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Identification and Structural Characterization of a New
Three-Finger Toxin Hemachatoxin from Hemachatus
haemachatus Venom
Vallerinteavide Mavelli Girish1., Sundramurthy Kumar1.¤, Lissa Joseph1, Chacko Jobichen1,

R. Manjunatha Kini1,2*, J. Sivaraman1*

1 Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore, 2 Department of Biochemistry, Medical College of Virginia,

Virginia Commonwealth University, Richmond, Virginia, United States of America

Abstract

Snake venoms are rich sources of biologically active proteins and polypeptides. Three-finger toxins are non-enzymatic
proteins present in elapid (cobras, kraits, mambas and sea snakes) and colubrid venoms. These proteins contain four
conserved disulfide bonds in the core to maintain the three-finger folds. Although all three-finger toxins have similar fold,
their biological activities are different. A new three-finger toxin (hemachatoxin) was isolated from Hemachatus haemachatus
(Ringhals cobra) venom. Its amino acid sequence was elucidated, and crystal structure was determined at 2.43 Å resolution.
The overall fold is similar to other three-finger toxins. The structure and sequence analysis revealed that the fold is
maintained by four highly conserved disulfide bonds. It exhibited highest similarity to particularly P-type cardiotoxins that
are known to associate and perturb the membrane surface with their lipid binding sites. Also, the increased B value of
hemachotoxin loop II suggests that loop II is flexible and may remain flexible until its interaction with membrane
phospholipids. Based on the analysis, we predict hemachatoxin to be cardiotoxic/cytotoxic and our future experiments will
be directed to characterize the activity of hemachatoxin.
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Introduction

Snake venoms are rich sources of biologically active proteins

and polypeptides [1]. Apart from its crucial role in paralyzing and

digesting prey, snake venom is also an excellent source for novel

toxins. Understanding the mechanisms of action of unique toxins,

helps in the discovery of novel receptors and in the development of

lead therapeutic molecules [2,3]. Snake venom toxins can be

broadly categorized as enzymatic and non-enzymatic proteins.

They are also classified into various toxin superfamilies. Each

superfamily contains structurally similar toxins that exhibit varied

pharmacological activities. Some of the well characterized

superfamilies of snake venom proteins include three-finger toxins

(3FTxs), C-type lectin like proteins (CLPs), phospholipase A2s

(PLA2s), serine proteases and metalloproteases [4–6]. 3FTxs, non-

enzymatic snake venom proteins, are the most abundant toxins

found in elapid (cobras, kraits, mambas and sea snakes) and

colubrid venoms [4,7]. Besides they have been reported from

viperid venoms [8,9]. 3FTxs are composed of 60–74 amino acid

residues and 4–5 disulfide bridges. Structurally, all 3FTxs have a

stable fold with three b-stranded loops extending from a central

core containing all four conserved disulphide bridges, resembling

the three fingers of a hand, and hence their common name

[10,11]. The conserved cysteine residues, along with invariant

residues, such as Tyr25 and Phe27, contribute to proper folding

[12]. Some 3FTxs have an additional fifth disulfide in loop I and II

as in the case of non-conventional toxins and long-chain

neurotoxins, respectively [11,13]. In general, 3FTxs exist as

monomers. However, a few of them exist as homo- or hetero-

dimers in which the subunits are held together by either non-

covalent interactions or by covalent (disulfide) linkages. For

example, k-bungarotoxin [14] and haditoxin [15] exist as non-

covalent homodimers where the individual subunits are structur-

ally related to long-chain and short-chain neurotoxins, respective-

ly. The individual subunits are arranged in anti-parallel orienta-

tion and are held together mostly by hydrogen bonds between

main-chain and side-chain atoms [15–17]. On the other hand,

covalently linked 3FTxs include the homodimeric a-cobratoxin (a-

CT) [18] and the heterodimeric irditoxin [19]. The structural

analysis of the homodimeric a-CT [18] reveals the presence of a b-

strand swap as well as two disulfide linkages between loop I of the

individual subunits, thereby stabilizing the entire dimeric structure

[20]. In irditoxin, the individual subunits are covalently linked

through a single disulfide bond between loop I (of irditoxin B) and

loop II (of irditoxin A) [19]. 3FTxs also exhibit minor structural

variations in the length and conformation of the loops, and
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presence of longer C-terminal or N-terminal extensions (for

