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Abstract:  

Organophosphate (OP) chemicals include nerve agents and pesticides, and there is a 

growing concern of OP based chemical attacks against civilians. Current antidotes are essential 

in limiting immediate mortality associated with OP exposure. However, further research is 

needed to identify molecular mechanisms underlying long-term neurological deficits following 

survival of OP toxicity in order to develop effective therapeutics. We have developed rat survival 

models of OP induced status epilepticus (SE) that mimic chronic mortality and morbidity 

following OP intoxication. We have observed significant elevations in hippocampal calcium 

levels after OP SE that persisted for weeks following initial survival. Drugs inhibiting 

intracellular calcium-induced calcium release such as dantrolene, levetiracetam, and carisbamate 

lowered OP-SE mediated protracted calcium elevations. Given the critical role of calcium 

signaling in modulating behavior and cell-death mechanisms, drugs targeted at preventing the 

development of the calcium plateau could enhance neuroprotection, help reduce morbidity and 

improve outcome following survival of OP SE. 
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Introduction 

The Increasing Risk for Organophosphate Exposure  

Organophosphate (OP) chemicals include nerve agents such as Sarin and pesticides such 

as Parathion. These compounds are considered extremely lethal. The civilian population has been 

exposed to nerve agents under acts of war and terrorism. Recent examples include the reported 

2015 Sarin gas attack in Ghouta, Syria 1, the Tokyo sub-way Sarin attack by the “Aum 

Shinrikyo” cult in 1995 2, and the 1988 “Halabja chemical attack” against Kurdish people in Iraq 

3. OP based pesticides have also been used against civilians during the Rhodesian War 4 and the 

accidental poisoning in Indian children following consumption of pesticide contaminated lunches 

5. In addition, civilians are exposed to OP’s intentionally by suicide attempts or occupationally or 

due to industrial accidents. In fact, pesticide ingestion is one of the most common method for 

committing suicide in developing nations6, 7 8. The military population has also been exposed to 

OP chemicals. Approximately 30% of returning soldiers from the Persian Gulf War suffer from a 

cluster of symptoms commonly known as Gulf War Syndrome. Prolonged exposure to OP based 

pesticides or exposure to Sarin gas, following demolition of chemical weapon stockpiles are 

amongst the possible causes thought to be responsible for this syndrome9-11.  The ease of 

availability of pesticides make them attractive target to be weaponized and cause mass civilian 

causalities. Thus, there is a growing threat of OP toxicity in the current geopolitical environment. 

Research in this field has provided therapeutic antidotes that are critical in limiting immediate 

mortality associated with lethal OP intoxication 12. However, further research is needed to 

identify molecular mechanisms underlying chronic mortality and morbidity in order to develop 

effective counteract therapeutics following OP exposure 13. 
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Organophosphate Poisoning: Mechanisms, Treatments, and Challenges  

Paraoxon (POX) is an active metabolite of parathion and is used in laboratory research to 

reliably model OP pesticide toxicity14. Similarly, diisopropyl fluorophosphates (DFP) is used in 

civilian research as a nerve agent surrogate to model sarin exposure given the ease of handling 

associated with DFP15-18. POX, DFP and other OP chemicals are potent inhibitors of the enzyme 

acetylcholinesterase (AChE)19. Inhibition of AChE prevents breakdown of the neurotransmitter 

acetylcholine (ACh) and rapidly builds up ACh level at the synapses. Overstimulation of ACh 

receptors leads to the classical “cholinergic crisis” characterized by salivation, lacrimation, 

urination, and defecation. This is followed by respiratory depression and bradycardia. Nicotinic 

receptor stimulation causes muscle fasciculation. This is followed by tonic-clonic seizures and 

status epilepticus (SE), or prolonged seizure activity that continues unabated and results in the 

death if left untreated 20. SE activity is thought to involve recruitment of N-methyl-D-aspartate 

(NMDA) receptors following release of the excitatory neurotransmitter glutamate downstream of 

the ACh overstimulation21-24. Current treatment strategies use atropine to control the cholinergic 

crisis, pralidoxime, to reactivate AChE, and a benzodiazepine such as diazepam or midazolam to 

control seizures 25 26. While the current antidotes are critical in limiting immediate mortality 

associated with OP exposure, OP/ SE survivors are vulnerable to delayed mortality in the critical 

2-week period post initial survival and the development of chronic neurological morbidities such 

as recurrent seizures, depression and cognitive deficits 14, 22, 27-35. Thus, it is essential to develop 

valid animal models that mimic OP mortality and morbidity and to identify molecular 

mechanisms underlying long-term neurological deficits from survival of OP toxicity in order to 

develop effective counteract therapeutics. 
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Rat survival models of OP-SE 

