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Abstract 

Human activities are often centered around the presence of water, thus it is not surprising that there 
are many water-related human deaths. Accumulated degree days (ADD), and other aquatic variables 
may affect DNA retrieval from waterlogged bone. Calcium and collagen in bone can inhibit the PCR 
necessary to produce an STR profile; the current solution is a time-consuming organic extraction. While 
there are examples of research on DNA degradation in terrestrial bone over time, there has been little 
work done on submerged bone samples and they are usually limited to case studies. The major aim of 
this study was to measure host DNA quality and quantity in porcine waterlogged bones over time/ADD. 
It was accomplished by 1) attempting to optimize qPCR protocol for host DNA quantification and 
degradation index (DI) estimation, 2) determining the best extraction method (ChargeSwitch® gDNA 
Plant Kit v organic phenol-chloroform), and best bone type (between rib or scapula) for host DNA 
recovery in freshwater environment using a qPCR based method, and 3) identifying the variance of host 
DNA recovery in different bone types and water bodies. A SYBR based quantitative PCR protocol was 
developed for quantification host DNA using two target DNA loci (larger fragment target: 274-314bp and 
small fragment target: 93-127bp).  The protocol was highly effective with the chosen STR primers, with 
the organic method obtaining the highest quantity with the lake samples, specifically in the ribs. There 
was evidence of a significant difference in degradation index over time, and the scapulae having the 
higher degradation index between bone samples. Individually, there was no significant difference in 
bone, method or location when it came to DNA quantity; combined interactions were required to find 
significance. Overall, scientists now have the opportunity to implement a more streamlined, efficient 
workflow from sample prep to profile development, which is pivotal in identification matters where 
time and resources are of the essence.  
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Introduction 

 Decomposition in water varies from that on land, as it encompasses the taphonomic 

process of remains transitioning from freshly submerged, to floating, to sinking. Soft tissue can 

completely disappear over time, leaving behind only bone, which takes considerably longer to weather 

and biodegrade. Haglund (1993), one of the earliest to research decomposition in aquatic environments,  

created a system  to compare the number of days the body spent underwater to the 

amount/percentage of disarticulation in the joints of the body; since the suspension of the body in 

water would allow it to move in multiple directions, this resulted in the physical breakdown of soft 

tissue, occurring simultaneously with decomposition. Haglund’s research demonstrated that the torso, 

the ribs and scapulae together with the vertebral column, remain an articulated unit the longest.   

 Despite its highly mineralized composition, bone may be more susceptible to an 

accelerated degradation in water than on land. Bone dissolution is the initial process through which 

water enters the pores in bone, destroying it and exposing the DNA contained within the osteocytes. 

The DNA attracts water molecules, resulting in deamination, depurination and depyrimidination (Latham 

and Madonna, 2013). This does not occur in living bone due to the inorganic, hydroxyapatite portion in 

bone that protects the DNA from degradation (Gotherstrom et al., 2002). Because this process results in 

the exposure of the DNA, along with other inhibitors, DNA extraction is the first and most important 

step in recovering optimal DNA samples. 

 Previous studies have examined DNA extraction methods from bone, though they were 

mainly focused on bones recovered from terrestrial environments. Mundorff et al., (2013) and Vass et 
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al., 2013) explored DNA retrieval from terrestrial bones, with the goal of comparing and empirically 

ranking which bones will provide more DNA, as well as which bones last for extended periods of time.  

Marshall et al. (2014) studied fresh, terrestrial bone and compared organic versus solid-phase extraction 

using a “Hi-Flow” silica column. It showed comparable DNA quantity extracted between the two 

methods, though the Hi-Flow can extract higher volumes with less tube transfer steps. Iyavoo et al. 

(2013) compared five extraction methods on terrestrial bone, including the ChargeSwitchⓇ protocol 

used in this study. Studies measuring DNA yield, extraction and degradation in waterlogged bone over 

time are few. A case study done by Crainic et al., (2002) provided a case report where skeletal remains 

and soft tissue remains that had been submerged in water for up to three years still retained extractable 

DNA in bone; this highlights a prospective timespan for how long DNA, and thus degradation might be 

measured in waterlogged bone. In another pilot study in aquatic system, Cartozzo et al., 2017 observed 

that organic extraction method resulted in more DNA yield and the ChargeSwitch DNA extraction 

method was the most effective silica-based method. 