details, see [4]). Despite overall similar fold, 3FTxs recognize a

broad range of distinct molecular targets resulting in diverse

biological activities [21,22]. Based on their biological properties,

3FTxs can be classified as postsynaptic neurotoxins targeting the

nicotinic [23] and muscarinic [24] acetylcholine receptors,

cardiotoxins/cytotoxins targeting phospholipid membranes [25],

fasciculins targeting acetylcholinesterase (AChE) [26], calciseptins

and FS2 toxins targeting L-type calcium channels [27,28],

anticoagulants like naniproin, exactin and siamextin [R. M. Kini

and colleagues, unpublished data] targeting various coagulation

complexes, b-blockers like b-cardiotoxin targeting b1- and b2-

adrenergic receptors [29], dendroaspin targeting aIIbb3 (glycopro-

tein IIB-IIIa) [30], cardiotoxin A5 targeting avb3 integrins [31]

and antagonists of a1A [32] and a2A [33]adrenergic receptors. The

ability of 3FTxs to recognize various molecular targets signifies the

need for understanding structure-function relationships of these

toxins. The three-finger fold is also observed in various other

proteins like xenoxins from X. laevis [34] and HEP21 from hen egg

white [35], as well as mammalian Ly-6 alloantigens [36],

urokinase-plasminogen activator receptor [37] and complement

regulatory protein CD59 [38]. 3FTxs in snake venoms are thought

to be evolved from non-toxic ancestral proteins through gene

duplication and accelerated evolution [39,40].

In continuation of our efforts to understand the relationship

between the structure and function of 3FTxs [4,7,15], we isolated,

purified and determined the complete amino acid sequence and

the crystal structure of a new three-finger toxin (hemachatoxin)

from H. haemachatus (Ringhals cobra) venom at 2.43 Å resolution.

The overall fold of hemachatoxin is similar to other known 3FTxs.

The structure and sequence analysis revealed that the fold is

maintained by four conserved disulfide bonds. Our efforts on the

structure and sequence analyses combined with literature suggest-

ed that the unique biological activities of the 3FTxs are associated

with the subtle conformational differences in the three b-strand

loops. In addition, our analysis suggests that hemachatoxin might

be endowed with cardiotoxic/cytotoxic activity.

Results

Isolation and Purification of Hemachatoxin
The H. haemachatus crude venom was fractionated on a gel

filtration (Superdex 30) column. Peak 3 (Figure 1A) from gel

filtration chromatography contained proteins that mostly belong

to 3FTx family. Hemachatoxin (black arrow) was purified from peak

3 on a C18 reverse-phase column (Figure 1B) and further purified

to homogeneity using a shallow gradient on the same column

(Figure 1C). The homogeneity and mass of hemachatoxin was

Figure 1. Purification of hemachatoxin from the venom of H. haemachatus. (A) Size-exclusion chromatogram of the crude venom. The
proteins were eluted using 50 mM Tris-HCl, pH 7.4 and monitored at 280 nm. The fractions of peak 3 (black horizontal bar) were pooled and sub-
fractionated on RP-HPLC. (B) RP-HPLC chromatogram of peak 3 using a linear gradient of 28–50% solvent B. The elution was monitored at 215 nm.
The black arrow indicates the elution of hemachatoxin. (C) The re-purification of hemachatoxin on a shallow gradient of 35–45% solvent B. The
elution was monitored at 215 nm. (D) The ESI-MS profile of hemachatoxin showing the three peaks of mass/charge (m/z) ratio ranging from +4 to +6
charges. The mass of hemachatoxin was determined to be 6835.6860.94 Da.
doi:10.1371/journal.pone.0048112.g001

Hemachatoxin from Ringhals Cobra Venom
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determined by electrospray ionization mass spectrometry (ESI-

MS). ESI-MS showed 3 peaks of mass/charge (m/z) ratio ranging

from +4 to +6 charges (Figure 1D). The mass was calculated to be

6835.6860.94 Da.

Sequence Determination and Analysis
We determined the complete amino acid sequence of

hemachatoxin by automated Edman degradation. The first 45

amino acid residues were determined by sequencing the native

protein while the remaining sequence was determined from

overlapping fragments of chemically-cleaved S-pyridylethylated

hemachatoxin (Figure S1A,S1B, S2) (Table S1). The calculated

mass of 6836.4 Da from the hemachatoxin sequence agrees well

with the experimentally determined molecular mass

(6835.6860.94 Da). The crystal structure (see below) with well

defined electron density for the entire hemachatoxin molecule was

used to confirm the experimentally determined sequence of the

protein as described earlier [41]. The BLAST search [42] showed

that hemachatoxin is closely related (.70% identity) to cardiotox-

ins/cytotoxins, a subgroup of 3FTxs (Figure 2A). Hemachatoxin

exhibited highest identity to cytotoxin 1 (97%) [43], cytotoxin 2

(89%) and cytotoxin 3 (84%) [44], purified from Hemachatus

haemachatus venom. Hemachatoxin differs from cytotoxin 1 [43] in

two amino acid positions (Leu27Met28 is replaced by Me-

t27Leu28). This difference was confirmed by ESI-MS (CNBr

cleavage site and mass of peptides, Table S1), Edman degradation

(Figure S3A, S3B and S3C) and electron density map (see below).

