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Abstract Heterogeneity of neural attributes has recently gained a lot of attention and is increasing
recognized as a crucial feature in neural processing. Despite its importance, this physiological feature
has traditionally been neglected in theoretical studies of cortical neural networks. Thus, there is still a
lot unknown about the consequences of cellular and circuit heterogeneity in spiking neural networks.
In particular, combining network or synaptic heterogeneity and intrinsic heterogeneity has yet to be
considered systematically despite the fact that both are known to exist and likely have significant roles
in neural network dynamics. In a canonical recurrent spiking neural network model, we study how these
two forms of heterogeneity lead to di↵erent distributions of excitatory firing rates. To analytically char-
acterize how these types of heterogeneities a↵ect the network, we employ a dimension reduction method
that relies on a combination of Monte Carlo simulations and probability density function equations.
We find that the relationship between intrinsic and network heterogeneity has a strong e↵ect on the
overall level of heterogeneity of the firing rates. Specifically, this relationship can lead to amplification
or attenuation of firing rate heterogeneity, and these e↵ects depend on whether the recurrent network is
firing asynchronously or rhythmically firing. These observations are captured with the aforementioned
reduction method, and furthermore simpler analytic descriptions based on this dimension reduction
method are developed. The final analytic descriptions provide compact and descriptive formulas for how
the relationship between intrinsic and network heterogeneity determines the firing rate heterogeneity
dynamics in various settings.

Keywords Leaky integrate-and-fire · Recurrent E/I Network · Intrinsic Heterogeneity · Network
Heterogeneity · Dimension Reduction

1 Introduction

Theoretical studies of spiking neuronal networks have been extremely valuable for experimentalists and
theoreticians. Uncovering the underlying mechanisms of complex phenomena in neural circuits often
requires theory and/or computation. In this vein, this paper focusses on the e↵ects of heterogeneous
neural attributes in model neural networks. Heterogeneity is an undeniable physiological feature that has
often been ignored in theoretical studies because it complicates theoretical analyses. Not only is there
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ample experimental evidence for heterogeneity of neural networks at many scales (Markram et al, 1997;
Parker, 2003; Marder and Goaillard, 2006; Bremaud et al, 2007), but the importance of heterogeneity in
neural computational is becoming more apparent. Indeed, a combination of theoretical and experimental
studies on neural networks have demonstrated the value of heterogeneity (Ostojic et al, 2009; Hermann
and Touboul, 2012). In particular, theoretical studies have shown that heterogeneity can generally lead
to e�cient neural coding (Shamir and Sompolinsky, 2006; Chelaru and Dragoi, 2008; Padmanabhan
and Urban, 2010; Marsat and Maler, 2010; Mejias and Longtin, 2012; Tripathy et al, 2013). However,
there is still not a lot known about heterogeneity. Specifically, how do di↵erent sources of heterogeneity
interact and lead to di↵erent neural network activity?

We make a distinction between di↵erent sources of heterogeneity, addressing two forms: intrinsic
and network heterogeneity, both of which are known to exist. Intrinsic heterogeneity are di↵erences due
to cellular properties that exist without coupling to other neurons (Marder and Goaillard, 2006; Pad-
manabhan and Urban, 2010), for example the membrane time constant, threshold for spiking, reversal
potentials, etc. Network heterogeneity, that is heterogeneity induced by coupling in a neural network, can
arise from di↵erences in synaptic coupling between neurons (Parker, 2003; Marder and Goaillard, 2006;
Bremaud et al, 2007; Oswald et al, 2009). To the best of our knowledge, the physiological relationship
between these two sources of heterogeneity are not known. Therefore, we systematically study the e↵ects
of these forms of heterogeneity on a canonical recurrent spiking neural network. The main motivation
for studying the relationship between di↵erent heterogeneous components is to provide a framework for
possibly reconciling experimental measurements of multiple neural attributes; recent theoretical studies
have shown that the network components can interact nonlinearly with surprising results (Marder and
Goaillard, 2006; Mejias and Longtin, 2014; Hunsberger et al, 2014) (see Discussion section). The results
of our study clearly show how multiple components e↵ect the firing rate variability and might apply to
experiments that measure the heterogeneity of these (or possibly other) neural attributes.

The network we consider is noisy with variable spiking similar to that of real cortical neurons, and
is excitable (i.e., neurons only fire with noise and/or synaptic coupling). We analyze how intrinsic and
network heterogeneity together alter the dynamics of strongly coupled networks of neurons in various
regimes ranging from asynchronous to rhythmic (i.e, ’ping’ network) firing. We focus on the dynamics of
the excitatory neurons because they are the predominate cells for propagating signals to di↵erent layers
in the cortex. Unsurprisingly, we find that when both intrinsic and network heterogeneity increase inde-
pendently (i.e., when there is no relationship between them), the excitatory firing rates tend to have a
larger range. However, for a fixed level of heterogeneity, the relationship or correlation between intrinsic
and network heterogeneity strongly a↵ects the overall range of excitatory firing rates. Moreover, these
e↵ects depend on what regime the neural network is in: during rhythmic firing, excitatory firing rate
ranges decrease when intrinsic and network heterogeneity correlation increases; during asynchronous fir-
ing, excitatory firing rate ranges increase when intrinsic and network heterogeneity correlation increases.

To better understand these observations, we implement a dimension reduction method that relies on
a combination of Monte Carlo simulations and analytic reductions. The reduction theory is based in part
on our previous work (Ly, 2013; Nicola et al, 2015), and on the work of others (Moreno-Bote and Parga,
2006; Nesse et al, 2008), where particular state variables are assumed to be slow and thus decoupled
from other variables. Fortunately, the dimension reduction method captures the qualitative trend of the
range of excitatory firing rates as heterogeneity is changed. This further inspires a simpler yet more
revealing analytic description for how intrinsic and network heterogeneity combine to yield di↵erent
ranges of excitatory firing rates. This study gives a more complete understanding of how heterogeneities
interact and result in modulation of the firing rate statistics, which may ultimately lead to a better
understanding of neural coding in coupled neural networks.
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2 Methods

2.1 Recurrent spiking LIF network

The recurrent spiking network of excitatory (E) and inhibitory (I) neurons are modeled as leaky
integrate-and-fire (LIF) neurons. The intrinsic and network heterogeneity are modeled simply by two
parameters that are allowed to vary among the neurons. Other modeling studies impose heterogeneity
in the response property (Tripathy et al, 2013), e.g., orientation tuning (Shamir and Sompolinsky, 2006;
Chelaru and Dragoi, 2008). The models here e↵ectively have heterogeneous response properties, but our
focus is on two di↵erent sources that lead to that property. We model the intrinsic heterogeneity by
having di↵erent voltage thresholds for spiking (Mejias and Longtin, 2012; Yim et al, 2013), equivalent to
how many have incorporated intrinsic heterogeneity (Strogatz and Mirollo, 1991; Chow, 1998; Burton
et al, 2012; Ly et al, 2012). The network heterogeneity is modeled by scaling the synaptic input by
a value, e↵ectively making each neuron receive di↵erent levels of network input. There is evidence in
slice recordings that the probability of connection depends on distance (Oswald et al, 2009; Levy and
Reyes, 2012), although we are not taking into account spatial dynamics, this model is plausible assuming
synaptic strengths do not all inversely scale with connection probability. Moreover, there is abundant
evidence for di↵erences in synaptic coupling between neurons (Parker, 2003; Marder and Goaillard, 2006;
Bremaud et al, 2007).

