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Abstract 

 Before an improvised explosive device (IED) is sent to a laboratory for analysis, it needs 

to be rendered safe if it did not already initiate to ensure the safety of personnel. Render Safe 

Procedures (RSPs) include utilizing a percussion-actuated non-electric (PAN) disrupter or a 

fluid filled bottle disrupter. These disrupters utilize solid or liquid projectiles propelled by 

explosives to disrupt the container or fuzing system of the IED. 

 If the RSP fails, the IED will explode and only the residue on the IED fragments can be 

chemically analyzed to ascertain the identity of the explosive. However, since these RSPs also 

use explosives, they too can impart residue on the IED fragments. Compounds of analytical 

interest in smokeless powders used in the PAN disrupter include nitroglycerin (NG), 

diphenylamine (DPA), ethyl centralite (EC), and methyl centralite (MC). The bottle disrupter 

utilizes a pentaerythritol tetranitrate (PETN) detonation cord. 

 Before any testing was conducted, the bulk powder used in the shotgun ammunition and 

detonation cord was analyzed. The powders were then burned onto the various substrates to 

determine if the compounds would decompose. To test whether RSPs impart residue on IEDs, 

the disrupters were fired onto inert containers used in IED construction such as pipes and 

backpacks. These were later analyzed for post-blast residue. All the tests were performed in 

triplicate. 

Instrumentation used in the analysis of the residues included a gas chromatograph/mass 

spectrometer (GC/MS), a liquid chromatograph/mass spectrometer (LC/MS), and a gas 

chromatograph with an electron capture detector (GC/ECD). Analysis of the smokeless powder 

in the PAN disrupter shotgun rounds showed the presence of NG, DPA, and EC. Only PETN 

was identified in the detonation cord. DPA was consumed when the powder was burned but all 

other analytes detected in the bulk powder were detected in the burn residue. Two of the three 

steel pipes rendered safe with the bird shot had detectable amounts of NG and EC. None of the 

PVC pipes had detectable amounts of NG, EC, or DPA. Trace amounts of PETN were detected 

on two out the three backpacks. Overall, forensic scientist should be aware that residues found 

on IED fragments of the backpacks and steel pipes rendered safe using these methods may have 

originated from the RSP and not the main charge of the explosive device. 

 

Key Words: Explosives, Render Safe Procedure, Smokeless Powder, Pentaerythritol Tetranitrate  
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Introduction 

 Since the advent of the internet, the ability to access and exchange a variety of 

information has become easier. While much of this information is harmless and even helpful, 

some criminals have used it for nefarious purposes. One such use has been the making of 

improvised explosive devices (IEDs). Bombings can be commonly seen in the United States with 

motives ranging from property damage, personal revenge, or terrorism. In 2017 alone, the United 

States Bomb Data Center reported that 335 bombings occurred in the United States (1). 

 Each IED has two main components: a fuzing system and explosive (2). The fuzing 

system initiates the explosive and is a critical component to disrupt when rendering a device safe 

(2). In addition, the explosive and fuzing system can be inside of containers such as pipes, 

pressure cookers, bottles, or backpacks (2). These are commonly seen with low explosives which 

deflagrate and need to be confined in order to produce an explosion (2). Examples of low 

explosives include smokeless powders, flash powder, and black powder (2). Since high 

explosives detonate, they do not need to be placed into a container (2). Examples of high 

explosives include pentaerythritol tetranitrate (PETN), trinitrotoluene (TNT), nitroglycerine 

(NG), nitrocellulose (NC), and cyclotrimethylenetrinitramine (RDX) (2).  

Both the explosive material and fuzing system can be forensically analyzed to help 

connect an individual to it. If the device remains intact, recovery of these components and 

explosives is fairly simple. However, in post blast scenes, collection can be tedious and 

challenging as the explosive ladened fragments of the IED can be scattered across large 

distances. Explosives recovered at a scene can be divided up into two categories: bulk powder 

and trace residue. With bulk powder, enough material is present where there are few challenges 

to the interpretation of the data and a high amount of confidence with the conclusion. However, 
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with trace residue, the amount of explosives present is low in quantity. Thus interferants from the 

environment or from render safe procedures (RSP) can potentially complicate forensic analysis 

and the resulting data interpretation. 

Render Safe Procedures and Disrupters 

 Before the fuzing system or powder can be analyzed at the laboratory, the IED must be 

rendered safe if it did not already explode or initiate. This ensures the safety of civilians, law 

enforcement, and the forensic scientist who will analyze its components and explosives. One tool 

utilized by bomb squads to render safe IEDs is the percussion-actuated non-electric (PAN) 

disrupter (3). The primary components of this disrupter include a barrel that accepts shotgun 

ammunition and a stand to mount and aim the barrel (3-4). Either water or a solid projectile can 

be propelled down the barrel (3-4). The disrupter can disable the circuitry of an electrical fuzing 

system by destroying the batteries, wires, and switches (3). It can also open containers for further 

examination by the bomb technicians to help them make further assessments on how to proceed 

with rendering the device safe (3). Opening the container also renders the device safe if a low 

explosive was used since the explosive would no longer be under confinement (3).  

 Another disruption device is a fluid filled bottle disrupter (5-6). One example of this 

disrupter is a plastic bottle that is filled with water and a detonation cord made of PETN (5-6). 

The water is used to produce a jet to disrupt the circuitry of the IED and can even be configured 

into a particular shape with the setup of the charge (5-6). Because water is the main substance 

performing the work, this disrupter is only used to disrupt soft skinned containers. 

 During the RSP, an IED can successfully be rendered safe or it could initiate in the 

process. Sufficient energy needs to be applied to perforate the container (7). However, the 

initiation of a device can occur due to the compression force of the disrupter imparting enough 
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kinetic energy to cause an increase in temperature and setting off the explosive (8). The rapid 

rise in pressure accompanied by the impact force from the solid projectile or water can also 

impart enough energy and lead to detonation (7). If this is performed properly, the container will 

rupture and the explosive will not initiate. The main charge can then be collected for forensic 

analysis. If an IED explodes, most of the time, only residue evidence will be left. 

Smokeless Powder and Gunshot Residue 

 Smokeless powders constituted the fourth most common explosive used for the main 

charge of IEDs in the US for 2017 (behind pyrotechnics, black powder, and flash powder) (1). In 

addition to being commonly used as the main charge of an IED, smokeless powder is also used 

in the ammunition in some RSPs, such as the PAN disrupter. A multitude of compounds can be 

extracted from smokeless powder and analyzed with a wide variety of instrumentation (1). 

Energetics used in smokeless powder include: NC, NG, and nitroguanidine (NQ) (2, 9-17). The 

composition of energetics will depend on the type of smokeless powder. Single base smokeless 

powder will only have NC, double base will have NC and NG, and triple base will have NC, NG, 

and NQ (2, 9-12, 14-17). Various stabilizers are added to help extend the shelf life of the powder 

by preventing the breakdown of NC and NG (2, 9-15,16-19). These include diphenylamine 

(DPA), ethyl centralite (EC), and methyl centralite (MC) (2, 9-15, 17-19). MC and EC also act as 

deterrents that reduce the burning rate and flame temperature (2). 

 Analysis of these components in bulk smokeless powder present less of a challenge 

compared to residue. The powder can be extracted in an organic solvent such as methylene 

chloride or methanol (20-21). Residue analysis on the other hand can be more challenging since 

the explosives present are low in quantity. This type of analysis is what is required to assess the 

deposition of compounds by the RSP used in the field. 
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Since the PAN disrupter operates similarly to a firearm, the mechanism of how residue is 

deposited by the RSP is similar to the deposition of gunshot residue (GSR). When the propellant 

is burned in a round of ammunition, the pressure buildup causes the projectile to be expelled 

from the cartridge and exit out of the barrel (19). In addition to the physical bullet, vapors and 

particles escape too, referred to as the plume (19). As the plume travels, it deposits GSR onto 

nearby surfaces (20). The plume then starts to dissipate the further it travels (20).  Fojtášek et al. 

