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Abstract

Currently very little is known about the differential expression and function of the transcription factor SOX5 during B cell
maturation. We identified two new splice variants of SOX5 in human B cells, encoding the known L-SOX5B isoform and a
new shorter isoform L-SOX5F. The SOX5 transcripts are highly expressed during late stages of B-cell differentiation, including
atypical memory B cells, activated CD21low B cells and germinal center B cells of tonsils. In tonsillar sections SOX5 expression
was predominantly polarized to centrocytes within the light zone. After in vitro stimulation, SOX5 expression was down-
regulated during proliferation while high expression levels were permissible for plasmablast differentiation. Overexpression
of L-SOX5F in human primary B lymphocytes resulted in reduced proliferation, less survival of CD138neg B cells, but
comparable numbers of CD138+CD38hi plasmablasts compared to control cells. Thus, our findings describe for the first time
a functional role of SOX5 during late B cell development reducing the proliferative capacity and thus potentially affecting
the differentiation of B cells during the germinal center response.
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Introduction

Sox (sex determining region Y (SRY)-related high-mobility-

group (HMG)-box) family of proteins are encoded by 20 genes in

humans and mice and are classified into eight groups - group SoxA

to SoxH - according to the sequence identity in their DNA-

binding HMG-domain and other conserved regions (reviewed in

[1,2]). Sox proteins function as transcription factors and play

important roles in many developmental and cellular processes.

Although most Sox proteins predominantly serve as transcriptional

activators, there is also evidence for transcriptional repression and

architectural roles (reviewed in [3]). Essential roles and key

functions in cell fate decisions have been identified for Sox proteins

in sex differentiation, neurogenesis and gliogenesis, neural crest

development, skeletogenesis, cardiogenesis and angiogenesis as

well as in hematopoiesis [1,3].

Sox5 belongs to the SoxD group composed of Sox5, Sox6 and

Sox13, in vertebrates (reviewed in [4]). SoxD group genes and

protein structures are highly conserved in the family-specific

HMG-domain and in the group-specific leucine zipper and coiled-

coil domains [3,4]. The SoxD HMG-box domain preferentially

binds the DNA consensus sequence of AACAAT [5] and SoxD

proteins can act as either transcriptional activators or repressors

[4]. Each SoxD gene is expressed in a limited subset of cell types

[4]. High levels of Sox5 and Sox6 gene co-expression are found in

spermatids, neurons, oligodendrocytes and chondrocytes [6–9].

The human SOX5 protein exists in a short (S-SOX5) and long

(L-SOX5) isoform, encoded by a unique transcript for S-SOX5

and by several transcript variants for L-SOX5 isoforms. While in

humans the short isoform is expressed mainly in the testes [10],

high levels of long isoforms are found in fetal brain [10], striated

muscles and chondrocytes [11]. Knock-out mouse models
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demonstrated crucial roles of L-SOX5 in developmental and

cellular processes during chondrogenesis [12] and neurogenesis

[13,14], but very little is known about its expression and function

in B lymphocytes. Comparative transcriptome analysis of different

memory B-cell subpopulations from healthy donor (HD) tonsils

revealed differential regulation of SOX5, along with other markers

like RUNX2, DLL1 and AICDA, as a distinctive signature profile of

FCRL4+ memory B cells [15]. Later, dysregulation of SOX5 gene

expression was reported in the innate-like CD21low B-cell

subpopulation of patients with common variable immunodeficien-

cy (CVID) [16] and patients with hepatitis C virus-associated

mixed cryoglobulinemia [17]. Attempts to test the function of

SOX5 in the activation of FCRL4 promoters did not reveal any

significant influence of SOX5 in the regulation of the FCRL4 gene

expression [15]. Since the function of SOX5 in B cells still remains

elusive, we aimed in this study to investigate the expression and

function of SOX5 in human B cells. We describe the differential

expression of SOX5 transcripts during B cell development.

Combined with functional assays in vitro these findings expose a

new role and function of SOX5 in human terminal B cell

differentiation.

Materials and Methods

HD Individuals’ Material
The study was approved by the internal ethics board (University

Hospital Freiburg 313/04 and 121/11).Iinformed written consent

was obtained from each individual before participation in the

study, in accordance with the Declaration of Helsinki.

B Cell Isolation and In vitro Stimulation
B cells were isolated by negative magnetic bead selection using

the MACS B Cell Isolation Kit II (Miltenyi Biotec) according to

manufacturer’s instructions. The purity of .95% was reached in B

cell fractions. The cells were stimulated in vitro for 9 days at 37uC
in RPMI 1640 medium containing 10% FCS either in the

presence of IL4, IL21, CD40L or a combination of IL4+ CD40L

+/2 IL21. IL4 (ImmunoTools) was used at the final concentration

of 100 U/ml. Preparation of CD40L and IL21 was previously

described [18]. Prior to use CD40L and IL21 containing

supernatants were concentrated and titrated.

Preparation of Tonsillar B Cells
Tonsillar single cell suspensions were prepared by tissue

mincing, filtration through 70-mm nylon filters and centrifugation

on a Ficoll gradient. The cells were stained with appropriate

antibodies and subjected to cell sorting.

Flow Cytometry and Cell Sorting
The following antibodies were used: FITC-anti-CD38 (BD

Pharmingen), PE-anti-IgD (Southern Biotechnology Associates,

Inc.), PE-anti-CD138 (Coulter-Immunotech), PerCP-Cy5.5-anti-

CD27 (Biolegend), PE-Cy7-anti-CD21 (clone B-ly4, BD Pharmin-

gen), PE-Cy7-anti-CD3 (Beckman Coulter), Cy5-anti-IgM (Jack-

son ImmunoResearch Laboratories, Inc.) and APC-H7-anti-CD19

(clone SJ25C1, BD Biosciences).