The equations for the excitatory neurons indexed by j 2 {1, 2, . . . , N
e
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where the leak, inhibitory and excitatory reversal potentials are 0, E
I

, and E
E

, respectively with E
I

<
0 < E

E

(the voltage is scaled to be dimensionless so that a leak/resting value of -65mV maps to 0 and
a threshold voltage of -55mV maps to 1 (see Table 1)). ⇠

j

(t) are uncorrelated white noise processes,
p
xy

is the proportion of neuron type y (randomly chosen) that provides presynaptic input to neuron
type x (x, y 2 {e, i}). The second line in the equations describes the refractory period at spike time
t⇤: when the neuron’s voltage crosses threshold ✓

j

(intrinsic heterogeneity), the neuron goes into a
refractory period for ⌧

ref

where the voltage is undefined1, after which we set the neuron’s voltage to
0. In the last line, t

l

denotes the spike times of the jth excitatory neuron. There are two factors in the
equation for the total synaptic conductances (g

ee

and g
ei

): q
j

and �

xy

p

xy

N

y

; the latter does not depend

on the individual neuron and is the same across the entire (E) population. However, q
j

introduces
network heterogeneity by scaling both excitatory and inhibitory synaptic inputs. This form of network
heterogeneity is loosely motivated by recent results by Xue et al (2014), who found that pyramidal
neurons receive relatively similar proportions of excitation and inhibition in layer 2/3 of mammalian
visual cortex (i.e., some cells receive more E/I while some cells receive less E/I). The q

j

factors are a

1 In refractory, the other variables are governed by their ODEs

3



Table 1 Parameters for all simulations

Parameter ⌧

m

⌧

ref

E
I

E
E

⌧

n

p

xy

For E and I: 20ms 2ms -0.5 6.5 5ms 0.2

Parameter ⌧

d

⌧

r

↵ N

e/i

E cells 1ms 5ms 1 800
I cells 2ms 10ms 2 200

Table 2 Parameters for specific regimes

Regime: �

ei

�

ie

�

ee

�

ii

�

E

�

I

Noisy Rhythm 10 8 12.25 5 2.5 3
Asynchronous 10 8 0.05 5 3.5 4
Sharp Rhythm 10 8 11.5 5 2.55 –

straight forward way to capture the di↵erent levels of ’balanced’ input (see equation (2)). The term
network heterogeneity is often used to mean that the structure of the network is heterogeneous; here,
we use that term to mean that the network activity induces heterogeneity via network inputs.

Similarly, for the inhibitory neurons indexed by k 2 {1, 2, . . . , N
i

}, the equations are:
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Notable di↵erences compared to excitatory neurons are that the threshold values are all equal to 1,
and there is not a q

k

factor that scales the presynaptic inputs from the network. Although one could
in principle relax these assumptions and augment the subsequent theory in a standard way, we made
this choice because the results in this paper would not be diminished, and to avoid distracting from our
focus on excitatory neuron behavior. The parameter values for all of the figures are in Table 1.

We consider two regimes of this model: (i) noisy rhythm, where the power spectrum is larger
for certain frequency values, and (ii) asynchronous that has a flat power spectrum. Figure 1 shows a
comparison of various quantities in the three regimes considered in this paper (see Table 2 for parameter
values of di↵erent regimes).

Monte Carlo Simulations: Monte Carlo simulations were run for 100 s of simulation time for ten realiza-
tions (Fig. 1 has only one realization) with a time step �t = 0.2ms, and the firing rates statistics were
binned in non-overlapping 1ms time windows. We use a common estimate of the standard deviation of
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the firing rate calculations with Monte Carlo simulations across the n = 10 realizations:
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the gray shaded regions in panels A and C of Figures 2–4 represent 1 standard deviation above and
below the sample mean: ⌫

m

(j)± �
⌫(j)

. The Monte Carlo simulation plots in panel B of Figures 2–4 did
not include standard deviation regions because the plots would be harder to see. The error bars of the
Monte Carlo simulations in panel D of Figures 2–4 and Figure 5A, C, E, represent an estimate of the
standard deviation of: max

j
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cause estimating 2Cov(⌫(max), ⌫(min)) would require storing an additional O(N2

e

) sized vector, as well
as O(n2) simulations for similar order accuracy (for every single parameter set), and the computation
times are already quite long.

2.2 Model with a sharper rhythm

Another model considered is one with less variable inhibitory firing that ultimately leads to sharper
rhythms in the excitatory neurons. The reason for an observed sharper rhythm (Fig. 1F) is that in these
recurrent networks, the inhibitory neuron firing silence and thus shape the rhythm of the excitatory
neurons (Börgers and Kopell, 2003; Economo and White, 2012). The only change is in the inhibitory
neuron’s voltage equation which no longer has a noise term, but rather a deterministic drift to a sub-
threshold target voltage E

det

:
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we set E
det

= 0.9 and g
det

= 2. The regime considered has a strong and relatively regular oscillation
(Figure 1 right column sharp rhythm).

In addition to showing distinct characteristics compared to the other regimes (noisy rhythm, asyn-
chronous), the main motivation for considering this additional model is that such recurrent networks
with a sharp gamma rhythm are commonly studied and known to be important for coding in many areas
of the cortex (Börgers and Kopell, 2003; Wang, 2010; Buzsáki and Wang, 2012; Economo and White,
2012).

The following two subsections describe the way both network and intrinsic heterogeneity are modu-
lated in this paper.