Thus hemachatoxin belongs to the 3FTx family based on sequence

similarity and the position of cysteine residues (Figure 2).

Structural Analysis
The structure of hemachatoxin was determined by the

molecular replacement method using Naja nigricollis toxin-c
coordinates (PDB code 1TGX) as a search model. There were

two hemachatoxin molecules in an asymmetric unit with each

molecule consisting of residues from Leu1 to Asn61 (Figure 3A).

Both monomers are well defined in the electron density map

(Figure 3B). The model was refined to a final R value of 0.23

(Rfree = 0.28) (Table 1). The stereochemical parameters of the

model were analyzed by PROCHECK [45] and all residues are in

the allowed regions of the Ramachandran plot. Each monomer of

the asymmetric unit consists of 6 anti-parallel b-strands

(b2Qb1qb4Qb3qb6Qb5q) that form two b-sheets

(Figure 3A). The first b-sheet consists of two anti-parallel b-

strands, b1 (Lys2-Lys6) and b2 (Phe10-Thr14), while the second

contains four anti-parallel strands, b3 (Leu21-Thr26), b4 (Ile35-

Thr40), b5 (Ala42-Ser47) and b6 (Lys51-Asn56). The fold of

hemachatoxin is maintained by four disulfide bonds, and these

cysteines are strictly conserved among the 3FTxs. The three

fingers of hemachatoxin consist of the secondary structures

b1Vb2, b3Vb4 and b5Vb6 (Figure 3A). The electrostatic surface

representation shows that loops I and II are predominantly

charged residues, whereas loop III is highly hydrophobic in nature

(Figure 3C). The sequence alignment revealed the conserved

Figure 2. Multiple sequence alignment of hemachatoxin with cardiotoxins/cytotoxins (A) and other three-finger toxins (B). Toxin
names, species and accession numbers are shown. Conserved residues in all the sequences are highlighted in black. The type of cardiotoxin based on
the conserved Pro31 is highlighted in grey. Disulfide linkages and loop regions are also shown. The sequence identity (in percentage) of each protein
with hemachatoxin is shown at the end of each sequence.
doi:10.1371/journal.pone.0048112.g002

Hemachatoxin from Ringhals Cobra Venom

PLOS ONE | www.plosone.org 3 October 2012 | Volume 7 | Issue 10 | e48112



residues of hemachatoxin as well as its identity to cardiotoxins/

cytotoxins (Figure 4A). Also, hemachatoxin shared the common

three-finger fold and molecular shape when compared to its

structural homologues (Figure 4B) [46].

Discussion

The three-dimensional structures of snake venom 3FTxs,

particularly that of neurotoxins [15,20,47,48] and cardiotoxins/

cytotoxins [49–52] have been extensively studied. Here we report

the structural characterization of a new 3FTx, hemachatoxin from

the venom of H. haemachatus. The structural analyses indicate that

hemachatoxin belongs to cardiotoxin/cytotoxin subgroup of 3FTx

family. It exhibited 97% sequence identity to cytotoxin 1 [43],

whose crystal structure has not been determined. ESI-MS, Edman

degradation and crystal structure data indicates that hemacha-

toxin differs from cytotoxin 1 in two amino acid positions

(Leu27Met28 is replaced by Met27Leu28) and hence are isoforms.

Multiple isoforms of 3FTxs are known to be present in single snake

venom [53,54].

As mentioned in the introduction section, 3FTxs, including

hemachatoxin, share overall structural similarity (Figure 4B), but

they differ from each other in their biological activities. Subtle

variations in the size and conformation of b-sheet loops dictate the

biological specificities in 3FTxs. For example, the well character-

ized long-chain (e.g. a-cobratoxin, a-bungarotoxin) and short-

chain (e.g. erabutoxin a, toxin-a) neurotoxins that differ in loop

size and length of C-terminal extension, exhibit distinct specificity

for nAChR subtypes. Short-chain neurotoxins has a longer loop I

(12–13 amino acid residues (aa) vs. 9–12 aa in long-chain

neurotoxins), a shorter loop II (15–16 aa vs. 19–20 aa in long-

chain neurotoxins) and C-terminal tail (2 aa vs. 7–24 aa in long-

chain neurotoxins) when compared to long-chain neurotoxins.