FACS CantoII and LSR II (BD Biosciences) cytometers were

used to perform flow cytometric analysis. FACS data were

analyzed using FlowJo (Tree Star Inc.) software.

For cell sorting PBMCs were sorted into

CD19+IgM+CD21+CD38+CD272 naı̈ve B cells, CD19+IgM-
hiCD21+ CD38+CD27+ MZ-like B cells,

CD19+IgM2CD21+CD38+CD27+ switched memory B cells,

CD19+IgM2CD21+CD38+CD272 non-classical memory B cells

and CD19+IgM+/2CD21low CD38low B cells, as well as tonsillar B

cells into CD19+IgD+CD272CD382 follicular naive B cells,

CD19+IgD2CD272/+CD38+ GC B cells,

CD19+IgD2CD27++CD38++CD138+ plasma cells (PC) and

CD19+IgD2CD27+CD382 memory B cell populations to a purity

of .95% using a MoFlow cell sorter (Beckman Coulter).

RT-PCR and qPCR Assays
Total RNA was extracted using TRIzol reagent (Life Technol-

ogies) and on column DNase digestion was performed during

purification of total RNA using PureLink RNA Mini columns (Life

Technologies) according to manufacturer’s instructions. Subse-

quently, cDNA was prepared by reverse transcription using oligo-

(dT)20 primer (Life Technologies) and SuperScript II Reverse

Transcriptase (Life Technologies) for further PCR analysis.

qPCR for SOX5, BLIMP1 and ribosomal protein, large, P0

(RPLP0) genes was performed by a LightCycler 480 Real-Time

PCR System (Roche Diagnostics GmbH) and based on SYBR

Green I detection (LightCycler 480 SYBR Green I Master mix,

Roche Diagnostics GmbH) using the following conditions:

activation at 95uC for 5 min and 50 cycles of amplification at

95uC for 10 s, 63uC for 20 s and 72uC for 30 s., followed by

subsequent melting curve analysis. RPLP0 gene was used as an

endogenous internal control in samples. PCR primer sequences

are provided in the table S1.

Human Cell Cycle RT2 Profiler PCR Array Assays
Human cell cycle RT2 Profiler PCR array (Qiagen) assays were

run in samples of GFP- and SOX5-GFP-transduced human

primary B cells at day 3 upon CD40L+IL4+IL21 stimulation

in vitro. 400 ng of total RNA was used for each array and the

assays were performed according to the manufacturer’s instruc-

tions.

PCR Cloning and DNA Sequencing
The complete coding sequence (CDS) of SOX5 gene was

amplified from a HD B cell cDNA sample as a 3.1 kb PCR

fragment using proof-reading Phusion DNA polymerase (New

England BioLabs). PCR products were subcloned into the pCRII

TOPO TA vector (Life Technologies) according to manufacturer’s

instructions.

DNA sequencing was performed by an ABI Prism 377 DNA

Sequencer (PE, Applied Biosystems). Sequencing data were

analyzed using the DNA Sequencing Analysis software version

3.4 (PE Applied Biosystems) and Sequencer version 3.4.1 (Gene

Codes Corporation). Assembly, alignment and analysis of DNA

sequences were performed by DNASTAR Lasergene software

version 8.0 (DNASTAR, Inc.). Cloning and sequencing primers

are provided in the table S1.

Fragment Analysis Assay
SOX5 transcript variant 6 (59L3L-SOX5) and variant 7 (59L3S-

SOX5) were amplified in one reaction using 59-FAM labeled

primers and subsequent fragment analysis was performed using

the 3130xl Genetic Analyzer (Applied Biosystems) according to the

manufacturer’s instructions. GeneScan–500 LIZ (Applied Biosys-

tems) was used as a size standard in the assays.

Promoter Reporter Assays
The promoter activity was assessed using BEAS-2B human

bronchial epithelial cells and human SPAG6 gene promoter

reporter constructs, as previously described [19]. The promoter

SOX5 In Human B Cells
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activity was measured with the Dual Luciferase Reporter Assay

system (Promega) according to manufacturer’s instructions.

Immunofluorescence Staining and Microscopy
Cyto-spins of RAJI cells were fixed for 15 min using 4%

solution of freshly prepared formaldehyde in PBS and permeabi-

lized with 0.5% Triton-X for another 15 min. After rinsing and

blocking using 3% BSA in PBS the cells were stained with rabbit

anti-human SOX5 antibodies (Santa Cruz Biotechnolgies, Inc.)

over night at 4uC in the blocking buffer, followed by staining with

TRITC-conjugated swine anti-rabbit IgG antibodies (DakoCyto-

mation) for 1 h at room temperature (RT). After appropriate

washing steps DAPI was applied on slides for 10 min to stain

nuclei.

Confocal microscopy images were collected using the LSM 710

Laser Scanning Microscope and the Image software ZEN black

2011 (Carl Zeiss) with following settings: 100X magnification-

Plan-Apochromat 100X/1.40 oil differential interference contrast

objective lens, 266 mm numerical aperture/pinhole, static sample

with respect to temperature and DAKO mounting medium.

Images were presented using Photoshop CS5 gamma 0.45.

Cryosections (10 mm) of tonsillar tissues were fixed with acetone

and blocked using 5% goat serum (Vector Labs) in PBS for 1.5 h

at RT. Primary (goat anti-human IgD-bio (Southern Biotech.);

rabbit anti-human SOX5 (Santa Cruz Biotechnolgies, Inc.);

mouse anti-human Ki-67 (BD) and mouse anti-human CD138

(Dako) antibodies) and secondary antibody (goat anti-mouse IgG-

A405 (Invitrogen); goat anti-rabbit IgG-A568 (Invitrogen) and SA-

FITC (Dako)) staining was performed in the blocking buffer

containing 5% goat serum for 1 h at RT. Microscopic images

were acquired using Axio Observer and AxioCam MRm (Zeiss)

and were prepared using Axiovision (Ver. 4.8.2.0) and Photoshop

CS5 softwares.