 Organic extractions are known to be useful for obtaining high-molecular weight DNA yields, 

specifically when it comes to more ‘difficult’ samples (Butler 2011). Rucinski et al. (2012) cite a 95% 

recovery rate in their research using an organic extraction method. However, this method is extremely 

time consuming, requires many tube transfer steps, which increases the chances of contamination and 

product loss, and the chemicals required are hazardous. Solid-Phase methods, like the ChargeSwitchⓇ 

kit, utilize magnetic beads that selectively bind the DNA while impurities are removed (Butler 2011). It is 

an easier and safer method than the organic method due to the lack of hazardous chemicals, and the 

ability to be automated. The major benefit is that solid-phase methods can remove PCR inhibitors, which 

is relevant because calcium and collagen from bone inhibit PCR amplification (Iyavoo et al. 2013; 

Desmyter et al. 2017).  
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 DNA quality can be measured by the degradation index (DI), which is the ratio of smaller 

DNA fragments to larger DNA fragments (Lackey, 2018). The DI for intact DNA is less than or equal to 

one. If the DI is higher than one, then it suggests degradation or potential inhibition. Inhibition may 

mimic degradation due to the larger amplicon failing to amplify at the same rate as the smaller one. 

Calcium and collagen are common inhibitors when dealing with DNA amplification from bone samples. 

Noting inhibition is important to determining which extraction method is more effective, though both 

organic and ChargeSwitch have been noted to remove these reliably. Vernarecci et al. (2015) studied the 

capability of Quantifiler Trio to determine degradation, in conjunction with GlobalFiler PCR Amplification 

Kit, using a linear regression model. They found Quantifiler to be effective when characterizing 

degradation and potentially useful to predict how well a sample would amplify STRs. Gouveia et al. 

(2017) did a similar study, finding that a degraded sample with a higher DNA concentration yielded 

better STR results than less concentrated degraded samples.  

This research addresses two critical issues identified at the Forensic Science Technology Working 

Group’s (TWG) 2014 and 2016 meetings. Specifically, the goals set were to increase the success rate of 

obtaining DNA profiles from compromised (damaged) DNA evidence, and create methodologies with 

processes that maximize DNA lysis and recovery at the elution and/or extraction steps for best 

downstream DNA analysis results (TWG 2016, 2018). Although some research has addressed the 

degradation of DNA in bones and other tissues in terrestrial contexts as explained in previous 

paragraphs (Iyavoo et al. 2013; Marshall et al.,2014; Mundorff et al. 2014; Vass et al. 2014), not much is 

known on bone DNA degradation in aquatic system. This is mainly due to the duration of fieldwork 

required and difficulty in obtaining permission to introduce hundreds of samples in a single aquatic 

location. Research on human samples is even more prohibitive, thus most reports of water 

decomposition are based on case-studies.  
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This research will impact work conducted in forensic DNA laboratories, in multiple ways. Using 

Real-Time qPCR and optimized primers to test which extraction method can be used to maximize DNA 

recovery, while removing inhibitors that could affect downstream amplification, ensures that the 

cleanest DNA will be available for testing. It will also inform forensic scientists which bone, ribs or 

scapulae, provides higher DNA quantity and quality over an extended period of decomposition time or 

accumulated degree days (ADD), saving time in determining if a bone is worth sampling. It can even 

improve the likelihood of retrieving an STR profile by determining a DI threshold. 

Methods  

 Fresh rib and scapula bones from domestic pigs (Sus scrofa) were selected based on Haglund's 

(1993) sequence of aquatic disarticulation, which suggests that the torso, including these skeletal 

elements, remains intact longest throughout the aquatic decomposition process. These bones were 

submerged in both the James River and Henley Lake, with the water temperature and quality measured 

every 250 accumulated degree days (ADD), using a 0 °C as a base temperature for ADD calculation.  

This study focused on a subsample of bones between the baseline and 4000 ADD (30 ribs and 29 

scapulae) from the original study (Cartozzo et al, 2019). To note, there is no way to tell if these bones 

are from a singular source or from different sources.  