Many OP studies in literature have focused on effects of low-dose, chronic OP exposure 

or effects of OP’s following in-utero exposure36-39. There are also studies reporting models of 

acute parathion40, 41 and POX exposures42-44. However, these models did not focus on evaluating 

long term survival after lethal POX SE exposures. Development of OP SE models is also 

complicated by their variable pharmacokinetic and pharmacodynamics response, such as the 

challenges associated with parathion kinetics and differential metabolism45-47. We wanted to 

further develop a reliable rat survival model for lethal OP exposure with SE that would replicate 

both the acute mortality and chronic morbidity associated with these agents. Such animal models 

could be very useful to study molecular mechanisms of OP toxicities and screen medical 

countermeasures to improve survival following OP exposures.  

To this end we have developed two SE survival models of OP toxicity using lethal doses 

of POX 14 and DFP 16. The behavioral manifestations, and EEG profile for these OP SE models 

mimicked the signs and symptoms of acute OP intoxication. In this model, rats were exposed to a 

lethal dose (approximately 2x LD50) of OP chemical (POX or DFP) and were treated with FDA 

approved drugs to limit immediate mortality26. Here we will discuss the POX model of OP-SE. 

One week prior to SE experiments, rats were stereotaxically implanted with skull surface 

electrodes to record EEG. Briefly, one minute following POX injection (2 mg/kg, s.c.) animals 

received human-dose equivalents of 2-PAM (25 mg/kg, i.m.) and atropine (0.5 mg/kg, i.m.). 

Within 5-7 minutes following POX administration, rats displayed overt cholinergic symptoms 

and rapidly developed convulsions and SE-like activity. Onset of SE was determined by the 

presence of continuous class 4-5 level seizures using a modified Racine scale 48. One hour 

following onset of POX SE, animals were injected with midazolam (2 mg/kg, i.m.) to terminate 
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seizures. Surviving animals were then injected with saline (3cc/animal, i.p.) and fed lactose milk 

as part of supportive care and returned to their home cages. Surviving rats were housed 

individually in temperature and light controlled vivarium. All the rats were visually monitored 

once a week till their use in Ca2+ imaging or behavioral experiments. Chronic mortality (72-h 

and beyond) in these models of severe OP intoxication was 18-20%14, 16. These POX and DFP 

SE survival models manifested the same degree of delayed mortality and morbidity (see below) 

observed in the human OP exposure condition49-53. 

 
Development of “Ca2+ Plateau” following survival from OP-SE  

One of the important long-term molecular changes that occurs following the survival of 

SE induced by OPs or chemoconvulsants like pilocarpine is the development of sustained 

elevations in neuronal calcium levels ([Ca2+]i) known as the  “Ca2+  plateau” 14, 16, 54-59. We have 

developed methodologies to acutely isolate hippocampal CA1 region neurons from brain slices 

using enzymatic and mechanical trituration. Neurons obtained using these methods show 

minimal signs of necrosis, exhibit normal electrophysiological membrane properties, and allows 

us to study Ca2+ dynamics in the absence of confounding factors such as glial response. 

Estimation of neuronal Ca2+ levels have revealed  the development of a Ca2+ plateau wherein 

hippocampal neurons exhibit significantly elevated Ca2+ levels for weeks after the termination of 

POX SE 14 (Fig. 1A). We have previously shown that while the induction of Ca2+ plateau was 

NMDA receptor dependent during SE 16, 54, the maintenance of the Ca2+ plateau for several 

weeks post-SE was independent of NMDA receptor activation and was mediated by persistent 

Ca2+ release from the endoplasmic reticulum through the mechanisms of Ca2+ induced Ca2+ 

release 56, 57. Indeed, pre-treatment with the NMDA antagonist MK-801 prevented the OP SE 

induced elevations in hippocampal Ca2+ levels. However, application of MK-801 was not 
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effective in lowering the elevated Ca2+ in hippocampal neurons isolated from rats 1-h following 

SE 16 (Fig. 1B). On the other hand, treatments with dantrolene or levetiracetam or carisbamate, 

inhibitors of the Ca2+ induced Ca2+ release mechanisms were able to lower the elevated Ca2+ 

levels and abolish the Ca2+ plateau post SE 14, 57,60 (Fig. 1C). It is important to note that while 

NMDA-R mediated indiscriminant Ca2+ influx turns off after SE is terminated, there remains a 

sustained Ca2+ release from ER continues due to a long lasting activation of molecular 

components involved in the CICR mechanisms. This is an important aspect of the long lasting 

activation of the CICR system. Since Ca2+ ions act as major second messengers in multiple 

signaling cascades, the OP SE induced prolonged elevations in [Ca2+]i can trigger 

neurodegenerative pathways and mediate pathological synaptic plasticity. These alterations in 

Ca2+ dynamics following OP toxicity could therefore underlie the associated neuronal injury and 

together they be responsible for the chronic neurological morbidities following OP SE14 survival 

(Fig. 4).  