This longer loop I of short-chain neurotoxins contains key

functional residues that are important for recognizing the nicotinic

acetylcholine receptor [55,56], while shorter loop I of long-chain

neurotoxins lacks these functional residues. The long C-terminal

tail appears to ‘substitute’ for the loop I functional residues and

contribute to the receptor binding [57,58]. The deletion of this C-

terminal tail reduces the binding affinity [59,60]. Similarly, the

difference in the conformations of the three loops appears to

dictate the biological specificities of these neurotoxins. Both short-

chain and long-chain neurotoxins exhibit equi-potency towards

muscle abcd nAChR [56,60] but only long-chain neurotoxins, not

short-chain neurotoxins, bind to neuronal a7 nAChR with high

affinity [61,62]. Detailed structure-function studies indicate that

the presence of the fifth disulfide bond in loop II enables long-

chain neurotoxins to recognize a7 nAChR. The short helical

segment formed by the fifth disulfide is thought to be crucial for

the target receptor recognition [62,63]. Thus, size and conforma-

tion of the loops indeed affects the interaction of neurotoxins with

their receptor. Similarly, structures of loop I in fasciculin [64], and

loop III in FS2 [65] and dendroaspin [66] have distinct

conformations. Hence, subtle conformational differences in the

loops of 3FTxs may help in identifying putative functions.

Hemachatoxin shows highest similarity to P-type cardiotoxins

[67] (Figure 2A). Similar to these P-type cardiotoxins, hemacha-

toxin has the conserved Pro31 and cytolytic site. The three-

dimensional structure is similar to P-type cardiotoxins (Figure 4B)

(RMSD values, 0.8 to 2.1 Å for 58 to 60 Ca atoms; Z score values,

12.2 to 9.8). Besides, hemachatoxin shows considerable structural

identity with S-type cardiotoxins (RMSD 1.1 to 2.8 for 58 to 59

Ca atoms; Z score values, 10.5 to 6.3) (data not shown). However,

the similarity with other groups of 3FTxs, such as neurotoxins,

muscarinic toxins, fasciculin, FS2 or dendroaspin, is relatively low

(Figure 2B, Table 2). The P-type cardiotoxins bind to phospho-

lipids and perturb the membrane surface with their lipid binding

sites (6–13, 24–37 and 46–50 amino acid positions in the tip of

loop I, II and III, respectively) [67–69]. These hydrophobic

residues flanked by cationic residues form cytolytic region in

Figure 3. Structure of hemachatoxin. (A) Ribbon representation of the hemachatoxin monomer. Cysteine bonds are shown in yellow. b-strands,
N- and C- terminals are labeled. (B) Electron density map. A sample final 2Fo-Fc map of hemachatoxin shows the region from Tyr23 to Lys29. The map
is contoured at a level of 1s. (C) The electrostatic surface potential of hemachatoxin is shown in the same orientation as Figure 3A. Blue indicates
positive potential and red indicates negative potential in units kT/e. All the structure related figures of this paper were prepared using the program
PyMol [77].
doi:10.1371/journal.pone.0048112.g003
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cardiotoxins [70,71]. We compared the B values of the cardiotoxin

loops with those of hemachatoxin. All three loops in P-type

cardiotoxins showed a high B value (an increase of 5–8 Å2)

compared with the rest of the molecule. A similar increase in B

values (upto 8 Å2 increase) was also observed in hemachatoxin

loops. Only loop II has the crystal contact suggesting that the

observed increase in B values might be limited by the symmetry

contacts. Nonetheless this analysis suggests that loop II is flexible

and may remain flexible until its interaction with membrane

phospholipids. These structural analyses also suggest that hema-

chatoxin might be having cardiotoxic/cytotoxic activity and our

future experiments will be directed to characterize the activity of

hemachatoxin.

Conclusion
In summary we report the isolation, purification and structural

characterization of a new 3FTx, hemachatoxin from H.

haemachatus venom. The structural and sequence analysis reveals

hemachatoxin to be a P-type cardiotoxin. Close comparison of the

loops of hemachatoxin with other 3FTxs suggests that hemacha-

toxin has structural features similar to the well characterized

cardiotoxins. The structural analysis combined with literature

predicts hemachatoxin to have cardiotoxic/cytotoxic properties.

Additional experiments are required to fully characterize the

activity of hemachatoxin.

Materials and Methods

Protein Purification
Lyophilized H. haemachatus crude venom was purchased from

South African Venom Suppliers (Louis Trichardt, South Africa).