DNA Extraction:   

 Genomic DNA was extracted by Cartozzo et al. (2019) using ChargeSwitch® gDNA Plant Kit (as 

described in CST Protocol for Extracting gDNA from Bone Samples (Invitrogen, 2009)  and organic 

phenol-chloroform method (as described in Iyavoo et al., 2013). For both extraction methods, starting 

bone powder weight (0.1g) and final elution volume (100 L) was same for all samples. To test for PCR 

inhibitors, variable region four (V4) of 16S rRNA gene was amplified from all DNA extracts using primers 

(V4_515F 5′ 
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AATGATACGGCGACCACCGAGATCTACACXXXXXXXXTATGGTAATTGTGTGYCAGCMGCCGCGGTAA- 3′) and 

(V4_806R 5′-CAAGCAGAAGACGGCATACGAGATXXXXXXXXAGTCAGTCAGCCGGACTACNVGG_GTWTCTAAT-

3′) and PCR protocol as described in Kozich et al. (2013). DNA extracts that failed to amplify the 16S 

rRNA gene were cleaned using Qiagen’s DNeasy Power Clean Pro Clean Up Kit (Qiagen Inc. USA) 

following the manufacturer’s protocol.  

DNA Quantitation:  

 DNA was quantitated using both TaqMan (KLF9) and SYBR Green (SW240 and FH1733) methods 

on ABI 7500 Real-Time PCR Instrument. Data analysis was performed using 7500 System Sequence 

Detection System (SDS) software, V 1.4.   

TaqMan Method 

All extracted DNA from baseline to 4500 ADD (every 500 ADD) was quantified using half reaction 

volume (Total volume=10 uL), KLF9 (FAM) primers (62bp) (ThermoFisher Scientific Inc., USA ), and by 

following  Applied Biosystems TaqMan Universal Master Mix II protocol (ThermoFisher Scientific Inc., 

USA ) with no UNG step.  Standard curves were developed from 50 ng, 12.5 ng, 3.125 ng, 0.781 ng, 0.195 

ng, 0.049 ng, 0.012 ng, and 0.003 ng of porcine genomic DNA (Novagen Inc. USA). DNA extracts 

(obtained using organic extraction method) from baseline (0 ADD) and 500 ADD samples were diluted 

for qPCR quantification. Many samples didn’t amplify using TaqMan primers,  and hence a new SYBR 

Green based quantitation method and primers were chosen.  

SYBR Green Method  

Subsets (baseline, 1000 ADD, 2000 ADD, 3000 ADD, 4000 ADD) of extracted DNA from both 

extraction methods (n=59; Lake=29 and River=30) were quantitated using SYBR Green based 

quantitative PCR (qPCR) method. Standard curves were developed from 50 ng, 12.5 ng, 3.125 ng, 0.781 
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ng, 0.195 ng, 0.049 ng, 0.012 ng, and 0.003 ng of porcine genomic DNA (Novagen Inc. USA) using qPCR 

protocol as described in Seashols-Williams et al. (2018) (except number of cycle was changed from 35 to 

38) and using two pairs of pig specific primers SW240 (SW240F: 5’-AGA AAT TAG TGC CTC AAA TTG G-3’, 

SW240R= 5’-AAA CCA TTA AGT CCC TAG CAA A-3’; target fragment size range=93-127bp) and FH1733 

(FH1733F 5’-AAG CCT CAA ACT CCT CAT CTC A-3’ and FH1733R 5’-ACC AAA GGC ATA CTA GGG CTA A-3’; 

target fragment size range = 274-314bp.)  

Data Analysis 

Because the goal of this project was to compare two DNA extraction methods for temporal 

variation in DNA quantity and quality in different bone types and at different locations, DNA 

concentration values from each sample were recorded using qPCR. The baseline samples were removed 

as they were outliers, deviating significantly from the remainder of the samples. The overall DNA 

concentration dataset contained 59 Bone samples organized into groups.  There was one amplification 

per extraction method (118 samples), and each of those was done once per primer (236 samples). After 

the baseline samples were removed, a total of 192 samples remained for data analysis.  

DNA yield was determined from each sample using both small fragment (SW240) and large 

fragment (FH1733) primer pairs.  An analysis of variance (ANOVA) and general linear model (GLM) were 

run using SAS v 9.4 software, used to test for the presence of a significant difference in means between 

the methods, and the significance of that difference in a regression, respectively. Both raw quant values 

and log transformed quant values from each sample were used for the generation of individual 

regression models in RStudio V 1.2.1335 to compare DNA concentrations at each location (lake versus 

river) and bone type (rib versus scapula). Finally, a Tukey’s Honest Significant Difference (HSD) was run 

using RStudio to specify which means were different. 
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Temporal changes in DNA quality for each extraction method was calculated using the 

degradation index (DI) approach. The Degradation Index dataset contained 78 samples. DI values that 

were undefined or zero could not be used in the ratio.  For DI calculation, following equation was used. 

