-and-error as the
approximate minimum values necessary to maintain the in-
tegrity of the protein structure in the absence of any external
surfaces. They are approximately five times the soft potential
values used in purely molecular dynamic algorithms.47 Note
that the stiff potential method for bond length and angle con-
straints is relatively easy and straightforward to implement in
atomistic BD methods in general.

For all nonbonded potential functions between atoms we
use AMBER force fields.47 In this prescription all 1–2 and 1–
3 nonbonded interactions are neglected, and 1–4 nonbonded
interactions are scaled by 0.50. Dihedral potential functions
were also used in the simulations following AMBER.47

The specific protein selected was an α-helical segment
of the viral envelop protein of GP4121. The carbon nanotube
molecular structure was generated using Nanotube Modeler
(JCrystal Software Inc.). The specific parameters for the car-
bon nanotube generator were as follows:

Chirality (24,0)
Tube Length 25Å
Bond Length 1.41Å
MWNT 1,2,0.

These parameters resulted in a tube diameter of 18.657Å.
The α-helix used in the simulations had an approximate true
diameter of 15 Å in its free state. Following the recent work
of Wang et al.,48 we treated the carbon atoms of the nanotube
as sp2 carbons and used the associated atom potential func-
tions from AMBER.47 For the sake of simplicity in the simula-
tions reported here, we neglected hydrodynamic interactions
and implicit non-polar solvent forces in the simulations and
focused on the effects of direct atom–atom interactions of the
protein with nanotube atoms. We sought to determine if the
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FIG. 5. t = 0.061ns. Helical structure maintained despite compression by nanotube.

α-helix could maintain its structure using the stiff potential
constraints while moving through a rather tight fitting nan-
otube at a realistic transport rate. Each Brownian subunit was
further treated as an isotropic particle and assigned an effec-
tive spherical radius based on its van der Waals volume and
water molecular diameter. Translational and rotational diffu-
sion coefficients were based on these effective radii.21 A con-

stant external axially directed force was added to the total
axial component of force on each Brownian subunit of the
protein in order to “thread” the protein through the nanochan-
nel. An empirically based distance dependent dielectric func-
tion was used based on the work of Ramstein and Lavery49

with a decay constant of 0.5Å−1. Other general details of the
atomistic-level BD simulation method used here can be found

FIG. 6. t = 0.10ns. Screwlike motion evident.
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FIG. 7. t = 0.17ns. Three to four residues have emerged from the nanotube.

in Yang et al.21 Note that all of the above assumptions could
be relaxed by introducing an MD step periodically between
the BD steps as outlined above.

Figures 4–7 show the real-time sequence of events as the
helical protein moves through the carbon nanotube under an
external driving force of 100 pN. The total real time shown
is approximately 0.2 ns. The α-helix becomes slightly com-
pressed transversely from its free configuration state as it is
forced through the nanotube. The expected screwlike motion
of the helix is evident from these simulations. Note that the
random force was turned off in demonstrating the screw like
motion shown in order to eliminate “fuzziness” in the trajec-
tories. The stiff potential constraints employed are shown to
be sufficient to maintain the integrity of the helix even under
the action of the external driving force and slight compres-
sion of the helix by the nanotube. Note that a variable time
step method was used21 with a range from 50 to 100 fs. We
are currently studying in detail the effects of implicit non-
polar solvent forces, hydrodynamic interactions, and dielec-
tric behavior for these type of systems, which are beyond the
scope of this study. Note that all computations shown here
were conducted on a single processor SUN workstation with
a total computational time less than 30 min.

VI. CONCLUSIONS

The general forms of the FP, Smoluchowski, and
Langevin displacement equations, Eqs. (24), (59), (67), and
(68), respectively, are the same as those obtained in the ab-
sence of external surfaces or for a single B-particle in a con-
fined geometry. The subtle differences are associated with the
specific definitions of the solvent average effects through the

grand friction tensors and solvent equilibrium average force
and torque acting on the B-particles. The Langevin displace-
ment equations describing the changes in center of mass and
orientations of the interacting B-particles, Eqs. (67) and (68)
provide a general practical computational method for the anal-
ysis of flexible macromolecular motions in confined geome-
tries. In general, for given initial orientations and positions
of the B-particles and confining surfaces, the grand friction
matrix and equilibrium average force and torque acting on
the B-particles can be determined through equilibrium canon-
ical ensemble molecular dynamics and force autocorrelation
analysis.21 In this step, the entire system is solvated and al-
lowed to reach an equilibrium state for the solvent. The grand
friction tensor, a numerical array, must be numerically in-
verted to obtain the grand diffusion tensor for use in Eqs.
(67) and (68). The B-particles are then moved over a time
step, t , to obtain their new positions and orientations. In this
step, the forces, torques, and diffusion tensors are assumed
approximately constant at their predetermined values accord-
ing to Eqs. (67) and (68). The entire process is repeated pe-
riodically as necessary, i.e., resolvation and equilibrium MD
followed by Brownian dynamics, and the B-particles’ trajec-
tories are tracked in real time. Alternatively, the implicit fluid
force functions, including the friction tensors, can be approxi-
mated via separate analytical or computational studies for any
given system, such as demonstrated in proteins.25–27 Finally,
the real-time transport of an α-helix protein through a carbon
nanotube was simulated to demonstrate the ease and utility of
the methods given here.
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