Size-fractionation of the crude venom (100 mg in 1 ml of distilled

water) was carried out on a Superdex 30 gel-filtration column

(1.6660 cm) pre-equilibrated with 50 mM Tris-HCl buffer

(pH 7.4). The proteins were eluted with the same buffer using

an ÄKTA purifier system (GE Healthcare, Uppsala, Sweden).

Peak 3 from the gel-filtration chromatography was sub-fraction-

ated by reverse phase–high performance liquid chromatography

(RP-HPLC) on a Jupiter C18 column (106250 mm) equilibrated

with solvent A (0.1% TFA). The bound proteins were eluted using

a linear gradient of 28–50% solvent B (80% acetonitrile in 0.1%

TFA). The mass of each fraction were analyzed on a LCQ FleetTM

Ion Trap LC/MS system (Thermo Scientific, San Jose, USA).

XcaliburTM 2.1 and ProMass deconvolution 2.8 software were

used, respectively, to analyze and deconvolute the raw mass data.

The peak corresponding to hemachatoxin was pooled and re-

chromatographed using a shallow gradient of 35–45% solvent B

on the same column. The mass and homogeneity of purified

hemachatoxin was analyzed as described above.

Sequencing
Hemachatoxin (1.2 mg) was dissolved in 500 ml of denaturation

buffer (130 mM Tris-HCl pH 8.5, 1 mM EDTA, 6 M guanidine

HCl). After the addition of the reducing agent b-mercaptoethanol

(1.23 ml; 256molar excess of disulfide bonds), the reaction mixture

was incubated under a nitrogen stream for 3 h at room

temperature. Subsequently, the alkylating reagent 4-vinylpyridine

(5.7 ml; 36molar excess of b-mercaptoethanol) was added and

incubated under a nitrogen stream for another 2 h at room

temperature. The S-pyridylethylated protein was immediately

separated from the reaction mixture by RP-HPLC on a Jupiter

C18 column (4.66250 mm) using a linear gradient of 20–60%

solvent B and the mass was determined by ESI-MS as discussed

above. For cyanogen bromide (CNBr) cleavage, the S-pyridy-

lethylated protein (0.82 mg) was dissolved in 410 ml of 70% TFA

to which CNBr (67.7 ml in 70% TFA) was added in order to yield

a final protein concentration of 1 mg/ml. CNBr was used at a

molar ratio to methionine residue of 200:1. The reaction tube was

incubated in complete darkness for 24 h at room temperature.

After 24 h, 8.2 ml of Milli-Q water (106of reaction mixture) was

added into the reaction tube and, subsequently, the reaction tube

was lyophilized overnight [72]. The lyophilized sample was re-

solubilized in 3 ml of 0.1% TFA for separation by reverse-phase

chromatography on a Jupiter C18 column (4.66250 mm) using a

linear gradient of 10–50% solvent B. The masses of the peptide

fragments were determined by ESI-MS (data not shown). The N-

terminal sequence of native hemachatoxin and peptides generated

by CNBr cleavage (identified by mass spectrometry data) were

determined by automated Edman degradation using a PerkinEl-

mer Life Sciences Model 494 pulsed liquid-phase sequencer

(Procise, Foster City, USA) with an on-line Model 785A

phenylthiohydantoin-derivative analyzer. The complete amino

Table 1. Crystallographic data and refinement statistics.

Data collection*

Unit Cell (Å) a = 49.7, b = 50.1, c = 57.8

Resolution range (Å) 50-2.43 (2.47-2.43)

Wavelength (Å) 1.5418

Observed reflections 28936

Unique reflections 5614

Completeness (%) 96.2 (84.5)

Redundancy 3.9 (3.7)

aRsym 0.06 (0.17)

I/SigI 20.6 (11.7)

Refinement

Resolution range (Å) I.s(I) 30–2.43

bRwork 0.23

cRfree 0.28

Root mean square deviation

Bond lengths (Å) 0.008

Bond angles (u) 1.377

Average B-factors (Å2)

Protein atoms (938 atoms) 40.30

Water molecules (62 atoms) 37.1

Wilson B value 36.54

Ramachandran statistics

Most favored regions (%) 98.31

Allowed regions (%) 1.69

Disallowed regions (%) 0

Statistics from the current model.
aRsym =S|Ii2,I.|/S|Ii| where Ii is the intensity of the ith measurement, and ,I.
is the mean intensity for that reflection.
bRwork =S| Fobs2Fcalc|/S|Fobs| where Fcalc and Fobs are the calculated and
observed structure factor amplitudes, respectively.
cRfree = as for Rwork, but for 10.0% of the total reflections chosen at random and
omitted from refinement.
*Values in the parenthesis are the highest resolution bin values.
doi:10.1371/journal.pone.0048112.t001

Hemachatoxin from Ringhals Cobra Venom

PLOS ONE | www.plosone.org 5 October 2012 | Volume 7 | Issue 10 | e48112



Hemachatoxin from Ringhals Cobra Venom

PLOS ONE | www.plosone.org 6 October 2012 | Volume 7 | Issue 10 | e48112



acid sequence of hemachatoxin was determined by overlapping

sequences.