𝐷𝐼 =
𝐷𝑁𝐴 𝑦𝑖𝑒𝑙𝑑 𝑓𝑟𝑜𝑚 𝑠𝑚𝑎𝑙𝑙 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (𝑆𝑊240) 𝑝𝑟𝑖𝑚𝑒𝑟 𝑝𝑎𝑖𝑟

𝐷𝑁𝐴 𝑦𝑖𝑒𝑙𝑑 𝑓𝑟𝑜𝑚 𝑙𝑎𝑟𝑔𝑒 𝑓𝑟𝑎𝑔𝑚𝑒𝑛𝑡 (𝐹𝐻1733)𝑝𝑟𝑖𝑚𝑒𝑟 𝑝𝑎𝑖𝑟
 

An ANOVA and GLM were run on the DI data using SAS v 9.4 software. The graphs produced 

showed three outlier samples (HLS2C8CS; HLS3C15CSCU, HLS4C15CS), which were removed from the 

following analyses. Individual regression models measuring the degradation index over ADD were run 

using RStudio, comparing both extraction methods at each location and bone type. Both raw DI values 

and log transformed DI values from each sample was used for generation of individual regression 

models in RStudio to compare DNA concentrations at each location (lake versus river) and bone type (rib 

versus scapula). Finally, a Tukey’s Honest Significant Difference (HSD) was run using RStudio to specify 

which means were different. 

Results 

Results are organized under three subheadings: Assay validation, DNA quantity, and DNA 

quality.  

Assay validation  

Four independent plates were run using SYBR Green based method for the quantification of 

DNA extracted from two extraction methods (i.e., ChargeSwitch and Organic) using two pairs of primers 

(i.e., SW240 (small fragment) and FH1733 (large fragment). Average amplification efficiency for small 

fragment primer pair (i.e., SW240) and large fragment primer pair (i.e., FH1733) were 93% (average 

slope -3.502) and 86% (average slope -3.715), respectively (Table 9). Average R2 values were 

0.9930.004 across all four independent runs. Similarly, for the TaqMan method, average amplification 



10 
 

efficiency for KLF9 was 91% (average slope -3.559). Average R2 values were .986 .013 across five 

independent runs.  

DNA Quantity 

DNA quantity calculated using both of the SYBR Green primer pairs differed significantly in the 

analysis of variance (ANOVA) test (p=0.0427, Table 1) but didn’t differ significantly in generalized linear 

model (GLM) test (p=0.8366, Table 2). Both ANOVA and GLM test indicated that DNA quantity obtained 

using combined SYBR Green primers differed significantly between lake and river environments for both 

bone types (i.e., rib and scapula) (Tables 1 and 2). Both DNA extraction methods (i.e., ChargeSwitch and 

Organic) affected DNA quantity in certain interactions (Tables 1 and 2). Average DNA quantity obtained 

from rib samples using organic extraction method in a lake environment was significantly higher than all 

other samples (Table 3). DNA quantity obtained using organic method in a lake environment at 

1000ADD was significantly higher than all other DNA extracts (Table 3).  

 The SW240 dataset compared the extraction methods with 48 samples from Henley’s Lake and 

48 from the James River. The R2 value for the ANOVA was .557. The ANOVA showed significant 

difference between the bone types and locations (table 1), as well as different interactions between 

ADD, method, bone type and locations. The 1000ADD-Henley Lake-Organic interaction samples had a 

significantly higher mean DNA concentration than the other DNA extracts (Table 3). The FH1733 dataset 

compared the same dataset as SW240. The R2 value for the ANOVA was 0.558. The ANOVA also showed 

significant difference between the bone types and locations, as well as the interaction between the two 

(table 1). The R2 value for the GLM was 0.390, and indicated that the interaction between 

ADD*Method*Location has an effect on DNA concentration over time (table 2). In general, the SW240 

dataset showed a decrease over time/ADD in all samples excluding the Henley Lake (ChargeSwitch) bone 

samples (Figure 1). The FH1733 dataset showed a decrease over time/ADD in all samples excluding the 

Henley Lake (organic) scapula samples (Figure 2).  
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The KLF9 TaqMan data compared the same 95 samples used in the SW240 and FH1733 datasets 

(missing one outlier). The R2 value was .737. Fourteen of the 15 variables and combinations were 

significantly different (table 6). While the TaqMan probe shows a much higher amount of significance, 

due to costs and the inefficacy of the large primer with amplification, this method was abandoned and 

no further data analysis was run.  

DNA Quality 

The R2 value of degradation index (DI) for combined ANOVA/GLM test was 0.764 (Table 7).  