Engineering of the SOX5-GFP Fusion Protein Construct
and Lentiviral Transduction

A 2.4 kb complete CDS fragment of the 59L3S-SOX5 transcript

was cloned into the pNL-EGFP/CEF lentiviral vector [20,21] and

a C-terminus-GFP fusion construct – pNL-L-SOX5F-EGFP/

CEF, expressing L-SOX5F-EGFP fusion protein, was generated

using EcoRI and BamHI cloning sites. In the following sections the

pNL-EGFP/CEF control vector and pNL-L-SOX5F-EGFP/CEF

fusion constructs were designated as GFP and SOX5-GFP,

respectively. Lentiviral particles were prepared by co-transfection

of pLTR-G envelop [22] and pCD/NL-BH* helper [23]

constructs in 293T cells, as a packaging cell line, using FuGENE

6 (Roche Diagnostics). Viral particles were harvested after 48 h

and after two rounds of spin infection RAJI cells were GFP sorted

for further analysis. Cloning primers are provided in the table S1.

Isolated quiescent human peripheral blood primary B cells were

transduced by novel lentiviral vectors (LVs) displaying at their

surface the Edmonston measles virus (MV) glycoproteins hemag-

glutinin (H) and fusion protein (F), (H/F-LVs) technique [24,25].

In order to transduce primary B cells, H/F-LV vector pseudotypes

were prepared for the SOX5-GFP fusion as well as for GFP

encoding vector, as a control and the cells were transduced using

the above viral particles. The efficiency of transduction up to

85.0% was reached in SOX5-GFP H/F-LV transduced B cells

and it was even higher in the case of GFP control H/F-LVs (up to

99.0%) after two rounds of spinoculation/infection.

Statistical Analysis
All data are expressed as mean 6 standard deviation (6 SD).

Statistical comparison between samples was carried out by

Kruskal-Wallis (KW) one way analysis of variance (ANOVA) test

and in cases of significant differences, t-test was applied to indicate

the significance between two groups of samples using GraphPad

Prism 5 software (GraphPad Software, La Jolla, CA).

Results

Expression of SOX5 Transcript Variants in Human B Cells
SOX5 transcript variants are encoded in total by 22 exons, out of

which 17 are coding exons (Fig. 1A). In order to analyze the

expression of SOX5 transcripts in B cells, cDNA was prepared

from three different fractions of peripheral blood mononuclear

cells (PBMCs) of three HD volunteers: fraction A – original pool of

PBMCs, fraction B – ‘‘untouched’’ B cells and fraction C – non-B

cells (Fig. 1B). PCR analyses did not reveal detectable signals for

SOX5 transcript variant 1 (primer pair a) and 5 (primer pair b) in

human B cells or other peripheral blood lymphocytes, while the

signal was readily detectable in human costal cartilage cells

(Fig. 1B). B cells expressed low levels of SOX5 variant 3 (primer

pair c) compared to the non-B cell fraction and human testis tissue

(Fig. 1B). A weak signal at about expected 209 bp - corresponding

to variant 2 - and a strong signal at the expected 284 bp -

corresponding to variant 4 - were detected in B cells by primer pair

d (Fig. 1B). Since the presence or absence of exons 17 and 18 is an

additional difference between SOX5 transcript variants 2 and 4, a

new set of primer pair (in exons 15 and 20, primer pair e) was

designed discriminating between these two variants (Fig. 1A).

Surprisingly, the results revealed no detectable signal at 300 bp

corresponding to the variant 4, but a strong signal at the expected

624 bp fragment corresponding to the SOX5 transcript variant 2

(Fig. 1C). These data indicated that SOX5 transcript variant 4 is

not expressed in B cells and suggested that the observed 209 bp

and 284 bp fragments correspond to sub-variants of SOX5

transcript variant 2. Overall, B cells were the main source among

human peripheral blood lymphocytes, expressing high levels of

long transcript variants of SOX5 (primer pairs – d, e and f; Fig. 1B

and 1C).

Human B Cells Express at Least 3 Different L-SOX5
Transcript Variants

Due to the predominance of SOX5 transcript variant 2, we

decided to amplify the complete coding sequence (CDS) of the

SOX5 transcript variant 2 (primer pair g) from human peripheral

blood B lymphocytes, in order to subclone the PCR fragments and

verify the sequence of B cell-specific SOX5 transcripts. Sequencing

indeed revealed a transcript corresponding to the SOX5 transcript

variant 2 (NM_152989.3) encoding the L-SOX5B isoform

(NP_694534.1). Additionally, we identified two new SOX5

transcript variants and numbered them accordingly as variant 6

(GenBank accession number: JX570584) and variant 7 (GenBank

accession number: JX570585), both of which contained the 75 bp

non-coding exon 5 at the 59-UTR known from variant 4, but in

contrast to variant 4 and similar to variant 2, variant 6 and 7

enclose coding exons 12 and 13 (Fig. 2A). The coding exon 3 was

present in its full length of 232 bp (coding exon 3a) in SOX5

transcript variant 6 and it was 105 bp shorter due to a truncated

127-bp coding sequence (coding exon 3b) in transcript variant 7

(Fig. 2A). Therefore, the three SOX5 transcripts were designated as

59S3L-SOX5, corresponding to the known transcript variant 2

(NM_152989.3), as well as 59L3L-SOX5 (transcript variant 6) and

59L3S-SOX5 (transcript variant 7), representing two additional new

SOX5 In Human B Cells
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transcript variants of SOX5, where 59S describes the existence of

shorter and 59L - of longer 59-UTR sequences, whereas 3L

indicates the longer and 3S - the shorter coding exon 3,

respectively. According to the analysis of open reading frames,

both transcript variant 2 (59S3L-SOX5, NM_152989.3) and variant

6 (59L3L-SOX5, JX570584) encode the same protein isoform, i.e.

the 750 amino acid (aa) long L-SOX5B protein (NP_694534.1).