Crystallization and Structure Determination
Crystallization screens were performed with the hanging drop

vapor diffusion method using Hampton Research and Jena

Bioscience screens. The protein was at a concentration of

35 mg/ml, and 1:1 crystallization drops were set up with the

reservoir solution. The diffraction quality crystals of hemacha-

toxin were obtained from a reservoir solution containing 150 mM

ammonium acetate, 100 mM sodium acetate (pH 4.6) and 25%

polyethylene glycol 4000. Crystals were grown up to 10 days and

were cryo-protected with 20% (w/v) glycerol supplemented (the

mother liquor concentration was maintained by exchanging

water with glycerol) with the crystallization condition. Hemacha-

toxin crystal diffracted up to 2.43 Å resolution and belongs to

P212121 space group. A complete data set was collected using an

R-Axis IV++ image plate mounted on a rotating anode Rigaku X-

ray generator. The data set was processed and scaled using

HKL2000 [73]. The structure of hemachatoxin was determined

by the molecular replacement method using the program Phaser

[74]. The coordinates of Naja nigricollis toxin-c monomer structure

(PDB code 1TGX; sequence identity 67%) were used as a search

model. The structure solution was obtained with LLG- 94; and

TFZ score of 12.3 and RFZ score 4.5. Initial rigid body

refinement gave Rwork 36.6 (Rfree 43.5). There were two

hemachatoxin molecules located in the asymmetric unit. The

resultant electron density map was of good quality. Several cycles

of model building/refitting using the program Coot [75], and

alternated with refinement using the program Phenix [76], lead

to the convergence of R-values (Table 1). Non-crystallographic

symmetry (NCS) restraints were used throughout the refinement

process.

Accession Numbers
The protein sequence data reported in this paper will appear in

the UniProt Knowledgebase under the accession number

B3EWH9. The three dimensional coordinates and structure

factors of hemachatoxin were deposited in the RCSB (www.pdb.

org) database with the access code 3VTS.

Supporting Information

Figure S1 Reduction and pyridylethylation of hemacha-
toxin. (A) The S-pyridylethylated hemachatoxin (black arrow) was

purified on a linear gradient of 20–60% solvent B. (B) The ESI-

MS profile of S-pyridylethylated hemachatoxin showing the four

peaks of mass/charge (m/z) ratio ranging from +4 to +7 charges.

The mass was determined to be 7685.1261.14 Da.

(TIF)

Figure S2 Separation of peptides derived from cyano-
gen bromide cleavage of the S-pyridylethylated hema-
chatoxin on RP-HPLC. A linear gradient of 10–50% solvent B

was used. The peptides A and B were sequenced by Edman

degradation method.

(TIF)

Figure 4. Comparison of hemachatoxin with other three-finger toxins. (A) Structure based sequence alignment of hemachatoxin and its
homologs, cardiotoxin 3 (1H0J), cytotoxin 3 (1XT3), cardiotoxin A3 (2BHI), cardiotoxin VI (1UG4) and cardiotoxin V (1KXI), (all from Naja atra),
cardiotoxin VII4 (1CDT) from Naja mossambica and toxin-c (1TGX) (a cardiotoxin from Naja nigricollis). This figure was generated using the programs
ClustalW [78] and ESPript [79]. (B) Comparison of hemachatoxin with its structural homologs. Hemachatoxin (brown), cardiotoxin 3 [1H0J] (cyan),
cytotoxin 3 [1XT3] (black), carditotoxin A3 [2BHI] (blue), cardiotoxin VI [1UG4] (red), cardiototoxin V [1KXI] (pink), cardiotoxin VII4 [1CDT] (green) and
toxin-c [1TGX] (yellow).
doi:10.1371/journal.pone.0048112.g004

Table 2. Structural similarity of hemachatoxin with 3FTxs.