Degradation Index (DI) values differ significantly between bone types (rib versus scapula) and ADD’s 

(1000-4000) but not between DNA extraction methods (ChargeSwitch versus Organic) and aquatic 

environments (Lake versus River). In general, scapula had significantly high average DI than rib samples, 

and DI values increased with time/ADD in all samples except rib (organic) and scapula (ChargeSwitch) 

samples from the lake, where it decreased over time/ADD (Figure 3; Table 8).  

 

Discussion 

The original aim of this project was to measure host DNA quality and quantity in porcine 

waterlogged bones over time/ADD. This was to be accomplished by (1) attempting to optimize a qPCR 

protocol for host DNA quantification and degradation index estimation; (2) determining the better 

extraction method (between organic and solid-phase), the better of two bone types (rib and scapula) in 

two different freshwater environments with qPCR; and (3) identifying the variance of host DNA recovery 

from those environments. The original hypothesis was that the DNA concentration would decrease over 

ADD and that, in response, the degradation index (DI) would increase over ADD. From these results, it 

was expected that a preferred method and bone type could be identified, and the lake vs river 

environment impact on degradation determined.  
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The Williams et al. (2018) qPCR protocol with SYBR Green helped to provide stable assays with 

high R2 values (>.98). The lower than average efficiency in the FH1733 runs may result from the larger 

fragment size of the primer (274-314bp) in comparison to the smaller SYBR Green SW240 and KLF9 

TaqMan primer. The efficiency may also have been artificially increased by the amount of inhibitors in 

the sample; given that these were bone samples, the purity of the samples could have impacted the 

efficiencies. The targets used in this study were STR loci, meaning that instead of having one specific 

target there was a range of base pairs that were counted. This method was deemed acceptable because 

the ranges for both loci (SW240- 93-127bp; FH1733-274-314bp) did not overlap, allowing for 

differentiation of the two datasets.  

As shown in the Tukey HSD tests, while a difference in DNA quantity existed between the bone 

types, the difference was not significant. There was no significant difference in DNA concentration or 

degradation found between either the extraction methods or the location.  Thus, a bone or method or 

location apparently has no impact on DNA quantity and is not to be preferred over another on an 

individual variable basis. However, certain variable interactions were correlated to significant 

differences in quantity. The organic extraction method always produced a higher mean DNA 

concentration, and obtained the highest DNA quantity in the Henley Lake samples, specifically in the 

ribs. Overall, the DNA quality samples showed degradation over time, with the 4000 ADD samples 

having the highest index. As shown by a higher degradation index, scapular DNA degraded more than rib 

DNA. While the Henley Lake location showed the highest DNA quantity, it also showed the highest 

degradation index in the interaction between Bone*Location as well as the interaction among 

ADD*Bone*Method*Location. In sum, the scapula, using ChargeSwitch extraction, exhibited a higher 

degradation index.   

While this experiment gave preliminary answers to the questions posed, the low R2 values in the 

ANOVA (<.80) and GLM (<.40) analyses suggest that there are other as yet unidentified variables 
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affecting the data, and these need to be identified and explained for greater accuracy of prediction. One 

way to improve the accuracy would be to use the same bone in every ADD for a more consistent base 

measurement, rather than having bones from different individuals from each collection. While this 

doesn’t have an effect on quantifying, this does specifically have an effect on creating a degradation 

index. This random assortment of individuals may have influenced the distribution and may have 

potentially created ‘outliers’. A sample from the 4000 ADD data may have originally yielded a higher 

DNA concentration than some others; thus, consistency of sampling bones form the same individual 

over time would have provided better contextual information for interpretation for the results.    

Maintaining the same sample size throughout the experiment might also improve the results as 

it might have eliminated missing data.  A major issue in the DNA Quality Tukey’s HSD testing, though 

partly compensated for in RStudio, was that many of the samples could not be used in the calculations 

due to having a value of “zero” or “undefined”. This means that the only samples that could be 

compared were the ones that amplified, which certainly affected the ability to measure change over 

time with accuracy (e.g. with a dataset of 0-4000 ADD, if 1000 ADD and 3000 ADD had a measurable DI 

that showed increase but 2000 ADD did not have samples that could be used, it would show in the data 

that there was a decrease in that time period that might not be accurate). Finally, having a larger sample 

size (Marshall et al. 2014) might have allowed for more of the variation to be explained by the models.  