The transcript variant 7 (59L3S-SOX5, JX570585) encodes a new,

35 aa shorter form of L-SOX5, due to the 105 bp shorter version

of coding exon 3b (Fig. 2A). We named the new isoform L-SOX5F

(GenBank accession number to be assigned).

As expected, a PCR assay recognizing all SOX5 transcript

variants in one reaction (primer pair h) revealed the existence of at

least three different transcript variants, which were confirmed by

single clone sequencing in human B cells (Fig. 2B). Intriguingly, in

B lymphocytes the 59L- transcript variants of SOX5, containing the

75-bp-non-coding exon 5, were more abundant compared to the

59S- transcript variant of SOX5 (Fig. 1B and Fig. 2B).

Expression of SOX5 in Human B Cell Populations
Next, we analyzed SOX5 expression in circulating naive

CD19+IgM+CD21+CD38+CD272 B cells, CD19+IgM-
hiCD21+CD38+CD27+ marginal zone (MZ)-like B cells,

CD19+IgM2CD21+CD38+CD27+ switched memory B cells,

CD19+IgM2CD21+CD38+CD272 non-classical memory B cells

and CD19+IgM+/2CD21lowCD38low innate-like CD21low B cells.

Quantitative RT-PCR analysis, recognizing all transcript variants

of SOX5 expressed in B cells (primer pair – f), showed that

expression levels of SOX5 transcripts were slightly, but not

significantly higher in MZ-like and switched memory B cells

compared to naive B cells. In contrast, levels of SOX5 transcripts

were 25.7617.2 fold (n = 4; p = 0.0393) and 19.361.2 fold (n = 4;

p,0.0001) higher in non-classical memory and CD21low B cells,

respectively, than in naive B cells (Fig. 3A).

In addition to circulating B cells we examined tonsillar B cell

subsets sorted into CD19+IgD+CD272CD382 follicular naive B

cells, CD19+IgD2CD272/+CD38+ germinal center (GC) B cells,

CD19+IgD2CD27++CD38++CD138+ plasma cells (PCs) and

Figure 1. Expression of SOX5 transcript variants in human B cells. (A) Schematic representation of human SOX5 transcript variants. Non-
coding exons are depicted as open rectangles, partial coding exons - as half open rectangles and coding exons - as filled rectangles. Primer regions
are indicated with appropriate arrows. Exons and coding exons are numbered according to their location along the genomic sequence, which are
drawn as black lines. (B) RT-PCR analysis for the expression of b-actin, CD19 genes and SOX5 transcript variants. HD PBMCs were separated into: A –
PBMCs; B – B cells and C – non-B lymphocytes. Except for SOX5 transcript variant 3 (SOX5-var 3) in which human testis RNA sample served as a control,
human costal cartilage cells used as a positive control in all RT-PCR reactions. In agarose gel pictures DNA markers were cut out, since they were
loaded between the tested samples and the control sample. (C) RT-PCR assay performed to discriminate between SOX5 transcript variant 2 and
variant 4 in samples of peripheral blood lymphocytes: A – PBMCs; B – B cells and C – non-B lymphocytes.
doi:10.1371/journal.pone.0100328.g001
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CD19+IgD2CD27+CD382 memory B cells. Compared to follic-

ular naive B cells GC B cells expressed 110.5676.4 fold (n = 3; p

0.0398) higher levels of SOX5 transcripts (Fig. 3B). The expression

levels of SOX5 transcripts were not significantly higher in memory

B cells, whereas PCs expressed significantly (p = 0.0440) lower

levels of SOX5 transcripts compared to the GC B cells.

Consistently, immunofluorescence staining of tonsillar tissues

revealed polarized expression of SOX5 protein preferentially in

centrocytes within the light zone of germinal centers, but not in

terminally differentiated CD138hi extrafollicular plasma cells

(Fig. 3C).

In order to distinguish between the two prominent SOX5

transcript variants we designed a qPCR assay recognizing only the

transcript variant 6 (59L3L-SOX5, Fig. S1A, primer pair – i) in B

cells. Except for the non-classical memory B cells in the blood,

transcript varrinat 6 (59L3L-SOX5) expression reflected (Fig. S1B

and S1C) the expression pattern of total SOX5 variants in

peripheral blood and tonsillar naı̈ve, GC and memory B cells

(Fig. 3A and 3B). Subsequent fragment analysis using 59-FAM-

labeled primers (Fig. S1A, primer pair - j) revealed a nearly equal

distribution between transcript variant 7 (59L3S-SOX5) and variant

6 (59L3L-SOX5) in all tested tonsillar B cell populations (Fig. S1D).

While the fragment analysis was not sensitive enough to analyse

peripheral blood B cells ex vivo, the analysis of B cells stimulated

in vitro (Fig. S1E) showed a similar expression pattern of these

variants. Collectively, these data demonstrate that both transcript

variant 6 (59L3L-SOX5) and variant 7 (59L3S-SOX5) are equally

expressed in B cells ex vivo as well as in B cells during activation

in vitro.