2.3 Changing the level of intrinsic and network heterogeneity independently

The two heterogeneous parameters (q
j

, ✓
j

) are varied to yield significant changes in the range of firing
rates. The means of both q and ✓ are set to 1, and the parameters �

q

2 [0, 1] and �
✓

2 [0, 1] quantify
the level of the network and intrinsic heterogeneities, respectively, in the following way:

q ⇠ 1 + �
q

⇤ (U � 0.5) (3)

✓ ⇠ 1 + �
✓

⇤N (4)
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where U is the uniform distribution on [0, 1], and N is a truncated2 normal distribution with mean 0
and standard deviation 0.08. When chosen independently, the correlation between these two vectors will
be small and theoretically zero.

2.4 Changing the correlation between intrinsic and network heterogeneity

We consider another way to change the heterogeneity where the overall level is approximately the same
but the correlation between q and ✓ is set to a prescribed value. Given the vectors q and ✓, we fix q
to the same values but transform ✓ so that the Pearson’s correlation coe�cient is % 2 (�1, 1) in such
a way that the transformed vector has the same mean and variance as ✓. The details for how this is
accomplished are described in the Appendix.

2.5 High dimensional probability density equation

The recurrent coupled stochastic network in section 2.1 is di�cult to describe theoretically. A common
method uses probability density functions (p.d.f.), or a population density methods, where the proba-
bility of a neuron being in a particular state has a corresponding equation. The variables in the popu-
lations are no longer tracked individually, but rather captured by a p.d.f.; for example, (V

j

, G
j

, A
j

, ⌘
j

)
for j = 1, 2, . . . , N

e

are captured with a function of (v
E

, g
E

, a
E

, ⌘
E

). The two forms of heterogeneity
introduce even more dimensions than the usual state variables. For simplicity, one can track a family
of probability density functions for each (q

j

, ✓
j

) pair or each distinct neuron. The subsequent equations
are a good approximation to the coupled network (1)-(2) with the following assumptions:

(i) finite size e↵ects are negligible (N
e/i

� 1)
(ii) the firing rate of presynaptic neurons is governed by a Poisson process
(iii) the population firing rate averaged over q and ✓ is a good approximation to the average presynaptic

input rate
(iv) a single p.d.f. function is adequate to describe the population behavior, and the heterogeneity is

driven by (q
j

, ✓
j

)

The first two assumptions are standard in this framework, while the last two assumptions has been suc-
cessfully used (Ly, 2014), where a family of probability density functions were indexed by the quenched
heterogeneity values. Even though these assumptions are violated, the following equations are key for
the reduced descriptions in sections 2.6, 3.2–3.3.

For each pair of values (q
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), the probability density function ⇢ is defined by:
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denotes the other states variables of the corresponding neuron type X 2 {E, I}, consisting of
conductance, colored noise: w

X

= (g
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). The evolution of the p.d.f.’s is governed by a continuity
equation and boundary conditions:

2 The middle 98.76% is included, so for �

✓

= 1, ✓ 2 [0.8, 1.2]
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The definitions of g
XY

in the LIF equations (1)-(2) result in a total conductance of �
XY

g
Y

on average.
Note that with a refractory period ⌧

ref

> 0, the system of equations should also include a refractory
probability density that we do not state here (see the work of Tranchina and colleagues Nykamp and
Tranchina (2001); Haskell et al (2001); Apfaltrer et al (2006); Ly and Tranchina (2009) for further
details).

2.6 Reduction theory to describe firing rate dynamics

We describe an insightful analytic reduction that captures how the range of excitatory firing rates change
in di↵erent regimes. We focus on only the excitatory neurons, which have fewer state variables if the
inhibitory population is ignored or assumed to be known. The problem with using the full p.d.f equations
(5)–(14) is that the state variables are coupled, so we will formally assume that all of the state variables
are known (given) except v

E

, and solve for the steady-state firing rate as a function of the other state
variables (Ly, 2013; Nicola et al, 2015). Note that other authors have employed a similar approach using
an adiabatic or slow variable approximation in the context of stochastic spiking neurons (Moreno-Bote
and Parga, 2006; Nesse et al, 2008); very recently Hertäg et al (2014) used this approach formally (see
their equation (25)).
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E
E

+g̃

I

E
I

)+⌘̃

E

1+q(g̃

E

+g̃

I

)

> ✓ (15)

The argument of the left-hand side is written in this way because we assume the q and ✓ values are
the primary sources of heterogeneity, rather than the external noise, finite size e↵ects, random
connectivity, etc. For exposition, we have absorbed the parameters and defined new variables with tildes:
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g̃
E

= �
ee

g
E

, g̃
I

= �
ei

g
I

, ⌘̃
E

= �
E

⌘
E

. The approximation (15) ignores the refractory period, which is
accounted for via a transformation rather than using the refractory probability density. The inverse of
the firing rate is the time between spikes, so the refractory period can be added to the time between
spikes to yield: r

0

/(1 + ⌧
ref

r
0

) as a simple approximation to the firing rate. Finally, the given state
variables are integrated against their marginal density to get:

r(q, ✓) = E


r
0

1 + r
0

⌧
ref

�
=

Z
r
0

1 + r
0

⌧
ref

⇢̃(g̃
E

, g̃
I

, ⌘̃
E

) dw̃
E

(16)

There is a slight abuse of notation because the auxiliary variables a
X

e↵ect the conductances but are
not written in the previous equation; the emphasis is on how (g̃

E

, g̃
I

, ⌘̃
E

) directly e↵ects r. Since the
external noise is applied indiscriminately, ⌘̃

E

is independent of the other variables and the marginal
density factors into:

⇢̃(g̃
E

, g̃
I

, ⌘̃
E

) = ⇢̃(g̃
E

, g̃
I

)
e�(⌘̃

E

/�

E

)

2

�
E

p
⇡

.

However, ⇢̃(g̃
E

, g̃
I

) is still not analytically tractable, leading us to rely on Monte Carlo simulations to
numerically estimate ⇢̃(g̃

E

, g̃
I

).
The reduction method (15)–(16) was implemented by relying on Monte Carlo simulations for ⇢̃(g̃

E

, g̃
I

),
and using the same vectors (q,✓) in the LIF simulations. Since ⇢̃(g̃

E

, g̃
I

) is the same for a given param-
eter set, the range of firing rates is theoretically captured by the di↵erent (q

j

, ✓
j

) values in equation (16)
(see blue curves in Figs. 2–4).