(21) found that no GSR was detected 6 meters away from the shooters position in an open 

environment and 10 meters away from the shooters position in a closed environment. The 

difference in distances also show environmental factors play a role in the deposition of GSR. 

Inorganic gunshot residue (IGSR) arises from the bullet, jacket, and primer while organic 

gunshot residue (OGSR) arises from both the burned and unburned propellant found in the 

smokeless powder (9). These organic compounds often travel less distance than the heavier, 

metallic compounds (22). Because of this, organic compounds can be difficult to detect during 

the analysis of GSR as distance from the barrel increases. 

Analysis of Smokeless Powder Residue 

 Residue first needs to be swabbed (preferred in the field) or rinsed off (preferred in the 

laboratory) of the deposition surface and then extracted using an organic or aqueous solvent such 

as acetone, methanol, acetonitrile, or water (9-11, 18, 23-25). Then the liquid extract from the 

swab or the extract from the direct rinse can be analyzed with a variety of analytical methods, 

one of the most common being gas chromatography (GC) with various detection systems. While 

an electron capture detector (ECD) and flame ionization detector (FID) can be used, the most 

common detection system is mass spectrometry (MS) since it can ascertain the structural 

information of the compounds as they are detected (9). Most previous studies have used non-
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polar capillary columns that were between 15 m and 30 m long and contained stationary phases 

of either 100% dimethylpolysiloxane or 5% phenyl-methylpolysiloxane (12-16, 21). The 

temperature gradients varied while the quadrupole mass spectrometers utilize electron impact 

ionization (13-16, 21). Muller et al. (13) were able to detect NG, DPA, and EC with their method 

but did not address the detection of MC. This could possibly be due to MC not being commonly 

found in smokeless powders as Joshi et al. (12) found only 8% of powders contained MC and the 

smokeless powder database from SWGFEX (26) found MC was only in 5.9% of the 831 

powders tested. EC, NG, and DPA are more commonly found in smokeless powders with 91.8% 

of the 831 powders in the database containing DPA, 62.8% containing NG, and 50.8% 

containing EC (26). However, Speers et al. (14) were able to detect DPA, EC and MC with their 

method. 

 Liquid chromatography with various detection systems are also commonly used to 

analyze smokeless powders. Common detectors used include ultraviolet (24), pendant mercury 

drop electrode (PMDE) (14), quadrupole trap (QTrap) (23, 27), quadrupole time of flight 

(QTOF) (11,17), or a triple quadrupole (QQQ) mass spectrometer (10, 18, 24-25). Most methods 

used reverse phase liquid chromatography with a C18 column but some have switched out the 

C18 column for a biphenyl column (10-11, 17-18, 23-25, 27-28). The mobile phases also varied 

with methanol, aqueous ionization aids, and acetonitrile being the most common (10-11, 17-18, 

23-25, 27-28). Formic acid and ammonium acetate can be added to help with the ionization 

process (10-11, 17, 23, 25). While mass spectrometry can be used to determine mass 

information, the ionization mode needs to be switched if both stabilizers and energetics need to 

be detected (9). Taudte et al. (18) was able to detect DPA, EC, MC, and NG using a QQQ 

detector while switching between positive and negative ion modes. Gassner et al. (17) on the 
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other had was only able to detect DPA, EC, and MC with their QTOF and QTrap since they were 

only operating in positive ion mode. 

Analysis of High Explosive Residue 

 Unlike smokeless powder, high explosives are not as prevalent in the United States due to 

the lack of accessibility. While PETN is not typically used as the main charge of an IED (only 6 

seen in 2017), it is widely used in detonators, blasting caps, and detonation cord (1-2). However, 

it is also widely used in RSPs compared to other high explosives. PETN does require different 

analysis procedures for analysis compared to smokeless powder due to its thermal degradation 

and extensive fragmentation in GC/MS (9, 29). GC/ECD can used for the separation and 

detection of PETN and other high explosives. The columns are usually shorter than typical 

GC/MS columns (6 m to 15 m) (28-30). In addition, 5% phenyl-methylpolysiloxane columns are 

used since RDX co-elutes with PETN on a 100% dimethylpolysiloxane column (30). The 

Environmental Protection Agency (EPA) was able to separate NG, TNT, PETN, RDX, 

cyclotetramethylenetetranitramine (HMX), and tetryl among other compound with their method 

(30). Wash M. (29) was also able to separate out PETN from other high explosives using a 

similar method to the EPAs method. 

 In addition to GC/ECD, LC/MS has been used to analyze high explosives like PETN 

since there is little worry about thermal degradation (11, 24-25, 31-32). A UV detector cannot be 

used since PETN does not absorb UV light (31). Similar to smokeless powder, reverse phase LC 

with a C18 column is used with various mobile phases ranging from methanol, acetonitrile, and 

aqueous ionization aid (11, 24-25, 31-32). Benito et al. (11) and Taudte et al. (24) were able to 

separate out PETN from other high explosives like RDX, TNT, NG, and common compounds in 

smokeless powders like MC, EC, and DPA using LC/MS. 
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Goals and Objectives 

 While all of the methods above are valuable in identifying low explosive and high 

explosive residues that are present, sources other than the main explosive charge may have 

contributed to the residue left on the substrate. Most notably, the disrupters used to render IEDs 

safe utilize explosives. These explosives have the potential to leave their residue on the IED 

fragments. The PAN disrupter acts similarly to a firearm and can impart OGSR on a substrate. 

The high explosive from the fluid filled bottle disrupter can also be deposited on the fragments of 

the IED. The primary goal of this paper is to address the presence of residue in various RSP 

procedures used by bomb technicians on various substrates. 

Research Materials and Methods 

 The project was divided into four different stages. The first stage involved developing a 

new method on the LC/MS to analyze the stabilizers EC, MC, and DPA along with the energetic 

compound NG. In the laboratory where this research was conducted, DPA was found to 

irreversibly bind to the column when the current method was used to separate out bulk smokeless 

powder standards. The second stage involved removing the explosives from the shotgun shells 

and detonation cord used in the RSPs to analyze the bulk powder. The third stage consisted of 

artificially burning the powder onto substrates and analyzing the residue left in order to 

determine if any of the compounds were fully consumed. This can help predict which 

compounds might be present in the residue after the powder is burned in the RSP. The final stage 

had mock IEDs rendered safe using three RSPs to determine if any residue is left on the 

container of a mock IED. The three disruption methods used were: a PAN disrupter utilizing a 

blank shotgun round and water column, a PAN disrupter utilizing a shogun round filled with a 

solid projectile, and a Mineral Water Bottle disrupter using a detonation cord.  
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Chemicals, Materials, Instruments Used 

 The DPA standard was obtained from Acros Organics while the MC standard was 

obtained from Santa Cruz Biotechnology. The EC standard and 2,5-dicholorphenol internal 

standard were obtained from Aldrich. Both the NG standard and PETN standard was obtained 

from Cerilliant. The imidazole internal standard was obtained from. Structures of all of the 

analytes and internal standards are shown in Figure 1. The acetone used in dilutions was HPLC 

grade and from Fisher Chemical. The methylene chloride used in the bulk powder extraction was 

obtained from Fisher Scientific. Ammonium nitrate used as the LC ionization aid was obtained 

from. The analytical grade methanol used in the mobile phase was from Fisher Chemical. The 

analytical grade acetonitrile used in the mobile phase was from Fisher Scientific. 

The LC/MS used in the analysis was Shimadzu LC-20AD Prominence in tandem with a 

Thermo Scientific LTQ XL. The GC/ECD used was an Agilent Technologies 7890A GC system. 

The GC/MS used was also an Agilent Technologies 7890A GC system coupled with an Agilent 

Technologies 5975C inert XL MSD. A VHX Digital Microscope from Keyence Corp was also 

used for the visualization of individual smokeless powder grains. The PAN disrupter used was 

made by Ideal Products Inc. The Mineral Water Bottle disrupter was produced by Cherry 

Engineering, Inc. 