 
Neuronal Injury following OP-SE  

Neuronal loss in several brain regions has been observed following SE54, 55, OP SE14, 15 

and other chemical threat agents61. We have observed widespread neuronal loss induced by POX 

SE.as assessed using the Fluoro Jade (FJC) labeling technique14, 62. FJC-positive staining neurons 

were observed within the hippocampus, parietal cortex, and in both amygdala and thalamic 

nuclear regions of POX SE rats (Fig. 2). Damages to these critical brain areas have been 

implicated in memory impairment, depression, anxiety, epilepsy and other neurological 

morbidities27, 63, 64.  
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Chronic morbidity following survival from OP-SE  

We have also analyzed OP SE survivors in these animal models for the development of 

neurological morbidities (Fig. 3). We have observed symptoms of chronic depression and 

memory impairments in these OP exposed rats62, 65. OP SE survivors displayed increased 

immobility in the Forced Swim Test indicative of despair, reduced sucrose consumption in the 

Sucrose Preference Test indicative of anhedonia, and spend less time in the open arm of elevated 

plus maze indicative of high anxiety 62, 65. Together, despair, anhedonia, and anxiety constituted 

symptoms of depression. In addition, these rats performed poorly in the Novel Object 

Recognition task indicative of memory impairment62, 65. Survival from OP SE was also 

associated with significant neuronal damage throughout the limbic system, particularly the 

hippocampus14, 16. These models provide a reproducible method of mimicking the human 

survival of OP toxicity. In addition to lethal OP intoxication, chronic low-dose OP exposures 

have also been implicated in long-term neurological morbidities. For example, agricultural 

pesticide applicators, and Persian Gulf War veterans suspected of chronic OP exposure exhibit 

chronic neurological morbidities such as depression and cognitive impairments33, 66, 67.  

 
Conclusion  

Ca2+ ions are second messenger molecules in various signaling cascades that modulate 

behavior, memory, and cell death55, 56, 68-72. The development of Ca2+ plateau is therefore a 

critical substrate for inducing neuronal damage and triggering many of the long term plasticity 

changes following OP-SE induced by brain injury 14, 16, 55, 56. Given the role of Ca2+ induced Ca2+ 

release mechanisms in the maintenance of Ca2+ plateau, drugs targeting the molecular 

components of this signaling mechanisms could prove to be effective agents in extending 

neuroprotection following survival from OP-SE. We have demonstrated neuroprotective and 
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antiepileptogenic effects of dantrolene57 and carisbamate73 in an in vitro model of SE induced 

acquired epilepsy. The ability of dantrolene, levetiracetam, and carisbamate to reduce or abolish 

the Ca2+ plateau could make them attractive neuroprotective adjuvant treatments following OP-

SE. These agents could also prove beneficial in reducing the chronic neurological morbidities 

observed in OP SE survivors. We are actively exploring these possibilities in our laboratories 

(Fig. 4).  

Despite advances in developing more effective agents for controlling the cholinergic 

crisis associated with OP SE, there is a pressing need to develop counteract treatments that 

prevent or reduce the high mortality and the chronic morbidity associated with OP SE. This is an 

important area of research that has direct translational implications for clinical treatment74, 75. 

Development of animal models of OP SE are critical to identifying molecular mechanisms 

underlying symptoms of OP toxicity. This knowledge can provide molecular targets that can be 

used to develop effective therapies for the treatment of OP SE (Fig. 4). This research indicated 

that agents that inhibit Ca2+ induced Ca2+ release and can reduce or prevent the Ca2+ plateau may 

be an innovative area for development of medical countermeasures that can lower mortality and 

morbidity following SE and OP SE. 
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Figure Legends 

Figure 1. Development of Ca2+ plateau and it’s mechanism following OP induced SE  

A. Hippocampal CA1 [Ca2+]i from age-matched control (white bar) and POX rats were isolated 

1-h and 1, 7 and 30 days after SE (black bars). [Ca2+]i in POX-SE rats was significantly higher 

than control values at all the time-points and did not return to base-line even at 30-days post SE 

(Ca2+ plateau). B. Hippocampal CA1 [Ca2+]i from control rats (white bar), DFP rats (black bar), 

and DFP + MK-801 (grey bars) were isolated 1-h after SE. MK-801 pretreatment prevented the 

elevations in [Ca2+]i  that occur following DFP induced SE. However, MK-801 treatment 1-h 

after DFP-induced SE did not significantly affect DFP-SE induced [Ca2+]i elevations. C. 