3 Results

We consider a recurrently coupled stochastic spiking neural network. Such networks have been ubiquitous
in contemporary theoretical investigations. The class of networks considered here are widely used even
though we do not include plasticity or detailed biophysical properties with di↵erent time scales. We are
interested in how the firing rate of the excitatory population changes as the level of heterogeneity is
varied in di↵erent regimes. Excitatory neurons are the focus because they are the predominate cells for
propagating signals to di↵erent layers in the cortex.

Figure 1 highlights the di↵erent behaviors in three regimes considered. Representative raster plots
of spikes are shown in panels A–C for both excitatory and inhibitory cells, incorporating both forms of
heterogeneity with (q,✓) chosen independently and with �

q

= �
✓

= 1. In panels D–F, the power spectrum
of the excitatory population firing rate for both heterogeneous (black) and homogeneous parameters
(magenta) are shown; the thinner lines are the power spectrums of the individual excitatory neurons.
The inset shows the autocorrelation function of the (E) population firing rate. The autocorrelation
function of a stochastic process R(t) (e.g., excitatory population firing rate) is:

A(t) = E
⌧

[R(⌧)R(t� ⌧)]� E
⌧

[R(⌧)]2 (17)

and the power spectrum is:

P (!) =
���
Z

A(t)e�i2⇡!t dt
���. (18)

These quantities illustrate the di↵erent dynamics of each neural network. Notice that the power spectrum
of the individual neurons is consistently larger in value than the power spectrum of the population
firing rate. This is because the population firing rate is averaged (smoothed) so that P (!) ! 0 for
large frequencies, whereas the spike train of the individual neurons is not smooth, consisting of 0’s
or �0s ⇡ 1/(�t) that will always yield P

j

> 0 as long as ! < 1/(�t) (the numerical limit because
of the discretization). Specifically, as ! ! 1/(�t), P

j

measures the average power of the spike train
in a single time bin and thus converges to the firing rate of the individual neuron. The bottom row
(panels G–I) show the distribution of the excitatory firing rates for each individual neuron, averaged
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Table 3 Firing Rate Values in Figure 1 G–I. The inhibitory firing rates are not shown in Figure 1.

Regime: Mean ⌫ (Hz) [⌫
min

, ⌫

max

] (Hz) Range of ⌫ (Hz)

Noisy Rhythm (Heterog.): E cells 12.8 [6.6, 23] 16.4
Noisy Rhythm (Homog.): E cells 11.6 [10.3, 12.7] 2.5
Asynchronous (Heterog.): E cells 7.7 [2.7, 14.2] 11.4
Asynchronous (Homog.): E cells 7.4 [6.5, 8.2] 1.7
Sharp Rhythm (Heterog.): E cells 34.1 [14.2, 64] 49.8
Sharp Rhythm (Homog.): E cells 33.6 [32.1, 35.5] 3.5
Noisy Rhythm (Heterog.): I cells 17 [15.9, 18.7] 2.8
Noisy Rhythm (Homog.): I cells 16.1 [14.8, 17.4] 2.6
Asynchronous (Heterog.): I cells 19.7 [18.5, 21.2] 2.7
Asynchronous : Homog. I cells 19.6 [17.9, 20.9] 3
Sharp Rhythm (Heterog.): I cells 26.8 [17.4, 32.4] 15
Sharp Rhythm (Homog.): I cells 26 [24.3, 27.9] 3.6

over time (simulations in Figure 1 were performed for 100 s). The heterogeneous population naturally
has a wider distribution compared to the homogeneous regime. At the population level, there are only
minor di↵erences between the homogeneous and heterogeneous regimes; indeed, the average firing rates
(not the overall distribution), power spectrums, and autocorrelation functions are very similar. Thus
enabling a systematic assessment of how intrinsic and network heterogeneity e↵ect the spiking network,
avoiding the complication of regime changes due to heterogeneity. Although there has been interesting
work showing how heterogeneity can induce rhythms from asynchrony (i.e., bifurcations) (Hermann and
Touboul, 2012; Mejias and Longtin, 2012), we do not directly address such dynamics here. Our study
focuses on comparing the firing rate heterogeneity modulation within specific regimes.

The neurons in all regimes considered are all excitable and receive external colored noise, resulting
in irregular spiking. A common measure of variability is the Fano factor, defined as the variance of spike
counts divided by the mean of spike counts in a time window. For all of the networks considered in this
paper (e.g., Fig. 1), the Fano factor of the E population spike counts is often greater than 1 and is at
least 0.8 for heterogeneous and homogeneous networks, across all regimes, and for time windows ranging
from 2 to 50ms (not shown).

3.1 PDF framework captures firing rate modulation with heterogeneity

The level of intrinsic and network heterogeneity were modulated in the recurrently coupled networks
in the two ways previously described: i) independently choose the vectors (q,✓) with a prescribed level
of heterogeneity determined by �

q

and �
✓

(see (3)–(4)), and ii) for fixed values of �
q/✓

, change the
correlation between (q,✓). In the noisy rhythm regime, Figure 2A shows the minimum and maximum
excitatory firing rates for fixed values of �

q

= 0 and 1, while �
✓

varies between 0 and 1 (black curves;
dashed and solid). Not surprisingly, as �

✓

(or �
q

) increased, so does the range of (excitatory) firing
rates with the minimum decreasing and maximum increasing. Note that we chose to plot the curves
for fixed �

q

; the results also hold with fixed �
✓

and �
q

on the x-axis (not shown). Figure 2B shows the
range of the firing rates (maximum minus the minimum) rather than the raw firing rate values; it is
apparent that more intrinsic and/or network heterogeneity leads to more firing rate heterogeneity. The
reduction theory described in section 2.6 (based on both probability density equations and Monte Carlo
simulations), and in particular equations (15)–(16) for the approximation of the firing rates, are shown
in the blue colored curves. In Figure 2A, the theory does not provide a good quantitative match. This
could be due to a variety of reasons: the 4 assumptions in section 2.5 are violated, the reduction method
is known to be inaccurate compared to both the full PDF and Monte Carlo simulations. Fortunately, the
reduction theory is able to capture the increase in the firing rate range in Figure 2B, where �

q,✓

2 [0, 1].
This result is indeed fortuitous given the inaccuracies of the PDF theory in capturing the raw firing
rates.
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Fig. 1 The three regimes considered are: noisy rhythm (left column, A, D, G), asynchronous (middle column, B, E, H),
sharp rhythm (right column, C, F, I). The top row (A–C) has representative raster plots of spikes for both excitatory
(black dots) and inhibitory (green dots) neurons with both intrinsic and network heterogeneity, showing distinct behavior
depending on the regime. The middle row (D–F) shows the power spectrum of the excitatory population firing rate
with both forms of heterogeneity (black) and homogeneous parameters (magenta); the power spectrum of the individual
excitatory neurons are shown with thinner lines. The inset of each panel shows the autocorrelation function of the excitatory
population rate. The bottom row (G–I) has histograms of the average firing rate for each excitatory neuron, with the
heterogeneous network naturally having a wider distribution. The mean firing rate, minimum and maximum firing rates,
and the range of the firing rates are displayed in Table 3. The intrinsic and network heterogeneity parameters were selected
independently with �

q

= �

✓

= 1 (see (3)–(4)). The simulations were performed for a single realization of 100 s.