Instrumentation Methods 

 The method developed for the LC/MS to separate out the stabilizers DPA, EC, MC, 

energetic NG, and the internal standard imidazole utilized a gradient elution with a Phenomenex 

Kinetex® biphenyl 3.0 mm x 150 mm, 5 µm  column. The mobile phases were 3.125 mM 

ammonium nitrate ionization aid in deionized water, 100% methanol, and 100% acetonitrile. The 

methanol composition of the mobile phase was kept at a constant 10% throughout the whole 
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analysis while the acetonitrile and aqueous portions were varied. The summary of the gradient is 

shown in Table 1. The flow rate was 0.75 mL/minute with a total separation time of 9 minutes. 

Electrospray ionization (ESI) was utilized with the polarities being varied based on the analyte 

elution times. NG is detected under a negative polarity while imidazole, MC, EC, and DPA are 

detected under positive polarity. The times for the different ionization modes along with the 

mass ranges detected are shown in Table 2. The times had to be changed for some samples due 

to maintenance on the LC tubing. These changes are shown in Table 3. This method will be 

referred to as the biphenyl method throughout the paper 

 The LC/MS method for the analysis of PETN and other high explosives was already 

established by the FBI laboratory. An Xterra Waters C18 2.1 mm x 150 mm, 5 µm column was 

used as the analytical column. An isocratic elution was used with the mobile phase being 60% 

methanol and 40% 3.125 mM ammonium nitrate in deionized water. The flow rate was 0.3 

mL/min with a total separation time of 10 minutes. ESI was used throughout but two different 

analyses were completed with varying mass spectrometer methods. The first operated only in 

negative mode to scan for HMX, RDX, tetryl, PETN, and NG with a mass range of 200-400 m/z. 

This will be referred as the C18 single scan method throughout the paper. The second method 

operated in both positive scanning mode (for imidazole) and negative scanning mode (for 

PETN). This will be referred to as the C18 dual scan method throughout the paper. Table 4 and 5 

summarizes the times for the different scanning modes and mass ranges with Table 4 

corresponding to the analysis of the RSP residue extracts and Table 5 corresponding to the 

analysis of the burn test extracts and bulk powder extracts. 

 The GC/ECD previously established method for analyzing high explosives consisted of 

using a J&W DB-5ms column 6 m x 0.25 mm with a 0.25 µm film thickness. The injector 
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temperature was 225°C using a 5:1 split ratio. The column temperature was held at 50°C for 1.5 

minutes followed by a 25°C/min ramp to final temperature of 250°C. The carrier gas used was 

helium having a flow rate of 3.7 mL/minute. The ECD detector temperature was held at 275°C. 

The total analysis time was 10 minutes. 

 The previously established GC/MS method for analyzing smokeless powder utilized a 

J&W DB-5ms column 30 m x 0.25 mm with a 0.25 µm film thickness. The injector temperature 

was 170°C and used a 10:1 split ratio. The column was initially held at 45°C for 3 minutes. 

There was then a 15°C/min ramp to a temperature of 150°C followed another ramp of 40°C/min 

to a final temperature of 265°C. This final temperature was held for 9.875 minutes. The 

quadrupole mass spectrometer had a scan range of m/z 41-400. 

Analytical Standards 

 Standards of the analytes and internal standards were analyzed on each of the instruments 

to determine their retention times and fragmentation patterns. Once individual standards were 

analyzed, mixtures of the standards were made to ensure separation was successful. The 

GC/ECD standard mixture was made up of 10 ppm NG, 10 ppm PETN, and 100 ppm 2,5-DCP. 

The GC/MS smokeless powder standard was made up of 50 ppm DPA, 50 ppm EC, 50 ppm MC, 

500 ppm NG, and 100 ppm 2,5-DCP. The high explosive standard mixture analyzed on the C18 

column was 10 ppm imidazole and 10 ppm PETN. The smokeless powder standard mixture 

analyzed on the biphenyl column was 10 ppm NG, 10 ppm DPA, 10 ppm EC, 10 ppm MC, and 

10 ppm imidazole. Additional quality assurance/quality control (QA/QC) standards were run on 

the instruments daily to ensure they were in proper working order. 

Bulk Powder Analysis 

 The two different shotgun rounds used in the PAN disrupter were dissasembled and the 

powder was analyzed. One was a Remington NitroTurkey 12 Gauge 2 oz shot. The other was an 
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L-Tech Enterprises 12 Gauge EOD blank. A known double base smokeless powder standard 

(Hodgdon HS-7) was also analyzed with the smokeless powder standards since the smokeless 

powder standard did not contain NG. In addition, the extraction of the Hodgdon HS-7 powder 

acted as a positive control to ensure the methylene chloride extraction procedure was successful. 

Three samples of the smokeless powder within each shell were weighed out for analysis. About 

23 mg of the Nitroturkey smokeless powder and three samples of about 15 mg of the L-Tech 

smokeless powder were weighted out and extracted in 600 µL of methylene chloride for 2 hours. 

All extracts and negative controls were then filtered through a 0.2 µm nylon filter.  The 

concentration of the 2,5-DCP internal standard in all extracts was 100 ppm.  

 The powder from the detonation cord used in the Mineral Water Bottle was removed. 

Three samples of about 10 mg of powder were weight out and dissolved into 10 mL of acetone. 

This was diluted down to 10 ppm and the concentration of the imidazole internal standard was 10 

ppm and 100 ppm for the 2,5-DCP internal standard. The samples were analyzed on the 

GC/ECD and LC/MS (C18 method). 

 All analytes detected on the GC/MS, GC/ECD, and LC/MS had their peak areas divided 

by the peak area of the internal standard spiked into the sample. The ratios calculated were then 

divided by the amount of powder used in each extraction. These calculations were performed to 

see if there was a consistent amount of the analytes present in each sample within each analysis 

completed. 

Artificial Burn Residue Analysis 

Pipe endcaps used for this part were rinsed out twice with acetone before powder was 

placed into them. The endcaps made from the same material used for each RSP was used in the 

burn test. The exception was with the Mineral Water Bottle test where PVC endcaps were used 
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since the powder could not be burned directly onto the backpack. Three samples of each powder 

weighing about 100 mg were placed in pipe endcaps: the L-Tech smokeless powder and 

detonation cord powder were placed in separate polyvinylchloride (PVC) endcaps while the 

Remington NitroTurkey smokeless powder was placed in steel endcaps. A butane torch was used 

to burn the powders. Three samples of the Remington NitroTurkey and the detonation cord 

powder were burned while nine samples of the L-Tech powder were burned due to an error with 

the internal standard for the first set of three and some discrepancies with the compounds 

detected in the next set of three. The powders were burned and 5 mL of acetone were used to 

extract the first set of L-Tech PVC samples and Remington NitroTurkey steel samples while 2 

mL of acetone were used to extract the second set of L-Tech PVC samples and detonation cord 

PVC samples in order to concentrate the analytes present in the extract. All extracts were then 

filtered through a 0.2 µm nylon filter. 

The Remington NitroTurkey steel extracts and detonation cord PVC extracts had to be 

diluted in acetone before being analyzed on the instrumentation. The Remington NitroTurkey 

extract was diluted 1:7.5. The detonation cord PVC burn extracts were diluted 1:25. The final 

internal standard concentrations were 10 ppm imidazole and 100 ppm 2,5-DCP. The L-Tech and 

Remington NitroTurkey samples were analyzed on the GC/ECD, GC/MS, and LC/MS (biphenyl 

column method) while the detonation cord was analyzed using the GC/ECD and LC/MS (C18 

column). The same calculations were completed with the peak area as in the bulk powder 

analysis. 
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RSP Residue Setup 

All of the mock devices used were not filled with explosives. Three trials were completed 

for each RSP. The PAN disrupter utilizing a water column propelled by the L-Tech blank was 

used to render safe a mock PVC pipe bomb. The PAN disrupter utilizing the Remington 

NitroTurkey round containing bird shot was used to render safe a mock steel pipe bomb. The 

Mineral Water Bottle disrupter was used against a backpack that was stuffed with paper and two 

PVC pipes to give it the weight of a mock IED. All test shots were conducted on an explosive’s 

demolition range.  