 
Conclusion 

While pitfalls in the experiment exist, there are still strong implications for its results. One 

irrefutable result is that DNA is still present and can be amplified if a bone is in water for at least 4000 

ADD, meaning that there is still value in testing a waterlogged bone sample that’s been submerged for a 

year under similar environmental conditions. There is also no evidence for a significant difference in 

methods; while the organic extraction method was seen to yield greater DNA quantity, the 



14 
 

ChargeSwitch method did not perform significantly worse, particularly as it removed inhibitors with 

much less effort than required for the organic samples. This is consistent with the conclusions of Iyavoo 

et al. (2013), who found that while the phenol-chloroform method did provide a higher DNA yield, the 

ability of solid-phase methods to remove inhibitors cannot be understated. Marshall et al. (2014) 

seconded this, finding that comparable quantities of DNA can be found in solid-phase methods versus 

organic. If there is no significant difference in DNA quantity in methodology, scientists can save time and 

labor by choosing the shorter solid-phase ChargeSwitch method versus the strenuous, currently utilized 

organic method, and ensure amplification with the qPCR method described.  

The results of this study have the potential to impact the operational protocols for dealing with 

bone samples recovered from water. The option of the shorter extraction method allows for more 

casework involving waterlogged bone samples to be finished than before, with the added bonus of 

knowing that the samples will amplify during a certain time frame. These profiles will benefit from the 

cleaner extracted samples, resulting in profiles with less artifacts and cleaner peaks. This research offers 

a more efficient, optimized workflow from sample prep to profile development, which can be especially 

beneficial for forensic scientists in situations of emergency mass identification where time and labor is 

of the essence.  
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Appendix  

Table 1.  

ANOVA of the combined SW240/FH1733, SW240, and FH1733 DNA Concentration data 

  
    Source Pr > F 

Combined SW240/FH1733      

   Bone <.0001 

   Location 0.0009 

   Bone*Location 0.0016 

   ADD*Method*Bone*Location 0.0076 

   ADD*Method*Location 0.0083 

   ADD*Method 0.0084 

   ADD*Method*Bone 0.0125 

   ADD*Location 0.0167 

   ADD*Bone*Location 0.0194 

   ADD 0.0328 

   Primer 0.0427 

   ADD*Bone 0.0554 

   Primer*Bone 0.091 

   Primer*Location 0.1876 

   Primer*ADD*Method 0.2595 

   Primer*Bone*Location 0.2599 

   Primer*ADD*Method*Bone*Location 0.2886 

 Primer*ADD*Location 0.3023 

   Primer*ADD*Method*Location 0.3093 

   Primer*ADD*Method*Bone 0.3257 

   Primer*ADD*Bone*Location 0.3257 

   Primer*ADD 0.3597 

 Primer*ADD*Bone 0.4738 

   Primer*Method*Bone*Location 0.6164 

   Primer*Method*Location 0.6723 

   Method*Bone*Location 0.6787 

   Method*Location 0.7435 

   Method*Bone 0.8667 

   Method 0.8784 

   Primer*Method 0.8952 

   Primer*Method*Bone 0.9001 

SW240         

   Bone 0.0023 

   Location 0.0147 

   Bone*Location 0.0242 
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   ADD*Method 0.0453 

   ADD*Method*Bone*Location 0.0469 

   ADD*Method*Location 0.0506 

   ADD*Method*Bone 0.0637 

   ADD*Location 0.0736 

   ADD*Bone*Location 0.0837 

   ADD 0.1108 

   ADD*Bone 0.1711 

   Method*Bone*Location 0.6295 

   Method*Location 0.692 

   Method*Bone 0.9833 

   Method 0.9911 

FH1733         

   Bone 0.0002 

   Location 0.0023 

   Bone*Location 0.0023 

   ADD*Bone*Location 0.1149 

   ADD*Location 0.1201 

   ADD*Method*Location 0.1294 

   ADD*Method*Bone*Location 0.1313 

   ADD*Method*Bone 0.1573 

   ADD*Method 0.1626 

   ADD 0.1773 

   ADD*Bone 0.1813 

   Method*Bone 0.6583 

   Method 0.6651 

   Method*Location 0.8841 

      Method*Bone*Location 0.8931 
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Table 2. 