SOX5 Expression during Activation and Differentiation of
B Cells In vitro

Since high levels of SOX5 mRNA were found at some activation

dependent stages of B cell differentiation in the tonsil, we asked

next whether specific signaling pathways might induce SOX5

expression during in vitro stimulation of B cells. Isolated peripheral

blood B cells were activated either with a single stimulus (IL4, IL21

and CD40L) or combinations of stimuli (CD40L+IL4 and

CD40L+IL4+IL21) in vitro. Flow cytometric analysis at days 3, 6

and 9 revealed strong differentiation of CD38hiCD138+ plasma-

blasts upon CD40L+IL4+IL21 stimulation and only a weak

differentiation upon CD40L+IL4 stimulation, whereas no differ-

Figure 2. Human B cells express at least three different transcript variants of SOX5. (A) Schematic representation of sequence verified
human SOX5 transcript variants in B lymphocytes. Non-coding exons are depicted as open rectangles, partial coding exons - as half open rectangles
and coding exons - as filled rectangles. Cloning primer locations are indicated with appropriate arrows. Exons and coding exons are numbered
according to their location along the genomic sequence, which are drawn as black lines. (B) PCR analysis of SOX5 transcript expression in B cells and
in single clones picked for sequence analysis. B lymphocytes express at least three different SOX5 transcript splice variants as evidenced by
representative single TOPO clones 1, 2 and 3.
doi:10.1371/journal.pone.0100328.g002
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entiation was detectable in cells activated with IL4 or IL21 or

CD40L alone (Fig. 4A). Proliferation, measured by CFSE labeling

of cells, occurred to a small degree upon CD40L stimulation,

stronger in cells stimulated with CD40L+IL4 and the strongest

after CD40L+IL4+IL21 stimulation (Fig. 4A), while B cells

stimulated with IL4 and IL21 alone did not proliferate. We

noticed a significant decrease of SOX5 expression (p,0.05) in

unstimulated B cells at day 3 compared to freshly isolated B cells

(Fig. 4B). Subsequently, SOX5 transcripts were highly up-regulated

upon stimulation with IL21 (Fig. 4B). In contrast, all proliferating

cells after IL4+CD40L stimulation expressed the lowest amounts

of SOX5, which was slightly but significantly increased by the

addition of IL-21 (n = 5, p-values,0.05) (Fig. 4B). These data

suggested a reduction of SOX5 expression during proliferation,

while higher levels of SOX5 were present in culture conditions

inducing plasmablast differentiation. In order to test whether

SOX5 is induced not only during IL21-mediated differentiation,

isolated peripheral B cells were stimulated with CpG in vitro. Upon

CpG stimulation, CD38hiCD138+ plasmablast differentiation was

observed at days 6 and 9 (Fig. S2A) and this process was also

associated with increased levels of SOX5 transcripts in the cells

(Fig. S2B).

Expression of SOX-trio and SOX13 Genes in Human
Ex vivo B Cells and during In vitro B Cell Differentiation

Since Sox5 is co-expressed with Sox6 and Sox9 in chondrocytes,

oligodendrocytes and melanocytes [4], we asked whether the other

two members of the SOX-trio [26] are expressed in human B cells.

Figure 3. Expression of SOX5 in human B cell subpopulations. (A) Relative quantification of SOX5 by RT-qPCR in peripheral blood naive, MZ-
like, switched memory (sw mem), non-classical memory (nc mem) and CD21low B cells. (B) Relative quantification RT-qPCR assay for SOX5 expression
in follicular naive, germinal center B cells (GC), memory B cells and plasma cells (PC) from tonsils. T-test p-values indicate the significance of
differences between the samples. Relative expression levels of SOX5 are shown as mean 6 SD. RPLP0 gene was used as an internal control in the
samples. (C) Immunofluorescence staining for the expression of SOX5 protein in tonsillar tissues. IgD staining was used to stain mantle zones, Ki67
staining for proliferating centroblasts within germinal centers and CD138 as a marker for extrafollicular plasma cells.
doi:10.1371/journal.pone.0100328.g003
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Human SOX9 gene is represented by a single transcript, while at

least four different transcript variants exist for the human SOX6

gene. PCRs for SOX9 and SOX6 transcripts, recognizing all four

transcript variants of SOX6, showed weak signals for SOX6

transcript variants in PBMCs and non-B cell fractions, but were

absent in B cells (Fig. 5A). SOX9 was undetectable in any

lymphocyte population of the peripheral blood, while the signal

was readily detected in human costal cartilage cells (Fig. 5A).

Since co-expression of Sox5 and Sox13 genes was reported in

mouse pancreatic epithelial cells [27], we tested co-expression of

the SOX13 gene in human B lymphocytes. While SOX13 was

expressed in non-B cell fractions of the PBMC, there was no

detectable signal in B cell fractions, indicating that SOX13 is not

expressed in human B cells (Fig. 5A).

Because freshly isolated B cells did not express SOX6 and SOX9

or SOX13 ex vivo, we tested whether these genes are induced during

in vitro B cell differentiation. As shown in Fig. 5B, none of the

tested genes were induced at days 3, 6 or 9 after IL4+CD40L+
IL21 stimulation.

SOX5 Overexpression Reduces Proliferation, While
Plasmablast Differentiation Still Occurs

Because of its novelty and the prominent expression in B cells,

we decided to clone the transcript variant 7 of SOX5 (59L3S-SOX5)

in order to study its function in human B cells. A SOX5-GFP

fusion protein was engineered and its functionality was tested by

using the previously reported SPAG6 promoter reporter assays. In

BEAS-2B epithelial cells expressing the SOX5-GFP fusion protein,

the SPAG6 promoter activities reached much higher induction

levels, 14.261.2 fold for pGL3-1-SOX5 (n = 3; p = 0.0005) and

10.260.6 fold for pGL3-4-SOX5 (n = 3; p,0.0001) when

compared with controls (Fig. S3A), indicating that our SOX5-

GFP fusion protein construct is functional.