Each of the IEDs were placed in a steel drum so that it could catch the fragments as the 

device was being rendered safe. A clean steel drum was used in between each of the PVC mock 

IED and steel mock IED tests to prevent any residue contamination from the previous analysis. 

Only one steel drum was available for the mock backpack IED tests so a tarp to line the steel 

drum and was changed in between each sample to prevent contamination from previous analysis. 

A clean tarp was also placed on the ground for every test to prevent contamination from the soil 

and the previous shots residue. In addition to the pipes from each test being collected in different 

bags, the fragments on the tarp and steel drum within each test were separated. Each backpack 

was also collected in separate bags. 

For the PVC IED, the barrel of the PAN was kept at about 6 inches standoff at a 90-

degree angle, perpendicular to the pipe. Figure 2 illustrates the PVC pipe before and after it was 

rendered safe. For the steel IED, the barrel of the PAN was kept parallel to the pipe with the 

barrel pointed to the back endcap. The distances and angles were a little more varied with Table 

6 summarizing the distances and angles. Figure 3 illustrates the steel pipe before and after it was 

rendered safe. For the backpack IED, the mineral bottle was placed on a sandbag stand for the 
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first backpack and an ammunition can for the other two backpacks in order to raise the bottle to 

the midpoint of the backpack. The standoff distance was about 6 inches.  

RSP Residue Analysis 

All extractions were performed in an explosive trace clean room. The steel pipes and 

PVC pipes were both rinsed with acetone; steel pipes were rinsed with 8 mL and the PVC pipe 

fragments were rinsed with 6 mL. Backpacks were vacuumed with a vacuum that had a 

fiberglass filter attachment. The fiberglass filter was extracted with 1.5 mL of acetone. For 

backpack 3, the filtered extract was accidentally added into a test tube that was already filled 

with clean acetone. The acetone was then dried down and the extract was reconstituted with  

1 mL of acetone. In addition, a second extract of the initial filter from backpack 3 was 

completed. A second vacuuming was also performed on backpack 3 and the same extraction 

procedure for that filter was followed. All extracts were then filtered through a 0.2 µm nylon 

filter. The extracts were then directly spiked with the internal standards with final concentrations 

being 10 ppm for the imidazole and 100 ppm for the 2,5-DCP.  

The PVC and steel pipe residue extracts were analyzed using GC/ECD, GC/MS, and 

LC/MS (biphenyl column) while the backpack residue extracts were analyzed using GC/ECD 

and LC/MS (C18 column). The same calculations that were completed with the other two parts 

were performed with each of the analytes with the exception that the ratios calculated were not 

divided by the weight of the powder used since this is an unknown factor. 

Research Results and Discussion 

Retention times for the standards analyzed on each instrument were determined. The 

internal standards were chosen based on the retention time of the analytes of interest. 2,5-DCP 

was detected on the GC/ECD and GC/MS but not the LC/MS. In contrast, the imidazole internal 

standard was detected on the LC/MS but not the GC/ECD and GC/MS. Imidazole did elute close 
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to HMX and RDX but this was not an issue since HMX and RDX were not expected to be 

present. However, since these high explosives are detected in negative mode, a second analysis 

was completed where the extract was analyzed only in negative mode in order to confirm the 

presence/absence of RDX and HMX. The 2,5-DCP did not coelute with any analyte of interest. 

For the GC/ECD analysis, 2,5-DCP, NG, and PETN were well resolved in the chromatogram as 

shown in Figure 5. 

When the smokeless powder standard mixture was analyzed using the GC/MS 2,5-DCP, 

NG, DPA, MC, EC were successfully separated as shown in Figure 6. The mass spectrum in 

Figure 7 confirmed that the compound eluting at 9.486 minutes is 2,5-DCP. The molecular ion 

peak of m/z 163 is equal to the molecular mass of 2,5-DCP. The base peak of m/z 162 (M-H) 

accounts for the loss of hydrogen from the hydroxyl group. Figure 8 is the mass spectrum that 

confirms the compound that eluted at 10.981 minute was NG. The molecular ion peak cannot be 

seen, most likely due to the extensive fragmentation of NG, but the base peak of m/z 46 is equal 

to NO2
+, a possible fragment of NG. The mass spectrum in Figure 9 confirms that the compound 

that eluted at 12.428 minutes is DPA. This is due to the presence of the molecular ion peak and 

base peak of m/z 169 is equal to the molecular mass of DPA. The compound that eluted at 

13.204 minutes was confirmed to be MC based on the mass spectrum in Figure 10. The 

molecular ion peak m/z 240 is equal to the molecular mass of MC and the base peak of m/z 106 

is equal to the molecular mass of C6H5NCH3
+. The final mass spectrum in Figure 11 is the 

compound that eluted at 13.363 minutes. This was confirmed to be EC based on the molecular 

ion peak of m/z 268 being equal to the molecular mass of EC and the molecular mass of the 

C6H5NCH2CH3
+ fragment being equal to the base peak of m/z 120. 
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Figures 12 and 13 illustrate a successful separation of high explosives HMX, RDX, tetryl, 

NG, and PETN utilizing the previously developed C18 single scan method. However, the 

corresponding mass spectrum in Figure 13 for each compound has a m/z base peak equal to the 

[M+62]. This is due to each of the compounds forming a nitrate adduct from the ammonium 

nitrate ionization aid used in the mobile phase. Imidazole was detected when the C18 dual scan 

method was used with its identity being confirmed by the mass spectrum in Figure 14. The m/z 

value in the mass spectrum was 69, corresponding to [M+H] ion that is formed. 

The developed method to analyze smokeless powder using LC/MS was successful with 

separating imidazole, NG, MC, EC, and DPA. All of the compounds were resolved in the TIC 

displayed in Figure 15 with the exception of EC and DPA. However, separation was achieved 

when the EICs for both compounds were extracted from the TIC with their corresponding mass 

spectra being completely resolved as shown in Figure 16. The base peaks in the corresponding 

mass spectrum for all of the compounds except NG have a m/z value of [M+1]. Similar to the 

C18 methods, NG forms a nitrate adduct from the ammonium nitrate ionization aid used in the 

mobile phase so the base peak has a m/z value equal to [M+62]. DPA also formed a hydrogen 

bond with acetonitrile leading to the m/z 211 peak seen in the mass spectrum. 

PAN Disrupter Water Column 

 The powder removed from the L-Tech blank weighed approximately 2.8279 g. Other 

parts included what appeared to be a cardboard wad and two fibrous wads as shown in the 

disassembled shell displayed in Figure 17. Through GC/MS analysis, it was determined that the 

smokeless powder contained NG, DPA, and EC as seen in Figure 18. Each compounds identities 

were confirmed based on the corresponding mass spectra displayed in Figures 19-22. Based on 

the ratio calculations displayed in Table 7, there was very little variation between samples 1 and 



 
 

18 
 

2 while sample 3 had some slight variation in the relative abundance of NG and EC compared to 

samples 1 and 2.  

The analysis of sample 4 of the burned L-Tech smokeless powder using GC/ECD shown 

in Figure 23 indicated that NG was present. NG was present in the four samples where it was 

identified through the GC/ECD analysis as summarized in Table 8. There was a large amount of 

variation between samples, with sample 5 being two orders of magnitude different from samples 

4 and 6 and sample 7 being an order of magnitude different from sample 8.  

The EIC and mass spectra in Figure 24 confirmed NG presence in the L-Tech smokeless 

powder burn residue sample 4 while also identifying EC. While there is a peak that appears in 

the EIC for MC, the retention time differs from the MC standard. In addition, there are extra 

peaks at high abundance present in the mass spectrum that differ from the mass spectra of the 

MC standard. As summarized in Table 9, four out of the six samples had NG present while five 

of the six had detectable amounts of EC present. In sample 5, a peak with the same retention time 

as NG was present in the GC/ECD chromatogram, but its identity could not be confirmed 

through LC/MS. the only evidence of residue being present in sample 5 was the detection of EC. 