Figure 2C shows the minimum and maximum firing rate with ample heterogeneity (�
q

= �
✓

= 1,
the most we considered), but the correlation between q and ✓ (%(q,✓)) varied between (-1,1). The
comparison of the reduction theory (15)–(16) (blue curves) and the simulations (black curves) is not
accurate (as in Fig. 2A), but does qualitatively capture the trend in the range of the firing rates (Fig.
2D). The range of firing rates tends to decrease as %(q,✓) increases. Note that the range of firing rates
can be very large and very small depending on %, even though �

q

= �
✓

= 1; in fact, the ranges of firing
rates are comparable to varying the overall level of heterogeneity: �

q/✓

2 [0, 1] (Fig. 2A–B). In other
words, a particular range of excitatory firing rates can arise from di↵erent levels of intrinsic and network
heterogeneity, depending on their relationship.
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Fig. 2 Noisy Rhythm regime: excitatory firing rates modulation with changes in intrinsic and network heterogeneity.
A)–B) changing the level of intrinsic �

✓

and network �

q

heterogeneity by independently drawing (q,✓) (see (3)–(4)).
A) The minimum and maximum firing rates are shown for the homogeneous network (�

q

= �

✓

= 0, dash curves) and
completely heterogeneous (�

q

= �

✓

= 1, solid curves) network. The simulation curves (black curves, dash and solid)
are Monte Carlo simulations of equations (1)–(2) (shaded regions denote standard deviations). Here, the theory uses a
combination of dimensionally reduced PDF functions and Monte Carlo simulations (see (15)–(16)). Although the theory
does not quantitatively match the extreme values of the firing rates (A), it captures the trend of the firing rate range
(maximum minus minimum) in panel B); there, each curve is for a fixed value of �

q

ranging from 0 to 1, as �

✓

ranges
between 0 and 1. Unsurprisingly, as heterogeneity increases so does the firing rate range. The firing rates and the range
vary appreciably over an order of magnitude. C)–D) changing the correlation % between (q,✓) with �

q

= �

✓

= 1. C)
the theory (blue curve) does not quantitatively capture the actual firing rates as % varies between (-1,1), but they are
comparable. D) the theory (solid) captures the trend in the simulated range of the firing rates (dots) as % varies between
(-1,1). As % increases, the range of firing rates tends to decrease. Gray shaded regions in A and C are an estimate of
the standard deviation about the sample mean of the Monte Carlo simulations (100 s simulation for each realization, 10
realizations total); error bars in D are estimates of the standard deviation about the sample mean of the range (see last
paragraph of Section 2.1 for details). Shaded regions are omitted in B for readability.

Similar comparisons are made for the two other regimes in Figures 3 and 4. In the asynchronous
regime, as the the heterogeneity parameters are selected independently (Fig. 3A–B), we again see that
more heterogeneity leads to a wider range of firing rates. Figure 3A shows �

q

= 0 and 1 split into two
panels so it is easier to compare the theory (15)–(16) and simulations (1)–(2). The quantitative match
is not good (Fig. 3A) as expected given the previous figure, but the trend is captured (Fig. 3B, where
�
q,✓

2 [0, 1]). For the bottom row, we fix �
q

= �
✓

= 1 and let the correlation % between intrinsic and
network heterogeneity vary between (-1,1). Notice that the range of firing rates changes in a di↵erent way
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Fig. 3 Asynchronous regime: excitatory firing rates modulation with changes in intrinsic and network heterogeneity
[similar to Figure 2] A)–B) changing the level of intrinsic �

✓

and network �

q

heterogeneity by independently drawing (q,✓)
(see (3)–(4)). A) The minimum and maximum firing rates are shown for the completely heterogeneous (�

q

= �

✓

= 1, solid
curves) network in the top panel and the homogeneous network (�

q

= �

✓

= 0, dash curves) in the bottom panel. The
simulation curves (black curves, dash and solid) are Monte Carlo simulations of equations (1)–(2). Here, the theory uses
a combination of dimensionally reduced PDF functions and Monte Carlo simulations (see (15)–(16)). Although the theory
does not quantitatively match the extreme values of the firing rates (A), it captures the trend of the firing rate range
(maximum minus minimum) in panel B); there, each curve is for a fixed value of �

q

ranging from 0 to 1, as �

✓

ranges
between 0 and 1. Unsurprisingly, as heterogeneity increases so does the firing rate range. C)–D) changing the correlation
% between (q,✓) with �

q

= �

✓

= 1. C) the theory (blue curve) does not quantitatively capture the actual firing rates as %

varies between (-1,1). D) the theory (solid) captures the trend in the simulated range of the firing rates (dots) as % varies
between (-1,1). As % increases, the range of firing rates tends to increase. Gray shaded regions in A and C are an estimate
of the standard deviation about the sample mean of the Monte Carlo simulations (100 s simulation for each realization, 10
realizations total); error bars in D are estimates of the standard deviation about the sample mean of the range (see last
paragraph of Section 2.1 for details). Shaded regions are omitted in B for readability.

(Fig. 3D). Here, as % increases, the range of firing rates increases in contrast to before where it decreased
(Fig. 2D). Moreover, we see the range of firing rates change by a factor of ⇠3, which interestingly is
comparable to the firing rate range values when varying �

q/✓

independently (Fig. 3A–B).