Immunofluorescence staining revealed a barely detectable signal

for endogenous SOX5 in GFP-transduced RAJI cells (Fig. S3B);

whereas SOX5 was highly expressed and the co-expression and

nuclear localization of exogenous SOX5 and GFP was readily

documented in SOX5-GFP-transduced cells (Fig. S3C).

Subsequently, expression levels of previously reported SOX5

target genes RhoB [28], S100A1 and S100B [29] were examined in

sorted GFP-low and GFP-hi control cells and SOX5-GFP-low,

SOX5-GFP-intermediate (int) and SOX5-GFP-hi cells (Fig. S3D).

While RHOB and S100B genes seemed not to be expressed in

RAJI cells (Fig. S3E), the S100A1 gene was expressed and its

expression levels correlated with the expression levels of 59L3S-

SOX5 in SOX5-GFP transduced RAJI cell fractions (Fig. S3D and

S3E), compatible with the regulation of the S100A1 gene by

exogenous SOX5. Unlike in chondrocytes [29], the regulation of

the S100A1 did not depend on SOX-trio activity, since SOX6 and

SOX9 were not expressed in RAJI cells (Fig. S3E).

After confirmation of the expression and function of the fusion

protein in a human B cell line, we analyzed the function of L-

SOX5F in primary human B lymphocytes. Primary B lymphocytes

were transduced with SOX5-GFP fusion and GFP control

constructs. Isolated cells were stimulated for 9 days in vitro

(Fig. 6). Analysis of absolute counts of GFP-positive cells at day

Figure 4. Induction of SOX5 during in vitro B cell differentiation. (A) Isolated peripheral blood B cells were either left for 3 days without any
stimulus or stimulated for 9 days in vitro either with a single stimulus (IL4, IL21 and CD40L) or the combination of these (CD40L+IL4+/2 IL21). The
cells were analyzed by FACS for the plasma cell markers CD138 and CD38 at days 3, 6 and 9. Gates indicate the frequency of CD138+CD38hi

plasmablasts in each plot. CFSE at day 9 was measured as an indicator of proliferation in the cells. Representative FACS plots of five independent
experiments are shown. (B) RT-qPCR analysis of SOX5 expression in ex vivo B cells and samples either unstimulated (unstim.) for 3 days or stimulated
with a single stimulus (IL4, IL21 and CD40L) or the combination of these (CD40L+IL4+/2 IL21). Significant differences are depicted and appropriate t-
test p-values (n = 5; p,0.05) are indicated. Relative expression levels of SOX5 are shown as mean 6 SD. RPLP0 gene served as an internal control in
the samples.
doi:10.1371/journal.pone.0100328.g004
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0 and at days 3, 6 and 9 showed that GFP-infected cells almost

doubled on day 3 (ratio day 3/day 0 = 1.760.8; n = 3), while the

absolute counts of SOX5-GFP-positive cells did not increase (ratio

day 3/day 0 = 1.060.5; n = 3; Fig. 6A). In accordance with a

reduced proliferative capacity of cells transduced with SOX5-GFP

we found the up-regulation of a negative cell cycle regulator gene

CHEK1 and cyclin E1 (CCNE1) gene, whereas several positive cell

cycle regulator genes, including CCND1/2, CDK4, CDC25A,

TFDP2, E2F4 and MKI67, were down-regulated in SOX5-GFP

transduced B cells at day 3 compared to the GFP control (Fig. S4).

DAPI staining of the cells revealed relatively increased frequencies

of GFP+ DAPI+ dead cells upon SOX5-GFP transductions at day

3 (2.9% 61.1%; n = 3; p = 0.0092), day 6 (14.7% 616.5%; n = 3)

and day 9 (21.5% 67.6%; n = 3; p = 0.0204) compared to the GFP

control transductions at day 3 (1.2% 60.7%; n = 3), day 6 (4.9%

63.7%; n = 3) and day 9 (9.3% 64.6%; n = 3), respectively

(Fig. 6B). Compatible with the increased apoptosis we saw the anti-

apoptotic gene BIRC5 down-regulated in SOX5-GFP transduced

B cells (Fig. S4). The flow cytometric analysis of cultured B

lymphocytes (Fig. 6C) revealed a relative, but not absolute

expansion of CD138+CD38hi plasmablasts (counted as numbers

of CD38hi CD138+ cells per 1000 GFP+ cells at day 0) in SOX5-

GFP-transduced cells at day 6 (10676741; n = 3; p = 0.0194) and

day 9 (6026345; n = 3; p = 0.0347), when compared to the control

GFP-transduced cells at days 6 (4206261; n = 3) and 9 (3846331;

n = 3), respectively (Fig. 6D). These data corroborate the negative

effect of SOX5 expression on proliferation, whereas plasmablast

differentiation appears to be spared.

Discussion

Here we report for the first time a detailed analysis of the SOX5

expression in human B lymphocytes. Five different representative

transcript variants of human SOX5 are identified in the GenBank

database. Among the known transcript variants of human SOX5,

only the variants 2 and 3 are expressed in human B cells. By PCR

cloning of the full CDS and subsequent sequence verification we

identified two new variants of human SOX5 transcripts, the

Figure 5. Expression of ‘‘SOX-trio’’ and SOX13 genes in ex vivo B cells and during in vitro differentiation of human primary B cells. (A)
PCR analysis for the expression of RPLP0, SOX6, SOX9 and SOX13 genes in human peripheral blood lymphocyte populations: A – PBMCs; B – B cells and
C – non-B cell fractions. (B) RPLP0, SOX6, SOX9 and SOX13 expression in isolated peripheral blood B cells stimulated with IL4+CD40L+IL21 for 9 days
in vitro. The analysis was performed at days 3, 6 and 9. In agarose gel pictures DNA markers were cut out, since they were loaded between the tested
samples and the control sample. Human costal cartilage cells served as a control for SOX6 and SOX9 expression, whereas BEAS-2B cells were used for
SOX13 as a control.
doi:10.1371/journal.pone.0100328.g005
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variants 6 (59L3L-SOX5) and 7 (59L3S-SOX5), for which