No DPA was detected in any of the samples. There was also a greater amount of variation 

between samples in these extracts when compared with the bulk powder samples with some of 

the samples even differing by an order of magnitude.  

None of the analytes of interest were detected in any of the other L-Tech smokeless 

powder burn tests through GC/MS analysis. This was most likely due to the higher limit of 

detection of the GC/MS when compared to LC/MS or GC/ECD. Figure 30 is an example 

chromatogram for sample 4, where the only compound of interest detected was 2,5-DCP internal 
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standard. This eliminated the possibility of instrumental error as a reason why none of the other 

analytes were detected.  

 In the residue analysis of the PVC pipe rendered safe using the PAN disrupter and water 

column, there were no compounds of interest detected in any of the extracts. There were no 

analytical peaks present in the EIC from the LC/MS analysis displayed in Figure 26. While the 

other chromatograms are not displayed, the internal standards were identified in each of the 

chromatograms; therefore, instrumentation error was ruled out as a reason why none of the 

analytes were detected.  

PAN Disrupter Birdshot 

 The round disassembled, shown in Figure 27, consisted of large polymer pellets weighing 

0.7980 g, small polymer powder weighing 0.8674 g, lead birdshot weighing 54.1021 g, and 

smokeless powder weighing 1.8844 g. The compounds detected in the Remington NitroTurkey 

smokeless powder through GC/MS analysis shown in Figure 28 are NG, DPA, and EC. The 2,5-

DCP internal standard was also detected. The identities of each of the compounds in the 

smokeless powder were confirmed by the corresponding mass spectra that are displayed in 

Figures 29-32. Between bulk samples, most of the variation is between NG and EC; primarily 

with sample 3, as displayed in the summary of the calculations in Table 10. DPA does not vary 

greatly between samples with sample 1 being the only sample to differ by more than 10%.  

Initially, NG was identified in the burn residue for the Remington NitroTurkey powder 

using GC/ECD analysis as seen in the example chromatogram for sample 1 in Figure 47. The 

ratio calculations summarized in Table 11 indicate the variation in the amount of NG detected 

was not as apparent in the GC/ECD results as it was for the L-Tech burn samples. This might be 
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attributed to the ease of burning the powder more evenly in the steel endcap, as melting the steel 

endcap with the torch was not a concern. 

 NG and EC were the only two analytes of interest detected in sample 1 using LC/MS 

analysis. While there appears to be a peak for the MC in the EIC displayed in Figure 34, that 

peak was also seen in the negative controls and blanks. This could possibly be due to noise from 

switching between positive and negative mode since it occurs right at the switch. The mass 

spectrum also indicated that it was not MC. Table 12 summarizes the calculated ratios for each 

of NG and EC detected in the Remington NitroTurkey powder burn residue. There is a wider 

amount of variation among the amount of NG in the samples than the EC. The variation among 

all of the burn samples also seems to be greater than that of the bulk powder samples. Similar to 

the L-Tech smokeless powder burn tests, no analytes of interest were detected when the samples 

were analyzed using GC/MS, with an example chromatogram being displayed in Figure 35.  

 NG was initially identified on 2 out of 3 pipes rendered safe using the PAN disrupter and 

Remington NitroTurkey round, with the chromatogram for pipe 1 being displayed in Figure 36. 

On pipe 1, NG is detected from the sample collected on the tarp but not on the sample collected 

in the barrel. The summarized ratio calculations in Table 13 indicate the amount of NG present 

in each sample varies widely when compared to the burn test samples and bulk powder extracts. 

Pipes 1, 2, and 3 all have NG relative concentrations that differ by an order of magnitude from 

each other, with pipes 1 and 3 differing by two orders of magnitude.  

In the residue analysis, NG was detected on all three pipes rendered safe using the PAN 

disrupter and Remington NitroTurkey round, while EC was only detected in two out of the three 

samples using LC/MS analysis. An example EIC and its corresponding mass spectrum for pipe 2 

recovered in the barrel is in Figure 37. The amount of each analyte detected varied extensively 
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among each sample as indicated by Table 14. While NG was detected on pipe 1, it was at a 

whole order of magnitude lower than the NG detected on pipe 2 and pipe 3. The GC/MS analysis 

could not confirm the presence of any of the analytes of interest on the pipes as shown in Figure 

39. Despite the low amount of residue detected relative to pipes 2 and 3, the mass spectra 

confirmed the identity of NG with the m/z 289 peak being present as seen in Figure 38.  

Mineral Water Bottle 

The white powder removed from the detonation cord as shown in Figure 40 was analyzed 

utilizing GC/ECD with the resulting chromatogram for sample 1 displayed in Figure 41, 

indicating the presence of PETN. There is some variation between the analytes detected in 

sample 1 and the other two samples with the variation of analytes detected between samples 2 

and 3 being minimal. Despite all solutions being diluted down to 10 ppm, a possible explanation 

for the variation seen in Table 15 is some variation in the pipetted volumes which had to be 

rounded in some cases. 

The identity of PETN was confirmed when the extract was analyzed using LC/MS as 

indicated in the EIC and mass spectra shown in Figure 42. The calculated area ratios for each of 

the samples are summarized in Table 16. The in this analysis there was variation between sample 

3 and samples 1 and 2 (which did not vary greatly). This discrepancy could possibly be from area 

not being as accurately calculated in the LC/MS analysis as the imidazole internal standard does 

not form a gaussian peak. Therefore, the parts of the peak that encompassed the area had to be 

guesstimated for each chromatogram which could lead to some inconsistencies due to human 

error. Further LC/MS analysis as seen in Figure 43, shows PETN was the only high explosive 

present within the detonation cord powder. 
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The PETN in the detonation cord powder did not completely degrade or decompose after 

the powder was burned as it was still initially identified in all three-burn test samples through 

GC/ECD analysis. Figure 44 is the chromatogram from sample 1 where the PETN peak is 

present. The values summarized in Table 17 indicate there is a higher amount of variation in the 

amount of PETN detected between each of the samples when compared to the bulk powder 

analysis, most likely due to uneven amounts of burning. 

The presence of PETN was confirmed through LC/MS analysis. The PETN peak is still 

present in sample 1 as seen in the EIC displayed in Figure 45. However, even though PETN was 

detected in all three of the samples, there was much more variation in the amount of PETN 

present in each sample, summarized in Table 18. This was most likely due to more PETN being 

consumed by an inconsistent burning process in some of the samples. In addition to PETN being 

present, it appears there is a peak in the EIC for tetryl and NG but the retention times differ from 

the tetryl and NG standards; therefore, the peak cannot be identified as tetryl or NG. The C18 

single scan method confirmed that HMX and RDX were also not present in the sample. 

 In the preliminary analysis of the RSP residue from backpacks rendered safe utilizing the 

mineral water bottle PETN was still able to be detected in some of the backpack samples after 

GC/ECD analysis. Figure 46 is the chromatogram for backpack 2, where a small PETN peak is 

present at 6.148 minutes. The presence of PETN was initially identified in backpacks 2 and 3, 

summarized in Table 19. Backpack 1 had no detectable amounts of PETN present.  

Despite the initial screening using GC/ECD, the PETN detected using LC/MS would 

differ in some ways compared to the GC/ECD results. PETN was identified in two out of three 

backpacks with an example chromatogram and mass spectrum for the imidazole internal standard 

and PETN displaying in Figure 47. As indicated in Table 20, PETN residue was present in 
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backpacks 1 and 2 while PETN was absent in all of the residue extracts from backpack 3. 

Despite not being detected in the GC/ECD, the determination that PETN is present on backpack 

1 can be confirmed on LC/MS as LC and MS are two orthogonal techniques. Surprisingly, the 

dried down extract from backpack 3 had detectable amounts of PETN present in the GC/ECD 

chromatogram. This could possibly indicate that the compound detected in the GC/ECD analysis 

could have been another compound. Even though PETN was detected in the chromatogram of 

the dried down extract from backpack 3, it cannot be confirmed through any other analysis, 

therefore it will be excluded as a positive result. Similar to the LC/MS results, there is a higher 

amount of variation among sample that were rendered safe when compared to the burn residue 

and bulk powder analysis. 