In Figure 4, the sharp rhythm regime shows similar characteristics to Figure 2, except for the
following. The excitatory firing rate range is more sensitive to varying the heterogeneity parameters,
and we see that the range of firing rates takes on much larger values. This is apparent both when �

q

and
�
✓

vary independently (Fig. 4A–B) and when the correlation between q and ✓ changes with �
q

= �
✓

= 1
(Fig. 4C–D). The firing rate range changes by almost an order of magnitude. The other interesting
thing about this regime is that the reduction theory (blue) matches the simulations much better than
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Fig. 4 Sharp Rhythm regime: excitatory firing rates modulation with changes in intrinsic and network heterogeneity
[similar to Figures 2–3] A)–B) changing the level of intrinsic �

✓

and network �

q

heterogeneity by independently drawing
(q,✓) (see (3)–(4)). A) The minimum and maximum firing rates are shown for the completely heterogeneous (�

q

= �

✓

= 1,
solid curves) network in the top panel and the homogeneous network (�

q

= �

✓

= 0, dash curves) in the bottom panel. The
simulation curves (black curves, dash and solid) are Monte Carlo simulations of equations (1)–(2). Here, the theory uses
a combination of dimensionally reduced PDF functions and Monte Carlo simulations (see (15)–(16)). Although the theory
does not quantitatively match the extreme values of the firing rates (A), it captures the trend of the firing rate range
(maximum minus minimum) in panel B); there, each curve is for a fixed value of �

q

ranging from 0 to 1, as �

✓

ranges
between 0 and 1. Unsurprisingly, as heterogeneity increases so does the firing rate range. C)–D) changing the correlation
% between (q,✓) with �

q

= �

✓

= 1. C) again, the theory (blue curve) does not quantitatively capture the actual firing
rates as % varies between (-1,1). D) the theory (solid) captures the trend in the simulated range of the firing rates (dots)
as % varies between (-1,1). As % increases, the range of firing rates tends to decrease. Gray shaded regions in A and C are
an estimate of the standard deviation about the sample mean of the Monte Carlo simulations (100 s simulation for each
realization, 10 realizations total); error bars in D are estimates of the standard deviation about the sample mean of the
range (see last paragraph of Section 2.1 for details). Shaded regions are omitted in B for readability.

the other two regimes (Fig. 2–3). The match is particularly good for the maximum firing rate. Similar
to the noisy rhythm regime, we see that as % increases, the range of firing rates decreases dramatically
(Fig. 4D). One striking observation is that the PDF theory captures the firing rates much better in the
sharp rhythm regime (Fig. 4C–D) than the other two regimes (Fig. 2C–D, Fig. 3C–D). Although the
underlying reason for this is di�cult to determine exactly, a plausible explanation is that the overall
higher firing rates and less noise in the sharp rhythm regime are consistent with the assumptions of the
approximation in equation (15).

The observation that more intrinsic and (uncorrelated) network heterogeneity leads to a wider range
of firing rates (Figs. 2–4, panels A and B) is expected and does not require further analytical insight.
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However, changing the correlation between q and ✓ for fixed values of �
q

and �
✓

results in enlarged or
diminished ranges of firing rates, depending on the regime (Figs. 2–4, panels C and D). How can these
observations be reconciled? The next two sections provide further analysis to deeply understand
these phenomena.

3.2 Analytic description of heterogeneous firing rate range in rhythmic networks

For many regimes and the di↵erent types of heterogeneity, the reduction method in section 2.6 does
qualitatively capture the modulation of the range of firing rates, as shown in Figures 2–4, panels B and
D. This observation is the motivation for further analysis of equations (15)–(16) that ultimately yields
simple analytic formulas to account for how the firing rate ranges are e↵ected by the relationship between
intrinsic and networks heterogeneity. In sections 3.2 and 3.3, we use the following variable substitutions
to facilitate exposition of the analysis:

x
0

:= g̃
E

+ g̃
I

(19)

x
1

:= g̃
E

E
E

+ g̃
I

E
I

(20)

When the coupling parameters yield rhythmic firing (i.e., power spectrum of the population firing
rate is not flat), the net synaptic input is large on average (averaged over time and across excitatory
neurons) and is much larger than when the network is in an asynchronous regime. Thus, we consider
the large firing rate limit in the reduced theoretical description (15)–(16). Furthermore, we ignore the
e↵ects of the refractory period ⌧

ref

3, external noise ⌘̃
E

, and focus on the formula for the deterministic
firing rate (15):

⌧
m

r
0

(q, ✓) =
1 + qx

0

log
⇣

qx1

qx1�✓(1+qx0)

⌘ (21)

We assume the random state variables are parameters just like in the reduced description, which will
enable us to focus on (q, ✓) and determine how these two parameters e↵ect the firing rate range. The
two vectors (q,✓) are the main source of the firing rate heterogeneity. The large firing rate regime is
captured by a series expansion of log() around 1. Standard asymptotic calculations enable equation (21)
to be re-written as:

⌧
m

r
0

(q, ✓) =
1 + qx

0

log
⇣

qx1

qx1�✓(1+qx0)

⌘ (22)

=
q

✓
x
1

� 1

2
(1 + qx

0

)

� (1 + qx
0

)2✓

12[qx
1

� ✓(1 + qx
0

)]
+O

�
z2(1 + qx

0

)
�

(23)

where z := ✓
1 + qx

0

qx
1

� ✓(1 + qx
0

)
(24)

The modulation of the firing rate heterogeneity can be understood simply by the dominant term (i.e.,
first term):

q

✓
x
1

; (25)

specifically, the fraction q/✓ is key because the second factor x
1

does not vary much as the correlation
between q and ✓ changes.

3 Although ignoring the refractory period could be problematic for large firing rates, we emphasize that the value of our
analysis is not in quantitative matching of simulations but rather for a deeper understanding of how network attributes
e↵ect the outputs. A similar calculation has been performed with the refractory period (not shown), but the asymptotic
formulas are not insightful.
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In the rhythmic firing regime, the modulation of the range of firing rates can be understood simply
with range of values given by the fraction q

j

/✓
j

. Specifically, the ratio q
j

1

✓

j

yields N
e

values, and the

range of these values for a particular parameter is indicative of the relative range of firing rates. In this
regime (rhythmic firing) when %(q,✓) < 0, the extreme values consists of: i) larger q

j

values that tend to
occur with smaller ✓

j

values, resulting in an amplification (and relatively larger) q 1

✓

for the upper range
of values, and ii) smaller q

j

values and larger ✓
j

, resulting in an overall smaller (small times small) values
to account for the lower range of q 1

✓

values. When %(q,✓) > 0, similar reasoning applies to larger q
j

values tending to occur with larger ✓
j

values (large times small) and smaller values (small times large),
resulting in a diminished range of q 1

✓

values than when % > 0. Note that the mean of q
j

/✓
j

(across the
N

e

population) is approximately constant as % varies (not shown).
A side-by-side comparison shows how similar the dynamics are (Fig. 5A–B, E–F) and is validation

that the range of excitatory firing rates is driven by this factor (q/✓). Figure 5 compares the excitatory
firing rate range of the LIF simulations (left column) to the analytic descriptions (right column, sections
3.2–3.3) as a function of %(q,✓) for two fixed levels of heterogeneity: �

q

= �
✓

= 1 (black) and �
q

=
�
✓

= 0.44 (dark orange). Of course we do not expect precise quantitative matching between the analytic
description (Fig. 5 right column) and the actual network simulation (Fig. 5 left column) because the
analysis had many assumptions meant to highlight a proof of principle. Nevertheless, the theory is
quite descriptive and captures the general trend (the values of equation (25) are shown in Fig. 5B,F
for completeness). Therefore, in the rhythmic firing regime, q/✓ compactly describes how when intrinsic
and network heterogeneity are anti-correlated the range of firing rates is larger than when they are
correlated.