General Linear Model for the combined SW240/FH1733, SW240, and FH1733 DNA Concentration data 

with significant values at α<.05 

      Source Pr > |t| 

Combined SW240/FH1733      

   Method*Location 0.0005 

   ADD*Method*Location 0.0005 

   Method*Bone*Location 0.0122 

   ADD*Method*Bone*Location 0.0133 

   Primer*Method*Location 0.0557 

 Primer*ADD*Method*Location 0.0693 

   Primer*Method*Bone*Location 0.1727 

   Primer*ADD*Method*Bone*Location 0.1994 

   Location 0.399 

   Bone*Location 0.5774 

 Bone 0.7378 

   Primer 0.8366 

   ADD*Method 0.8402 

   Primer*Location 0.845 

   ADD*Location 0.857 

   Primer*ADD*Method 0.891 

   Primer*Bone 0.892 

   Method*Bone 0.9077 

   ADD*Bone*Location 0.9091 

   Primer*Bone*Location 0.9116 

   Primer*ADD*Location 0.913 

   ADD*Method*Bone 0.9409 

   Primer*ADD*Bone*Location 0.946 

   Primer*ADD 0.9483 

   Primer*Method*Bone 0.9544 

   Method 0.9596 

   Primer*ADD*Method*Bone 0.9606 

   Primer*ADD*Bone 0.9608 

   ADD*Bone 0.9851 

   ADD 0.9858 

   Primer*Method 0.9974 

SW240         

   Method*Location 0.0093 

   ADD*Method*Location 0.0095 

   Method*Bone*Location 0.0618 
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   ADD*Method*Bone*Location 0.065 

   Location 0.529 

   Bone*Location 0.6775 

   Bone 0.8027 

   ADD*Method 0.8803 

   ADD*Location 0.893 

   Method*Bone 0.9311 

   ADD*Bone*Location 0.9321 

   ADD*Method*Bone 0.9559 

   Method 0.9699 

   ADD*Bone 0.9889 

   ADD 0.9894 

FH1733         

   ADD*Method*Location 0.0402 

   Method*Location 0.0715 

   ADD*Method*Bone*Location 0.1425 

   Method*Bone*Location 0.1974 

   Location 0.2193 

   Bone*Location 0.3853 

   Bone 0.7564 

   ADD 0.8725 

   ADD*Bone 0.912 

   Method 0.9203 

   Method*Bone 0.9393 

   ADD*Location 0.9555 

   ADD*Bone*Location 0.9683 

   ADD*Method 0.9864 

      ADD*Method*Bone 0.9926 
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Variable/Interaction # of combos Highest Mean p adj

Combined SW240/FH1733

Method*Bone*Location 8 Organic-Rib-Henley Lake 0.0183932

ADD*Method*Location 16 1000ADD-Organic- Henley Lake 0.0018776

ADD*Bone*Method*Location 32 1000ADD-Rib-Organic-Henley Lake <.0000001

SW240

ADD*Method*Location 16 1000ADD-Organic-Henley Lake 0.0333878

Table 3.  
Tukey’s HSD results of the DNA Quantity interactions, with significance at α > .05 
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Table 4. 

General Linear Model of the SW240 DNA Concentration Data Method*Location interactions between 

Bone and Accumulated Degree Days (ADD) 

  Parameter Estimate Standard Error t Value Pr > |t| 

SW240, ChargeSwitch, James River           

  Intercept 0.765821667 0.51339502 1.49 0.1514 

  ADD 1.00207E-05 0.00018747 0.05 0.9579 

  Bone -0.72949 0.7260502 -1 0.327 

    ADD*Bone -1.481E-05 0.00026512 -0.06 0.956 

SW240, Organic, James River           

  Intercept 0.6555 0.23317152 2.81 0.0108 

  ADD -0.00015047 0.00008514 -1.77 0.0924 

  Bone -0.3724 0.32975432 -1.13 0.2721 

  ADD*Bone 6.85933E-05 0.00012041 0.57 0.5752 

SW240, ChargeSwitch, Henley Lake           

  Intercept 2.605678333 1.34188509 1.94 0.0664 

  ADD 0.000153406 0.00048999 0.31 0.7575 

  Bone -2.44721833 1.89771209 -1.29 0.2119 

  ADD*Bone -0.00014326 0.00069295 -0.21 0.8383 

SW240, Organic, Henley Lake           

  Intercept 13.46248333 3.84907102 3.5 0.0023 

  ADD -0.00399915 0.00140548 -2.85 0.01 

  Bone -13.1158 5.44340843 -2.41 0.0257 

    ADD*Bone 0.00391676 0.00198765 1.97 0.0628 
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Table 5. 