Discussion of Overall Trends 

 The widest amount of variation of concentration between samples was in the residue 

analysis and the least amount of variation was with the bulk powder analysis. This trend is 

explained by the fact that there is a wider array of factors that affect the deposition of residue 

compared to any of the other tests. In the bulk powder analysis, the only factor that would affect 

the variation would be systematic error such as the weighing of the powder or pipetting of the 

extracts. In the burn test, the extent to which the powder was burned affected the amount of 

residue left. Evaporation of acetone as the burned residue was being extracted led to variation in 

the volume of liquid extracted from each sample which could have also played a role in the 

variation. However, evaporation affected the variation seen in rendered safe pipe residue the 

most since the pipes were rinsed multiple times with the same aliquot of acetone that had to be 

replenished a few times. In addition, residue deposition onto the mock IEDs was affected by 

environmental factors such as the weather, particularly air currents which can affect the plumes 
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travel direction and therefore, affect where it is deposited. This was unseen in the other two tests 

that were performed in a controlled, inside environment. Inconsistencies in the setup of the RSP 

can also affect the deposition of residue on an IED. While the distances and angles of the shots 

were kept as consistent as possible, a minor deviation could have altered the trajectory of the 

RSP solid round or water. 

 Most of the compounds that were detected in the bulk analysis were also detected in the 

burn residue and RSP residue analysis. The only compound that was completely consumed was 

DPA. For the Remington NitroTurkey round, the lack of DPA can be explained by the lack of an 

abundance of DPA in the bulk powder when compared to the other compounds. For the L-Tech 

shotgun blank, the DPA could have thermally degraded when subjected to the high heat of the 

butane torch. 

Conclusion 

 As summarized in Table 21, the PAN disrupter that utilized the L-Tech blank left no 

residue, while the PAN disrupter that utilized the Remington NitroTurkey round left NG and EC 

residue and the Mineral Water Bottle Disrupter left PETN residue. For the PAN disrupter that 

utilized the L-Tech shotgun blank and water, finding no residue was surprising. Instrumentation 

error was ruled out as the internal standard was present in all of the chromatograms. A possible 

explanation was that the water had potentially washed the residue away. Another explanation 

was that the residue did not adhere to the PVC pipe. Future research should test the L-Tech RSP 

on other substrates to see if substrate was the reason no residue was detected or whether it was 

the RSP itself. Since no DPA was detected in any of the residue cases, future research should 

also examine the degradation products of DPA such as benzene or aniline or reaction products 
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such as 2-nitrodiphenylamine, 4-nitrodiphenylamine, or N-nitrodiphenylamine to determine if 

the DPA was simply broken down by the high heat of the butane torch. 

Residue was detected in the other two RSPs: the PAN disrupter that utilized the 

Remington NitroTurkey rounds and the Mineral Water Bottle disrupter. In each of these groups, 

two out of three samples had detectable residue present while one of the samples was free of 

residue. In addition, there was a large amount of variation in the amount of residue present after 

the RSP compared to the burn test and bulk powder analysis making it difficult to predict the 

amount of reside that is be left by the RSP. Despite the large variation between samples and that 

only 67% of the samples had residue present, it is advised that examiners should be more 

conservative with their interpretation. Therefore, examiners should be aware that these render 

safe procedures could possibly leave residue on the devices. It is then recommended that any 

results should also include that the residue found could have come from the RSP. However, if 

analytes other than NG, DPA, EC for the PAN disrupter that utilized the Remington NitroTurkey 

round or PETN for the Mineral Water Bottle disrupter is detected, then it most likely originated 

from the main charge of the explosive. 

 Despite residue being left by two of the three RSPs, there is still room for future 

experimentation and improvement. The high amount of variation in residue left by the RSP was 

only based off of the two samples for each RSP. Future experimentation could test a greater 

number of samples to see if there is a more predictable pattern to the amount of residue left. 

There are also many other RSP used by bomb technicians. Residues from mock IEDs rendered 

safe using these other procedures should be analyzed. While future experimentation can give 

scientist a greater understanding on the amount of residue left by the RSPs, using the current 

information, forensic examiners will be aware which RSPs leave residue and the compounds that 



 
 

26 
 

constitute the residue. This allows for more accurate interpretation of the examination results that 

can ultimately affect the outcome of the case. 
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Appendix 

  
Diphenylamine (DPA) 

MW: 169 g/mol 

Ethyl Centralite (EC) 

MW: 268 g/mol 

Methyl Centralite (MC) 

MW: 240 g/mol 

Nitroglycerine (NG) 

MW: 227 g/mol 

Figure 1: Structures and molecular masses for the analytes of interest and the internal 

standards 

Imidazole 

MW: 68 g/mol 
2,5-Dichlorophenol (2,5-DCP) 

MW: 163 g/mol 

Pentaerythritol tetranitrate 

(PETN) MW: 316 g/mol 
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Table 1: Gradient for the separation of DPA, EC, MC, NG, and 

Imidazole 

Time Acetonitrile Ammonium Nitrate Methanol

0.00 30% 60% 10%

0.10 45% 45% 10%

1.50 45% 45% 10%

3.00 55% 35% 10%

5.00 60% 30% 10%

5.10 30% 60% 10%

9.00 30% 60% 10%
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Scan Time (Minutes) Mode Mass Range

0.00-1.15 + 65-71

1.15-2.55 - 150-300

2.55-9.00 + 150-300

Table 2: Scanning modes, mass ranges, and 

times for the detections of DPA, EC, MC, NG, 

and Imidazole 
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Scan Time (Minutes) Mode Mass Range

0.00-1.41 + 65-71

1.41-2.55 - 150-300

2.55-9.00 + 150-300

Table 3: Scanning modes, mass ranges, and times for 

the detections of DPA, EC, MC, NG, and Imidazole 

after maintenance 
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Scan Time (Minutes) Mode Mass Range

0.00-2.00 + 65-72

2.00-10.00 - 200-400

Table 4: Scanning modes, mass ranges, and times 

for the detections of PETN and Imidazole for the 

RSP residue samples 
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Scan Time (Minutes) Mode Mass Range

0.00-1.62 + 65-72

1.62-10.00 - 200-400

Table 5: Scanning modes, mass ranges, and times 

for the detections of PETN and Imidazole for the 

RSP burn test and bulk samples 



 
 

38 
 

 

  

Figure 2: Before and after the water column was used to disrupt the PVC mock IED. The pieces inside the 

barrel and on the tarp were collected separately. 
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Figure 3: Before and after the birdshot was used to disrupt the steel mock IED. The pieces inside the barrel 

and on the tarp were collected separately. 
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Steel Pipe Distance (in) Angle

1 12.75 11.40°

2 12.20 10.20°

3 17.50 11.25°

Table 6: Standoff distances and angles for 

mock steel pipe IEDs 
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Figure 4: Before and after the water was used to disrupt the backpack mock IED. The barrel was lined with a 

clean tarp each time since there was only one barrel left for all of the backpack shots. 
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Figure 5: The chromatogram of the GC/ECD standard mixture. The internal standard 2,5-DCP eluted at 

3.088 minutes. Analytes NG eluted at 4.240 minutes and PETN eluted at 6.121 minutes 

2,5-DCP 

NG 

PETN 
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Figure 6: The chromatogram of the GC/MS standard mixture. The internal standard 2,5-DCP eluted at 

9.486 minutes. Analytes NG eluted at 10.981 minutes, DPA at 12.428 minutes, MC at 13.204 minutes, 

and EC at 13.363 minutes. 