3.3 Analytic description of heterogeneous firing rate range in asynchronous networks

For the asynchronous regime, the range of firing rates actually increases as the correlation between ✓ and
q increases (Fig. 3D), which is the opposite trend compared to when the network is firing rhythmically
(Fig. 2D and 4D). This section provides an analytic description for this phenomena.

In contrast to when the population firing rate is rhythmic, the asynchronous regime (i.e., power
spectrum of population firing rate is flat) has much less net synaptic input on average. Therefore, we
cannot ignore the noise variable ⌘̃

E

and must consider a di↵erent regime than in the previous section.
Here, the refractory period ⌧

ref

is ignored, and all of the random variables are again assumed to be
parameters except the noise variable ⌘̃

E

because of how crucial it is for firing in this regime. The formula
for the reduced firing rate is (cf. equations (16) and (21)):
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/�
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(26)

where d e+ represents thresholding: if ⌘̃
E

 ✓(1 + qx
0

) � qx
1

it is 0, otherwise it is 1/ log(·). This
equation can be re-written by substituting d1/ log(·)e+ with an integral, and interchanging the order of
integration:
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2
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E

M(y) dy (27)

where M(y) is an antiderivative of d1/ log(·)e+. In the asynchronous firing regime, the modulation of
the range of firing rates can be understood simply with the last term of upper limit of the inner integral:

✓(1 + qx
0

) (28)
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Fig. 5 Analytic description of excitatory firing rate ranges. Here, the firing rate ranges are for a fixed level of heterogeneity
�

q

= �

✓

and di↵erent correlation %(q,✓) values. A)–B) Noisy Rhythm regime: the range of firing rates for the completely
heterogeneous (�

q

= �

✓

= 1, black dots) network and with less heterogeneity (�
q

= �

✓

= 0.44, dark orange dots) are
plotted as the correlation varies on the same axis (see left and right vertical axes for respective scales). B) The theory in
section 3.2 provides an analytic description (see (25)) for how the correlation of intrinsic and network heterogeneity lead
to relatively di↵erent firing rate ranges in this regime. As the correlation % increases, the range of firing rates tends to
decrease. C)–D) Asynchronous regime: similar to A)–B), but the reduction theory in D) is in section 3.3, again providing
an analytic description (see (28)) for how the range of firing rates increases as the correlation % increases. E)–F) Sharp
Rhythm regime: similar to A)–B), using the same analytic description. The analytic descriptions in the right column (B,
D, F) use x0 and x1 (see (19)–(20)) values obtained from % = 0. Error bars in A, C, and E are estimates of the standard
deviation about the sample mean of the range (see last paragraph of Section 2.1 for details).
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because the other pieces of r
0

do not vary much across the N
e

neurons. Furthermore, since the focus is
on understanding the range of firing rates as determined by the correlation of (q,✓), then the product:
✓q is what determines the relative change in the range (like before, x

0

does not change much across
the excitatory neurons). This is in sharp contrast to equation (25), where the intrinsic heterogeneity
✓ divides the network heterogeneity q. Figure 5C–D shows that the analytic description (28) clearly
captures the trend in the range of firing rates as % changes.

These formulas (25), (28), clearly show how the two forms of heterogeneity (q,✓) e↵ect one another
to yield the di↵erent trends in the range of firing rates in di↵erent regimes. Simply put, in the rhythmic
regime, the relationship q/✓ determines how the range of the firing rates change while in the asynchronous
regime, q✓ determines this; note that plotting q/✓ and q✓ without x

0

and x
1

does not appreciably change
the shape of the curves in Figure 5 (not shown).

The key to our analysis was to focus on the main sources of heterogeneity, and therefore the firing
rate heterogeneity, in a proper framework (probability density functions) to describe the essence of how
the firing rate range changes. This analysis was successful partly because the heterogeneity (q, ✓) drove
the changes in the firing rate range, as opposed to other factors such as external noise, etc., and our
analysis centered on these parameters.

4 Discussion

We studied how two forms of heterogeneity: intrinsic and network, e↵ect the (excitatory) firing rate
distribution of a recurrently coupled stochastic network of leaky integrate-and-fire neurons. Since the
relationship between intrinsic and network heterogeneity is not known (to the best of our knowledge),
we systematically varied the relationship or correlation to assess the e↵ects on the network in di↵erent
regimes. This work showed how the firing rate range changes with the correlation of intrinsic and
network heterogeneity: in the rhythmic or oscillatory regime, the firing rate range tends to decrease with
increasing correlation (i.e., when larger firing thresholds tend to have larger synaptic input amplification),
while the opposite trend is observed in the asynchronous regime. These observations were captured by
the analytic descriptions in equations (25) and (28). We also found that the firing rate ranges can be
relatively large or small depending on the correlation between intrinsic and network heterogeneity, thus
the overall level of heterogeneity can be mitigated or amplified depending on this relationship. If the
relationship between intrinsic and network heterogeneity could be measured in a cortical network, these
results would enable predictions for the range of response heterogeneity. Although we chose to analyze
two specific forms of heterogeneity in a theoretical model, connections to experimental recordings of
heterogeneity and firing rates may be possible even with related neural attributes (i.e., the membrane
time constant as a proxy for firing threshold, or relating network connectivity to input variability). Also,
the framework presented here could in principle be adapted to other heterogeneous neural attributes
that would naturally require augmentations.