General Linear Model of the FH1733 DNA Concentration Data Method*Location interactions between 

Bone and ADD 

   Parameter Estimate Standard Error t Value Pr > |t| 

FH1733, ChargeSwitch, James River         

   Intercept 0.316326667 0.14267616 2.22 0.0384 

   ADD -4.15313E-05 0.0000521 -0.8 0.4347 

   Bone -0.311143333 0.20177457 -1.54 0.1387 

     ADD*Bone 4.04507E-05 0.00007368 0.55 0.5891 

FH1733, Organic, James River           

   Intercept 0.21595 0.09004416 2.4 0.0263 

   ADD -0.00004779 0.00003288 -1.45 0.1616 

   Bone -0.203136667 0.12734167 -1.6 0.1263 

   ADD*Bone 4.52757E-05 0.0000465 0.97 0.3418 

FH1733, ChargeSwitch, Henley Lake         

   Intercept 1.553768333 0.77263263 2.01 0.058 

   ADD -0.000021101 0.00028213 -0.07 0.9411 

   Bone -1.545046667 1.09266755 -1.41 0.1727 

   ADD*Bone 0.000019863 0.00039899 0.05 0.9608 

FH1733, Organic, Henley Lake           

   Intercept 4.034683333 1.17142933 3.44 0.0026 

   ADD -0.001103545 0.00042775 -2.58 0.0179 

   Bone -4.034973333 1.65665125 -2.44 0.0243 

      ADD*Bone 0.001105747 0.00060492 1.83 0.0825 
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Table 6. 

A GLM of the KLF9 TaqMan probe-DNA Concentration data  

Source Pr > |t| 

Bone <.0001 

Method*Bone <.0001 

Method <.0001 

ADD*Location 0.0032 

ADD 0.0041 

Method*ADD*Bone*Location 0.0076 

Method*Bone*Location 0.0098 

Method*ADD*Location 0.0112 

Location 0.0135 

Method*ADD*Bone 0.0169 

Method*Location 0.0204 

Method*ADD 0.0216 

ADD*Bone*Location 0.0221 

ADD*Bone 0.0275 

Bone*Location 0.178 
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Table 7. 

An ANOVA of the Degradation Index data measuring DNA Quality.  

Source Pr>F 

Bone <0.0001 

Bone*Location <0.0001 

ADD*Bone 0.0007 

ADD*Method*Bone*Location 0.0026 

ADD 0.0051 

Method*Bone*Location 0.065 

ADD*Method 0.0979 

ADD*Method*Bone 0.1765 

ADD*Location 0.1922 

ADD*Bone*Location 0.5617 

ADD*Method*Location 0.7361 

Location 0.8162 

Method*Bone 0.8451 

Method 0.9495 

Method*Location 0.9673 
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Variable/Interaction # of combos Highest Mean p adj

Bone 2 Scapula 0.016516

ADD 5 4000ADD 0.0420746

Bone*Location 4 Scapula-Henley Lake 0.0093717

ADD*Bone 10 4000ADD-Scapula 0.011617

ADD*Bone*Method*Location 40 4000ADD*Scapula*ChargeSwitch-Henley Lake 0.0373003

Table 8.  

Tukey’s HSD results of the variables and interaction from the DNA Quality data; significance at α
< .05 
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Table 9.  

Standard curves of each of the qPCR plates from each quantitation method.  

  Plate R2 Slope Intercept 

SYBR Green    

 SW240-CS 0.989 -3.649 26.326 

 SW240-O 0.992 -3.355 30.867 

 FH1733-O 0.993 -3.774 27.162 

  FH1733-CS 0.998 -3.656 27.349 

TaqMan     

 KLF9-5 0.964 -3.936 26.472 

 KLF9-2 0.988 -3.357 26.459 

 KLF9-4 0.991 -3.532 26.681 

 KLF9-1 0.993 -3.417 28.303 

  KLF9-3 0.997 -3.553 26.314 
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Figure 1.  
Temporal changes in DNA quantity data of rib (top panel) and scapula (bottom panel) samples from river 
(left panel) and lake (right panel) environments. DNA quantitation was performed using small fragment 
primer pair (SW240). Scales are not the same for each figure.  
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Figure 2. 
Temporal changes in DNA quantity data of rib (top panel) and scapula (bottom panel) samples from river 
(left panel) and lake (right panel) environments. DNA quantitation was performed using large fragment 
primer pair (FH1733). Scales are not the same for each figure.   
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Figure 3.  
Temporal changes in DNA quality data of rib (top panel) and scapula (bottom panel) samples from river 

(left panel) and lake (right panel) environments. Degradation Index was calculated using small fragment 

primer pair (SW240) and large fragment primer pair (FH1733). Scales are not the same for each figure.  
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