2,5-DCP 

NG 

DPA 

MC 

EC 



 
 

44 
 

  

Figure 7: The mass spectrum of the 2,5-DCP that elutes at 9.485 minutes in Figure 5. The base 

peak is 161.9 while the molecular ion peak is 163. The bottom mass spectrum from the library 

search also indicates that the compound is 2,5-DCP. 
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Figure 8: The mass spectrum of the NG that elutes at 10.979 minutes in Figure 5. The base peak 

is 46 while the molecular ion peak is not visible. The bottom mass spectrum from the library 

search also indicates that the compound is NG. 
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Figure 9: The mass spectrum of the DPA that elutes at 12.425 minutes in Figure 5. The base 

peak and molecular ion peak are 169. The bottom mass spectrum from the library search also 

indicates that the compound is DPA. 
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Figure 10: The mass spectrum of the MC that elutes at 13.201 minutes in Figure 5. The base 

peak is 134. The molecular ion peak is 240. The bottom mass spectrum from the library search 

also indicates that the compound is MC. 
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Figure 11: The mass spectrum of the EC that elutes at 13.363 minutes in Figure 5. The base peak 

is 120. The molecular ion peak is 268. The bottom mass spectrum from the library search also 

indicates that the compound is EC. 
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Figure 12: The TIC for the high explosive standard analyzed using the C18 single scan mode 

method. The explosives detected include HMX, RDX, Tetryl, NG, and PETN in that elution 

order. 
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Figure 13: The EIC and corresponding mass spectra for the standards analyzed using the 

C18 single scan method. The first line is HMX, the second line is RDX, the third line is 

tetryl, the fourth is NG, and the fifth line is PETN. 
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Figure 14: The TIC and corresponding mass spectrum for the imidazole standard analyzed using the 

C18 dual scan mode method. 
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Figure 15: The TIC for the standards analyzed using the biphenyl column method. The first line is for 

the initial positive scan to detect imidazole, the second line is the second negative scan to detect NG, the 

third line the final positive scan to detect MC, EC, and DPA. The large peak in the NG scan overshadow 

the true NG peak, pointed out by an arrow. EC and DPA appear to co-elute in the TIC 
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Figure 16: The EIC and corresponding mass spectrum for the standards analyzed using the 

biphenyl column method. The first line is imidazole, the second line is NG, the third line is 

MC, the fourth is EC, and the fifth line is DPA. 
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Figure 17: Disassembled L-Tech shotgun shell used in the PAN disrupter to 

propel water down the column. 
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Figure 18: The chromatogram of the GC/MS analysis of the L-Tech bulk powder sample 1. NG, 

DPA, and EC were the compounds detected in addition to the 2,5-DCP internal standard. 
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Figure 19: The mass spectrum of 2,5-DCP eluting at 9.485 minutes from Figure 18. The 

bottom mass spectrum is from the library search. 
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Figure 20: The mass spectrum of the NG eluting at 11.023 minutes from Figure 18. The 

bottom mass spectrum is from the library search. 
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Figure 21: The mass spectrum of the DPA eluting at 12.425 from Figure 22. The bottom mass 

spectrum is from the library search. 
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Figure 22: The mass spectrum of the EC eluting at 13.363 minutes from Figure 18. The 

bottom mass spectrum is from the library search. 
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Table 7: Peak area ratios for the compounds detected in the GC/MS 

analysis of the bulk L-Tech smokeless powder. These ratios were also 

normalized by dividing the initial ratio by the weight of the powder. 

Sample 1 Sample 2 Sample 3

Weight of Powder (g) 0.0153 0.0151 0.0155

NG/2,5-DCP Peak Area Ratio w/Powder 410.3 416.9 438.5

DPA/2,5-DCP Area Ratio w/Powder 207.2 208.8 223.9

EC/2,5-DCP Area Ratio w/Powder 57.9 56.5 65.2
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Figure 23: The GC/ECD chromatogram of sample 4 from the L-Tech smokeless powder burn extract 

from a PVC pipe endcap. NG is present, eluting at 4.263 minutes. 2,5-DCP eluted at 3.117 minutes. 
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Table 8: Peak area ratios for the nitroglycerine detected in the GC/ECD analysis of the 

extracted residue from the burned L-Tech smokeless powder. These ratios were normalized by 

dividing the initial ratio by the weight of the powder burned. 

Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

Weight of Powder (g) 0.1005 0.1011 0.1008 0.1004 0.1008 0.1008

NG/2,5-DCP Peak Area Ratio w/Powder 6.267 0.040 1.748 0.568 2.026 0
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Figure 24: The EIC of extract resulting from L-Tech smokeless powder burn in a PVC 

endcap. The first line is imidazole, the second line is NG, the third line is MC, the fourth is 

EC, and the fifth line is DPA. NG and DPA were the only analytes detected. 
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Table 9: Peak area ratios for the compounds detected in the LC/MS analysis of the extracted 

residue from the burned L-Tech smokeless powder. These ratios were normalized by dividing 

the initial ratio by the weight of the powder burned. 

Sample 4 Sample 5 Sample 6 Sample 7 Sample 8 Sample 9

Weight of Powder (g) 0.1005 0.1011 0.1008 0.1004 0.1008 0.1008

NG/Imidazole Area Ratio w/Powder 0.583 0 0.115 0.012 0.082 0

DPA/Imidazole Area Ratio w/Powder 0 0 0 0 0 0

EC/Imidazole Area Ratio w/Powder 0.881 0.0614 0.496 0.0420 0.0948 0
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Figure 25: The chromatogram of the GC/MS analysis of sample 1 of the L-Tech burned 

smokeless powder extract. None of the analytes of interest were detected, only the internal 

standard 2,5-DCP was detected. 
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Figure 26: The EIC of the residue extract from pipe 2 recovered in the barrel that was 

rendered safe using the PAN disrupter, the L-Tech shotgun blank, and water. The first line is 

imidazole, the second line is NG, the third line is MC, the fourth is EC, and the fifth line is 

DPA. None of the analytes of interest were detected but the imidazole internal standard was 

detected. 
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Figure 27: Disassembled Remington NitroTurkey shotgun shell used in the PAN disrupter that 

propels birdshot down the barrel. 
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Figure 28: The chromatogram of the GC/MS analysis of sample 1 of the Remington 

NitroTurkey bulk smokeless powder. NG, DPA, and EC were the analytes detected in 

addition to the 2,5-DCP internal standard. 
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Figure 29: The mass spectrum of 2,5-DCP eluting at 9.483 minutes from Figure 28. The 

bottom mass spectrum is from the library search. 
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Figure 30: The mass spectrum of NG eluting at 11.064 minutes from Figure 28. The bottom mass 

spectrum is from the library search. 
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Figure 31: The mass spectrum of DPA eluting at 12.428 minutes from Figure 28. The bottom 

mass spectrum is from the library search. 
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Figure 32: The mass spectrum of EC eluting at 13.367 minutes from Figure 28. The bottom mass 

spectrum is from the library search. 
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Sample 1 Sample 2 Sample 3

Weight of Powder (g) 0.0227 0.0224 0.0231

NG/2,5-DCP Peak Area Ratio w/Powder 639.159 641.124 560.962

DPA/2,5-DCP Area Ratio w/Powder 5.91234 5.19698 5.12736

EC/2,5-DCP Area Ratio w/Powder 252.949 283.322 214.884

Table 10: Peak area ratios for the compounds in the GC/MS analysis of 

the bulk Remington NitroTurkey smokeless powder. These ratios were 

normalized by dividing the initial ratio by the weight of the powder. 
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Figure 33: The GC/ECD chromatogram of sample 1 from the Remington NitroTurkey smokeless 

powder burn extract in a steel endcap. NG is present, eluting at 4.257 minutes. 2,5-DCP eluted at 

3.095 minutes. 
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  Table 11: Peak area ratios for the nitroglycerine in the GC/ECD analysis of the extracted 

residue from the burned Remington NitroTurkey smokeless powder. These ratios were 

normalized by dividing the initial ratio by the weight of the powder burned. 