Protein Source PDB RMSD* Z score Reference

Cardiotoxin V Naja atra 1KXI 1.1 Å(60) 12.2 [49]

Cardiotoxin A3 Naja atra 2BHI 0.8 Å(59) 12.0 [50]

Cardiotoxin 3 Naja atra 1H0J 0.9 Å(59) 11.7 [51]

Cytotoxin 3 Naja atra 1XT3 0.8 Å(59) 11.6 [80]

Toxin-c Naja atra 1TGX 1.6 Å(59) 11.1 [52]

Cardiotoxin VI Naja atra 1UG4 1.8 Å(59) 11 [81]

Cardiotoxin VII4 Naja atra 1CDT 1.1 Å(58) 10.5 [82]

Cytotoxin 2 Naja naja oxiana 1CCQ 2.1 Å(59) 9.8 [83]

Muscarinic M1 toxin Dendroaspis angusticeps 2VLW 2.4 Å(55) 9.1 [84]

Haditioxin Ophiophagus hannah 3HH7 2.4 Å(58) 8.5 [15]

a-bungarotoxin Bungarus multicinctus 2QC1 2.4 Å(58) 8.4 [85]

Erabutoxin A Laticauda semifasciata 3ERA 2.3 Å(56) 7.9 [86]

Fasciculin 2 Dendroaspis angusticeps 1FSC 2.3 Å(55) 7.5 [87]

Toxin FS2 Dendroaspis polylepis polylepis 1TFS 2.9 Å(56) 7.4 [65]

Dendroaspin Dendroaspis jamesoni kaimosae 1DRS 3.5 Å(49) 3.6 [66]

*Number of Ca atoms superimposed given in the parenthesis.
doi:10.1371/journal.pone.0048112.t002
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Figure S3 Chromatographic profiles of PTH-amino acid
(phenylthiohydantoin-amino acid) residues 27 and 28 of
the Edman degradation cycles 29 and 30. (A) Elution

profile of standard PTH-amino acid residues. (B) Cycle 29 of

Edman degradation showing the 27th residue, PTH-L. PTH-T

and PTH-M denotes the carryover from 28th and 27th cycle,

respectively. (C) Cycle 30 of Edman degradation showing the 28th

residue, PTH-M. PTH-L denote the carryover from 29th cycle.

(TIF)

Table S1 The sequence determination of hemacha-
toxin.
(DOC)

Author Contributions

Conceived and designed the experiments: JS RMK. Performed the

experiments: VMG SK LJ CJ. Analyzed the data: JS RMK VMG CJ.

Contributed reagents/materials/analysis tools: JS RMK. Wrote the paper:

JS RMK VMG CJ.

References

1. Dufton MJ (1993) Kill and cure: the promising future for venom research.

Endeavour 17: 138–140.

2. Colquhoun LM, Patrick JW (1997) Pharmacology of neuronal nicotinic

acetylcholine receptor subtypes. Adv Pharmacol 39: 191–220.

3. Lewis RJ, Garcia ML (2003) Therapeutic potential of venom peptides. Nat Rev

Drug Discov 2: 790–802.

4. Kini RM, Doley R (2010) Structure, function and evolution of three-finger

toxins: mini proteins with multiple targets. Toxicon 56: 855–867.

5. Ogawa T, Chijiwa T, Oda-Ueda N, Ohno M (2005) Molecular diversity and

accelerated evolution of C-type lectin-like proteins from snake venom. Toxicon

45: 1–14.

6. Kang TS, Georgieva D, Genov N, Murakami MT, Sinha M, et al. (2011)

Enzymatic toxins from snake venom: structural characterization and mechanism

of catalysis. FEBS J 278: 4544–4576.

7. Pawlak J, Mackessy SP, Fry BG, Bhatia M, Mourier G, et al. (2006)

Denmotoxin, a three-finger toxin from the colubrid snake Boiga dendrophila

(Mangrove Catsnake) with bird-specific activity. J Biol Chem 281: 29030–29041.

8. Junqueira-de-Azevedo IL, Ching AT, Carvalho E, Faria F, Nishiyama MY, et

al. (2006) Lachesis muta (Viperidae) cDNAs reveal diverging pit viper molecules

and scaffolds typical of cobra (Elapidae) venoms: implications for snake toxin

repertoire evolution. Genetics 173: 877–889.

9. Pahari S, Bickford D, Fry BG, Kini RM (2007) Expression pattern of three-

finger toxin and phospholipase A2 genes in the venom glands of two sea snakes,

Lapemis curtus and Acalyptophis peronii: comparison of evolution of these

toxins in land snakes, sea kraits and sea snakes. BMC Evol Biol 7: 175.

10. Tsetlin V (1999) Snake venom alpha-neurotoxins and other ‘three-finger’

proteins. Eur J Biochem 264: 281–286.

11. Kini RM (2002) Molecular moulds with multiple missions: functional sites in

three-finger toxins. Clin Exp Pharmacol Physiol 29: 815–822.