GenBank accession numbers JX570584 and JX570585 were

assigned, respectively. Similar to the variant 2, both of the new

transcript variants carry 18 exons, but bear an additional 75 bp

non-coding exon 5. The two new SOX5 transcript variants differ in

the length of coding exon 3. In the transcript variant 6 the coding

exon 3 (coding exon 3a) is present in its full length of 232 bp

coding for 77 aa, whereas in the transcript variant 7 the coding

exon 3 (coding exon 3b) is only 127 bp long sustaining the same

translation initiation site, but coding for only 42 aa (Fig. 2A). Like

transcript variant 2, the transcript variant 6 encodes the known

750 aa protein isoform - L-SOX5B (NP_694534.1), whereas the

transcript variant 7 encodes a new, shorter, 715 aa long protein

isoform of SOX5, which we designated L-SOX5F. The missing 35

aa residues in the L-SOX5F isoform do not involve any of the

known functional domains of L-SOX5 (Fig. S5). Both new variants

are expressed in nearly equal amounts in all tested tonsillar B cell

populations and during B cell activation in vitro, suggesting similar

regulation of expression due to identical regulatory elements.

However, due to the low sensitivity and limitations of the fragment

analysis technique applied in this study, we cannot exclude

differential expression of the two SOX5 variants in some of the

circulating B cells, especially in circulating CD21low and atypical

memory B cells.

SoxD proteins have no known transactivation or transrepression

domains and therefore require interaction partners to participate

in transcriptional activation and repression as demonstrated in

different cell types [3,4]. The SOX-trio, consisting of SOX5,

SOX6 and SOX9 [26], is so far the best-examined complex

involving the action of Sox5 in chondrocytes [8,30], oligodendro-

cytes and melanocytes [4,9,31]. Depending on the constellation

Sox5 and Sox6 heterodimers cooperate with Sox9 in transactiva-

tion of chondrocyte-specific genes [3,4] or act as transrepressors by

competing with SoxE proteins in oligodendrocytes and melano-

cytes by directly recruiting the co-repressor CtBP2 and the histone

deacetylase Hdac1 [3,4]. Beside the interaction of L-Sox5 and

Sox6 proteins [32], co-expression of L-Sox5 and Sox13 was shown

in mouse pancreatic epithelial cells [27]. However, our data clearly

indicate that neither SOX6, SOX9, nor SOX13 are expressed in

circulating B cells nor induced after in vitro activation of human B

lymphocytes. Therefore other interaction partners for SOX5 must

exist in human B cells and point to a cell type-dependent

expression of interaction partners for SOX5.

SOX5 transcription varied between peripheral blood B-cell

subpopulations, showing the highest expression levels in circulat-

Figure 6. SOX5 modulates in vitro terminal B cell differentiation. (A) Proliferation measured as the ratio of absolute numbers of GFP+ cells in
the samples. Absolute cell counts of GFP+ cells on day 0 are taken as 1.0 and the data are expressed as mean 6 SD. Summary of three independent
experiments are depicted. (B) Frequencies of GFP+ DAPI+ cells within GFP (control) and SOX5-GFP-transduced peripheral blood B cells cultivated
in vitro. (C) Plasma cell differentiation analyzed by FACS in peripheral blood B cells stably transduced either with GFP (control) or SOX5-GFP fusion
construct upon in vitro stimulation with IL4+CD40L+IL21. DAPI-negative GFP+ gated cells were analyzed by FACS for the plasma cell markers CD138
and CD38 at days 3, 6 and 9. Gates indicate the frequencies of CD138+CD38hi plasmablasts in each FACS plot. Representative FACS plots of three
independent experiments are shown. (D) Numbers of CD138+CD38hi plasmablasts in GFP (control) and SOX5-GFP-transduced B cells at days 3, 6 and 9
referring to CD38hi CD138+ cells per 1000 GFP+ cells at day 0. Cell numbers are depicted as mean 6 SD and t-test p-values indicate the significant
differences. Summary of three independent experiments are shown.
doi:10.1371/journal.pone.0100328.g006
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ing innate-like CD21low B cells and non-classical CD272 memory

B cell populations, as we had previously seen in CD21low B cells of

patients with CVID [16] and others in FCRL4+ tissue-like

memory B cells of tonsils [15]. The comparison of tonsillar B

cell populations in healthy donors revealed the highest expression

levels of SOX5 transcript in GC B cells as previously reported [15].

In tonsillar sections the expression of SOX5 protein was polarized

to centrocytes within the light zones of germinal centers, but not in

extrafollicular CD138+ plasma cells, suggesting that SOX5

expression is upregulated during the GC response of B cells and

switched off after terminal differentiation.

In order to dissect the expression pattern of SOX5 during B cell

activation, proliferation and differentiation more closely, we

investigated the SOX5 expression at different time points after

stimulation of B cells in vitro with IL4, IL21, CD40L alone or a

combination of these. The highest SOX5 transcript levels were

found in cells stimulated with IL21 alone, while SOX5 transcript

levels were significantly reduced in cells undergoing proliferation

(CD40L+IL4). Interestingly, adding IL21 to this stimulation not

only caused a dramatic increase in plasmablast differentiation but

also a slight, but significant up-regulation of SOX5 expression.