Sample 1 Diluted Sample 2 Diluted Sample 3 Diluted

Weight of Powder (g) 0.01006 0.01005 0.01001

NG/2,5-DCP Peak Area Ratio w/Powder 56.63 58.74 53.10
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Figure 34: The EIC of extract resulting from the Remington NitroTurkey smokeless powder 

burned in a steel endcap. The first line is imidazole, the second line is NG, the third line is 

MC, the fourth is EC, and the fifth line is DPA. NG and DPA were the only analytes detected. 
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Table 12: Peak area ratios for the compounds in the LC/MS analysis of the extracted residue 

from the burned Remington NitroTurkey smokeless powder. These ratios were normalized by 

dividing the initial ratio by the weight of the powder burned. 

Sample 1 Diluted Sample 2 Diluted Sample 3 Diluted

Weight of Powder (g) 0.01006 0.01005 0.01001

NG/Imidazole Area Ratio w/Powder 3.67 6.26 4.85

DPA/Imidazole Area Ratio w/Powder 0 0 0

EC/Imidazole Area Ratio w/Powder 4.43 5.03 4.13
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Figure 35: The chromatogram of the GC/MS analysis of the Remington NitroTurkey sample 

1 burned smokeless powder extract. None of the analytes of interest were detected, only the 

internal standard 2,5-DCP was detected 
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Figure 36: The GC/ECD chromatogram for the residue from pipe 2 recovered in the barrel rendered 

safe using the PAN disrupter and the Remington NitroTurkey shotgun round. NG eluted at 4.258 

minutes. 2,5-DCP eluted at 3.111 minutes. 
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  Table 13: Peak area ratios for NG in the GC/ECD analysis of the extracted residue from the steel pipes 

rendered safe using the PAN disrupter and Remington NitroTurkey shotgun round. Pieces from the same pipe 

were collected separately if they landed in the barrel or on the tarp. 

Steel Pipe 1 Barrel Steel Pipe 1 Tarp Steel Pipe 2 Barrel Steel Pipe 3 Tarp Steel Pipe 3 Tarp/Dirt

NG/2,5-DCP Peak Area Ratio 0 0.0083 0.1084 1.6674 0.0392
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Figure 37: The EIC of the residue extract from pipe 2 recovered in the barrel that was 

rendered safe using the PAN disrupter and the Remington NitroTurkey shotgun round. The 

first line is imidazole, the second line is NG, the third line is MC, the fourth is EC, and the 

fifth line is DPA. NG and EC were detected in addition to the imidazole internal standard. 
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 Table 14: Peak area ratios for the compounds in the LC/MS analysis of the extracted residue from the 

steel pipes rendered safe using the PAN disrupter and Remington NitroTurkey shotgun round. Pieces 

from the same pipe were collected separately if they landed in the barrel or on the tarp. 

Steel Pipe 1 Drum Steel Pipe 1 Tarp Steel Pipe 2 Drum Steel Pipe 3 Tarp Steel Pipe 3 Tarp/Dirt

NG/Imidazole Peak Area Ratios 0.000532 0.000753 0.0105 0.0146 0.00233

DPA/Imidazole Area Ratio 0 0 0 0 0

EC/Imidazole Area Ratio 0 0 0.0138 0.0143 0.00377
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Figure 38: The EIC of the residue extract from pipe 1 recovered in the barrel that was 

rendered safe using the PAN disrupter and the Remington NitroTurkey shotgun round. The 

first line is imidazole, the second line is NG, the third line is MC, the fourth is EC, and the 

fifth line is DPA. NG was detected in addition to the imidazole internal standard. 
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Figure 39: The GC/MS chromatogram for the residue from pipe 2 recovered in the barrel rendered 

safe using the PAN disrupter and the Remington NitroTurkey shotgun round. No analytes of 

interest were detected. 2,5-DCP eluted at 9.490 minutes. 
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Figure 40: Detonation cord utilized in the Mineral Bottle. A small amount of the high 

explosive powder used in the cord was collected into the metal tray. The ends are 

taped to prevent the cord from losing powder. 
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Figure 41: The GC/ECD chromatogram for the bulk detonation cord powder sample 1. PETN 

eluted at 6.128 minutes. 2,5-DCP eluted at 3.090 minutes. 
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Sample 1 Sample 2 Sample 3

PETN/2,5-DCP Peak Area Ratio 0.05463 0.06946 0.06926

Table 15: Peak area ratios for the PETN detected using the GC/ECD for 

the analysis of the bulk detonation cord powder. 
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Figure 42: The EIC of the bulk detonation cord powder from sample 1. The first line is 

imidazole with its corresponding mass spectra, the second line is Tetryl, the third line is NG, 

the fourth is PETN, with its corresponding mass spectra. PETN was detected in addition to 

the imidazole internal standard. 
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Table 16: Peak area ratios for the PETN detected using the 

LC/MS for the analysis of the bulk detonation cord powder. 

Sample 1 Sample 2 Sample 3

PETN/Imidazole Peak Area Ratio 0.698 0.703 0.906
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Figure 43: The EIC of sample 1 of the bulk detonation cord powder. The first line is RDX, 

the second line is HMX, the third is tetryl, the fourth is NG, and the fifth line is PETN. Only 

PETN was detected. The corresponding mass spectra confirms PETN’s identity. 
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Figure 44: The GC/ECD chromatogram for sample 1 of the the burned detonation cord powder 

residue. PETN eluted at 6.136 minutes. 2,5-DCP eluted at 3.103 minutes. 
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  Table 17: Peak area ratios for the PETN detected using the GC/ECD for the 

analysis of the residue from the burned detonation cord powder. 

Sample 1 Sample 2 Sample 3

Weight of Powder (g) 0.01003 0.01000 0.01005

PETN/2,5-DCP Peak Area Ratio w/Powder 89.35 67.01 34.58
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Figure 45: The EIC and mass spectrum of the residue from the burned detonation cord 

powder from sample 1. PETN was detected in addition to the imidazole internal standard. The 

EIC for Tetryl and NG had peaks present but the retention times did not match the 

corresponding standards 
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Table 18: Peak area ratios for the PETN detected using LC/MS for the 

analysis of the burned detonation cord powder residue. 

Sample 1 Sample 2 Sample 3

Weight of Powder (g) 0.01003 0.01000 0.01005

PETN/Imidazole Area Ratio w/Powder 274 201 181
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Figure 46: The GC/ECD chromatogram for the residue extract from backpack 2. PETN eluted at 

6.148 minutes. 2,5-DCP eluted at 3.107 minutes. 
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Backpack 1 Backpack 2

Backpack 3 Dried 

Down 1st Extract

Backpack 3 1st 

Filter 2nd Extract

Backpack 

2nd Extract

PETN/2,5-DCP Peak Area Ratio 0 0.00653 0.00355 0 0

Table 19: Peak area ratios for the PETN detected using the GC/ECD for the analysis of the residue 

from the backpacks. There was an error with the initial extraction from backpack 3. A second 

extraction of the first filter was performed along with a second vacuuming 



 
 

97 
 

 

  

Figure 47: The EIC and mass spectrum of the residue from backpack 2. The first line is 

imidazole, the second line is PETN. PETN was detected in addition to the imidazole internal 

standard. 
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Table 20: Peak area ratios for the PETN detected using the LC/MS for the analysis of 

backpack residue. There was an error with the initial extraction from backpack 3. A second 

extraction of the first filter was performed along with a second vacuuming 

Backpack 1 Backpack 2

Backpack 3 Dried 

Down 1st Extract

Backpack 3 1st 

Filter 2nd Extract

Backpack 3 

2nd Extract

PETN/Imidazole Peak Area Ratio 0.0201 0.0727 0 0 0
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Table 21. Summary of compounds detected in the bulk 

powder (top) and compounds detected in the RSP residue 

(bottom). 

RSP (Bulk Powder) NG EC DPA PETN

PAN (NitroTurkey) Yes Yes Yes No

PAN (L-Tech) Yes Yes Yes No

Mineral Water Bottle No No No Yes

RSP (Residue) NG EC DPA PETN

PAN (NitroTurkey) Yes Yes No No

PAN (L-Tech) No No No No

Mineral Water Bottle No No No Yes
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