Hippocampal CA1 [Ca2+]i from control rats (white bar), POX rats (black bars), and POX + drugs 

(grey bars) were isolated 48-h after SE. [Ca2+]i in neurons isolated from POX-SE rats treated 

with either dantrolene (DANT) or levetiracetam (LEV) or carisbamate (CRB) were significantly 

lower than POX SE rats (no drugs) values at the respective time point. All data represented as 

mean  SEM. *p<0.05 (Data in 1A and 1C reproduced from Deshpande, L.S., D.S. Carter, K.F. 

Phillips, et al. 2014. Development of status epilepticus, sustained calcium elevations and 

neuronal injury in a rat survival model of lethal paraoxon intoxication. Neurotoxicology. 44C: 

17-26). 

Figure 2. Neuronal injury following POX induced SE   

Representative photomicrographs of Fluoro-Jade C (FJC) staining in the dentate gyrus-hilus 

region, parietal cortex, amygdala, and thalamus 2 days after POX SE. Scale bars, 200 μm. (Data 

previously published in : Deshpande, L.S., D.S. Carter, K.F. Phillips, et al. 2014. Development 

of status epilepticus, sustained calcium elevations and neuronal injury in a rat survival model of 

lethal paraoxon intoxication. Neurotoxicology. 44C: 17-26). 
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Figure 3. Chronic behavioral morbidities following POX induced SE   

Approximately 3-months following POX SE, surviving rats were tested on various behavioral 

assays for assessing symptoms of depression and memory impairments. A. Increased immobility 

time in POX SE rats during the Forced Swim Test indicative of behavioral despair. B. Decreased 

sucrose consumption in POX SE rats on the Sucrose Preference Test indicative of anhedonia 

(lack of feeling pleasure). C. Enhanced anxiety in POX SE rats as characterized by significantly 

less time spent in the open arm of the Elevated Plus Maze. D. Impaired recognition memory in 

POX SE rats on the Novel Object Recognition test as displayed significantly less time spent 

exploring the novel object. All data expressed as mean ± SEM, *p<0.05, t-test, n= 8 rats. (Data 

adapted from: Deshpande, L.S., K. Phillips, B. Huang, et al. 2014. Chronic behavioral and 

cognitive deficits in a rat survival model of paraoxon toxicity. Neurotoxicology. 44: 352-357). 

Figure 4. Development of the calcium plateau following OP induced SE and possible targets 

for countermeasures therapy 

OP chemicals such as DFP or POX inhibit the enzyme acetylcholinesterase (AChE) initially 

producing a cholinergic crisis that propagates into self-sustaining SE and ultimately leads to 

glutamate excitotoxicity. Downstream activation of N-methyl-D-aspartate receptors (NMDA-R) 

leads to massive influx of Ca2+ ions into the post-synaptic neurons. Activation of Ca2+-induced 

Ca2+-release (CICR) mechanisms leads to release of Ca2+ into the cytoplasm from the 

endoplasmic reticulum (ER) via the ryanodine receptor (RyR) and the inositol-trisphosphate 

receptor (IP3R). While NMDA activation is required for genesis of Ca2+ plateau, the maintenance 

is dependent on sustained Ca2+ release via CICR mechanisms. After SE is terminated NMDA 

activation is shut off, but the Ca2+ release from ER continues due to a long lasting activation of 

CICR mechanisms. The Ca2+ plateau triggers neurodegenerative pathways leading to neuronal 
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injury and activates nuclear signaling that can lead to neuronal plasticity that underlies chronic 

morbidities characterized by the development of acquired epilepsy, memory deficits, and 

psychiatric impairments. Inhibiting the critical targets (1, 2 or 3) in the Ca2+ plateau cascade with 

pharmacological agents (Dantrolene, Levetiracetam, or Ketamine) can exert neuroprotective 

effects and can decrease or prevent the development of the chronic neurological morbidities 

associated with OP SE survival. 
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