Marder (2011) showed how combining intrinsic and synaptic conductance heterogeneity could lead
to similar outputs, depending on their relationship. Their work was naturally di↵erent than the work
here: di↵erent parameters were varied and the underlying neuron model had ionic currents and specific
circuitry motivated by the crustacean stomatogastric ganglion. Also, they were interested in the rhythmic
output of the network rather than characterizing the range of the population response heterogeneity.
The results in Marder (2011) are similar in spirit to what has been shown here in that di↵erent sets of
parameters can result in similar output (also see Marder and Goaillard (2006)); in our case, the range of
excitatory firing rates can arise with di↵erent levels of heterogeneity by tuning the correlation between
the two sources of heterogeneity. One of the conclusions of their work is that the intrinsic and network
parameters, or heterogeneities, must be taken as a whole and the correlation among these parameters
is crucial in determining network output. Our study compliments these assertions in a specific way,
by determining how the correlation of two parameters alters the range of the excitatory firing rates in
di↵erent regimes.
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Unlike the work of Hermann and Touboul (2012); Mejias and Longtin (2012), we do not consider
how synaptic heterogeneity can induce di↵erent dynamics but rather focus on specific spiking regimes
that are similar with and without heterogeneities. Their work has a more detailed characterization of
the dynamics, whereas our work explores the e↵ects of two specific forms of heterogeneities away from
the bifurcation points. Studying how the relationship of intrinsic and network heterogeneity induces
di↵erent dynamics would be interesting but is beyond the scope of this paper. A recent paper of Ostojic
(2014) calls the first regime that we termed noisy rhythm ’a second type of asynchronous’ network but
with stronger coupling. Ostojic (2014) found that these two types of asynchronous networks (classic
and strongly coupled) processed external stimuli di↵erently, a feature that was not considered in this
paper. These two regimes (Ostojic’s strongly asynchronous regime and the noisy rhythm here) are similar
because the coupling is relatively strong and both autocorrelation functions of the population firing rates
are similar. Consistent with illustrating that these regimes are di↵erent, we have shown how the classic
asynchronous regime is di↵erent than the noisy rhythm or ’strongly coupled asynchronous’ (Ostojic)
because the firing rate ranges change in distinct ways.

A related study analyzes the interplay of two sources of intrinsic heterogeneity (Mejias and Longtin,
2014); specifically, Mejias and Longtin (2014) studied how heterogeneity in the excitatory and inhibitory
spiking thresholds had di↵erent e↵ects on a coupled network (LIF with excitatory and inhibitory neu-
rons). They found distinct roles for heterogeneity in each type of neuron: excitatory heterogeneity can
increase firing rate and linearizes output response, inhibitory heterogeneity can decrease network re-
sponse and lead to gain control of input/output response (see Mejias and Longtin (2014) for further
details). Their analysis also characterized the heterogeneity-induced transitions from asynchrony to syn-
chrony and briefly considered the combined e↵ects of these two attributes. Our work only considered
excitatory heterogeneity; the e↵ects of inhibitory neuron heterogeneity combined with network hetero-
geneity are not known and a potential future direction of research. Another study by Hunsberger et al
(2014) examined how varying both (white) noise in the voltage and heterogeneity in the threshold for
firing led to di↵erent information (mutual information) content in spiking neuron models (LIF and
Fitzhugh-Nagumo). They found an optimal level of heterogeneity for maximizing information content
for a fixed level of noise (and for fixed level of heterogeneity there was an optimal level of noise, i.e.,
a stochastic resonance). Their results are distinct from Mejias and Longtin (2012) and Tripathy et al
(2013) (who also found optimal information by tuning parameters) because they considered the inter-
play of those two sources of variability and determined that they interact nonlinearly (e.g., the optimal
parameters are di↵erent with both components). In our study, we did not systematically analyze how
varying the (correlated) noise level �

E

and heterogeneity e↵ect network statistics. Hunsberger et al
(2014) explained their simulation results by comparing how each component desynchronized and/or
linearized the network response properties, whereas we provide an analytic explanation. Finally, Lengler
et al (2013) recently simulated an LIF network with a large number of heterogeneous intrinsic and net-
work parameters. They find that heterogeneity can increase response time and paradoxically less variable
responses (reliability), though they do not provide underlying mechanistic explanations for their results.

Our study provides a more complete understanding of how heterogeneities interact and result in
modulation of the firing rate statistics, which may ultimately lead to a better understanding of neural
coding in coupled neural networks. Even though the firing rate is a first order measure of the response
statistics, the range of this quantity has an impact on coding. There have been a number of recent studies
focusing on the impact of heterogeneity on neural coding. Padmanabhan and Urban (2010) showed
with recordings of mitral cells in mice olfactory bulb that heterogeneous cells had lower correlated
activity, which is thought to increase information capacity of a given population. Similarly, Chelaru and
Dragoi (2008) found diverse orientation tuning curves enhances coding with increased information via
a reduction in correlated activity of a coupled LIF network. Shamir and Sompolinsky (2006) proposed
a theoretical explanation for the benefits of diversity/heterogeneity in population coding, whereby the
information capacity is not limited to the correlation of activity. A future direction of study is how
di↵erent forms of heterogeneities considered in this paper lead to changes in the second order statistics
(correlation or co-variability), which also have implications for coding in neural systems. Although many
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of the previous studies conclude that heterogeneity generally leads to lower co-variability (Chelaru and
Dragoi, 2008; Padmanabhan and Urban, 2010), better discrimination (Marsat and Maler, 2010; Mejias
et al, 2013), and ultimately enhanced coding, the subtleties of how co-variability is modulated is not
completely known and remains an active area of research (Ponce-Alvarez et al, 2013; Ru↵ and Cohen,
2014; Mochol et al, 2015).
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Appendix: Generating correlated q and ✓

Given two vectors ✓ (intrinsic heterogeneity) and q (network heterogeneity), we can generate a new pair
of vectors (of the same size) that have any desired correlation coe�cient % 2 (�1, 1). In this paper, we
choose to keep q fixed and generate a new vector # that has the same sample mean (µ(✓)) and sample
standard deviation (�(✓)) of ✓. Note that there are infinitely many ways to generate two such vectors
if we only require that the mean and standard deviation of the new vectors be equal to the original
statistics of the vector. The algorithm we use is as follows.

– INPUTS: (q,✓, %)
– Set ' = cos�1(%)
– Shift input vectors so they have zero mean:

q
0

= q� µ(q)
✓
0

= ✓ � µ(✓).
– Calculate orthogonal complement to q

0

:
z = ✓

0

� q0·✓0

kq0k2q0

– Create unit vectors out of q
0

and z:
q̃ = q

0

/kq
0

k, z̃ = z/kzk
– Create vector with prescribed correlation and zero mean:

✓̂ = cos(')q̃+ sin(')z̃

– Set # = �(✓)

�(

ˆ✓)
✓̂ + µ(✓)

– OUTPUT: #, where correlation coe�cient of # and q is %, µ(#) = µ(✓), and �(#) = �(✓).
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