12. Dufton MJ, Hider RC (1983) Conformational properties of the neurotoxins and

cytotoxins isolated from Elapid snake venoms. CRC Crit Rev Biochem 14: 113–

171.

13. Nirthanan S, Charpantier E, Gopalakrishnakone P, Gwee MC, Khoo HE, et al.

(2003) Neuromuscular effects of candoxin, a novel toxin from the venom of the

Malayan krait (Bungarus candidus). Br J Pharmacol 139: 832–844.

14. Oswald RE, Sutcliffe MJ, Bamberger M, Loring RH, Braswell E, et al. (1991)

Solution structure of neuronal bungarotoxin determined by two-dimensional

NMR spectroscopy: sequence-specific assignments, secondary structure, and

dimer formation. Biochemistry 30: 4901–4909.

15. Roy A, Zhou X, Chong MZ, D’hoedt D, Foo CS, et al. (2010) Structural and

functional characterization of a novel homodimeric three-finger neurotoxin from

the venom of Ophiophagus hannah (king cobra). J Biol Chem 285: 8302–8315.

16. Dewan JC, Grant GA, Sacchettini JC (1994) Crystal structure of kappa-

bungarotoxin at 2.3-A resolution. Biochemistry 33: 13147–13154.

17. Grant GA, Al-Rabiee R, Xu XL, Zhang Y (1997) Critical interactions at the

dimer interface of kappa-bungarotoxin, a neuronal nicotinic acetylcholine

receptor antagonist. Biochemistry 36: 3353–3358.

18. Osipov AV, Kasheverov IE, Makarova YV, Starkov VG, Vorontsova OV, et al.

(2008) Naturally occurring disulfide-bound dimers of three-fingered toxins: a

paradigm for biological activity diversification. J Biol Chem 283: 14571–14580.

19. Pawlak J, Mackessy SP, Sixberry NM, Stura EA, Le Du MH, et al. (2009)

Irditoxin, a novel covalently linked heterodimeric three-finger toxin with high

taxon-specific neurotoxicity. FASEB J 23: 534–545.

20. Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, et al. (2012)

Dimeric a-cobratoxin X-ray structure: localization of intermolecular disulfides

and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem

287: 6725–6734.
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of toxin gamma, a cardiotoxin from Naja nigricollis venom. Crystal packing
reveals a model for insertion into membranes. J Mol Biol 239: 122–136.

53. Carsi JM, Potter LT (2000) m1-toxin isotoxins from the green mamba

(Dendroaspis angusticeps) that selectively block m1 muscarinic receptors.
Toxicon 38: 187–198.

54. Fernández J, Alape-Girón A, Angulo Y, Sanz L, Gutiérrez JM, et al. (2011)
Venomic and antivenomic analyses of the Central American coral snake,

Micrurus nigrocinctus (Elapidae). J Proteome Res 10: 1816–1827.
55. Ruan KH, Stiles BG, Atassi MZ (1991) The short-neurotoxin-binding regions on

the alpha-chain of human and Torpedo californica acetylcholine receptors.

Biochem J 274 (Pt 3): 849–854.
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76. Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, et al. (2010)

PHENIX: a comprehensive Python-based system for macromolecular structure
solution. Acta Crystallogr D Biol Crystallogr 66: 213–221.

77. Delano WL (2002) The PyMOL molecular graphics system.

78. Larkin M, Blackshields G, Brown N, Chenna R, McGettigan P, et al. (2007)
Clustal W and Clustal X version 2.0. Bioinformatics 23: 2947–2948.
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86. Gaucher JF, Ménez R, Arnoux B, Pusset J, Ducruix A (2000) High resolution x-
ray analysis of two mutants of a curaremimetic snake toxin. Eur J Biochem 267:

1323–1329.

87. le Du MH, Housset D, Marchot P, Bougis PE, Navaza J, et al. (1996) Structure

of fasciculin 2 from green mamba snake venom: evidence for unusual loop
flexibility. Acta Crystallogr D Biol Crystallogr 52: 87–92.

Hemachatoxin from Ringhals Cobra Venom

PLOS ONE | www.plosone.org 9 October 2012 | Volume 7 | Issue 10 | e48112


	Virginia Commonwealth University
	VCU Scholars Compass
	2012

	Identification and Structural Characterization of a New Three-Finger Toxin Hemachatoxin from Hemachatus haemachatus Venom
	Vallerinteavide Mavelli Girish
	Sundramurthy Kumar
	Lissa Joseph
	See next page for additional authors
	Downloaded from
	Authors


	pone.0048112 1..9