Given the high expression of SOX5 protein in centrocytes in the

light zone of tonsils, these data suggest that SOX5 plays a role

during IL21-mediated differentiation of activated B cells. This

role, however, is not restricted to IL21 activation, since SOX5 was

also induced in B lymphocytes undergoing plasmablast differen-

tiation upon CpG stimulation in vitro.

In order to demonstrate the effect of high SOX5 expression

levels during B cell activation further, the complete CDS of the

prominently expressed transcript variant 7, encoding the L-

SOX5F, was cloned together with a GFP gene into a lentiviral

expression vector. After transduction of human primary B cells

with SOX5-GFP we found less SOX5-GFP positive cells at days 3,

6 and 9 compared to GFP transduced controls, after adjusting for

transduction efficiency. SOX5-GFP positive cells failed to expand

on day three after stimulation. In support of a negative influence of

high SOX5 levels on the cell cycle we observed an up-regulation of

negative regulators of the cell cycle in combination with the down-

regulation of positive regulatory genes in the SOX5-GFP

transduced cells. The increased expression of a negative regulator

CHEK1 and especially CCNE1 is suggestive of a block at the G1-S

phase transition [33]. This is consistent with the previous results in

SOX5 expressing FCRL4 B cells, which don’t proliferate [34] and

are mostly in G1 phase [15]. Similarly, in CD21low B cells of

CVID patients, the high level of SOX5 expression is associated

with poor proliferation, while a residual potential to differentiate

into antibody secreting cells persists [16,35]. There is multiple

evidence for an anti-proliferative effect of SOX5 in non-B cells.

Thus in neuronal progenitor cells high SOX5 expression is

associated with a premature cell cycle exit [36] and in human

glioma cells [37] with a poor proliferative capacity. Also the high

expression of Sox5 in chondrocytes [8] is compatible with its role

in the non-proliferative state of cells. A recent study corroborates

that lentiviral overexpression of murine Sox5 proteins (Sox5-BLM

and L-Sox5) inhibits cell cycle progression and results in increased

apoptosis of human multiple myeloma cells [38]. We also observed

an increased apoptosis rate of GFP+DAPI+ B cells upon

transduction with SOX5-GFP. However, in contrast to the

reported results, in our hands other B cells underwent apoptosis

more readily and the percentage of CD138+CD38hi plasmablasts

accumulated with time significantly more in SOX5-GFP trans-

duced B cells compared to GFP transduced B cells suggesting that

plasma cells might be less strongly affected by high SOX5

expression levels. This difference might be reconciled by the fact,

that a multiple myeloma line reflects rather terminally differen-

tiated plasma cells which in deed express only very low levels of

SOX5, while according to our in vitro results SOX5 is naturally up-

regulated during the process of plasma cell differentiation.

In conclusion, we reported here the identification of two new

transcript variants of human SOX5, variant 6 and variant 7, which

are expressed in B cells and encode the known 750 aa L-SOXB

isoform and a new isoform of 715 aa L-SOX5F, respectively.

SOX5 expression is stage dependent during B cell differentiation.

It shows the highest expression in centrocytes in the light zones of

germinal centers, in circulating atypical memory and exhausted

CD21low B cells. The interaction partners in B cells remain

unknown but functional assays suggest that it is induced by IL21

and that high levels of L-SOX5F modify terminal B cell

differentiation by suppressing proliferation, but permitting plas-

mablast development.

Supporting Information

Figure S1 Expression of 59L3L-SOX5 and 59L3S-SOX5
transcripts in human B cell subpopulations. (A) A scheme

for primer locations and (B) relative quantification of 59L3L-

SOX5 by RT-qPCR in peripheral blood naive, MZ-like, switched

memory (sw mem), non-classical memory (nc mem) and CD21low

B cells as well as (C) in follicular naive, germinal center B cells

(GC) and memory B cells from tonsils. T-test p-values indicate the

significance of differences between the samples. Relative expres-

sion levels of 59L3L-SOX5 are shown as mean 6 SD. RPLP0

gene was used as an internal control in the samples. Fragment

analysis for the relative expression of 59L3S-SOX5 transcript (D)

in tonsillar B cell populations and (E) in CD19+ peripheral blood B

cells upon stimulation in vitro at days 3, 6 and 9. The cells were

activated either with a single stimulus or with a combination of

stimuli, as indicated in the figure (E).

(PDF)

Figure S2 Expression of SOX5 transcripts upon CpG-
mediated B cell differentiation in vitro. (A) Differentiation

of B cells upon stimulation with CpG in vitro. The gates depict

CD138+CD38hi plasmablasts at days 3, 6 and 9. (B) RT-qPCR

analysis of SOX5 expression in samples stimulated with CpG. T-

test p-values indicate the significance of differences between the

samples. Relative expression levels of SOX5 are shown as mean 6

SD. RPLP0 gene served as an internal control in the samples.

(PDF)

Figure S3 Construction of the SOX5-GFP fusion protein
and its functionality upon lentiviral transduction in RAJI
cells. (A) Luciferase promoter reporter assays for GFP-control

and SOX5-GFP fusion constructs in BEAS-2B cells. Stably

transduced BEAS-2B cells either expressing GFP alone or

SOX5-GFP fusion protein were GFP-sorted and subsequently

transient transfection was performed to measure the promoter

activity. pGL3-Basic plasmid was used as a control for human

SPAG6 promoter constructs, pGL3-1-SOX5 and pGL3-4-SOX5.

Appropriate t-test p-values indicate the significance of differences

between GFP control and SOX5-GFP expressing cells. (B) and (C)

Immunofluorescence staining for SOX5 protein in RAJI cells.

RAJI cells were transduced either with GFP control vector (B) or

SOX5-GFP fusion construct (C). Co-localization of GFP (green)

and SOX5 (red – TRITC) and nuclear translocation is shown.

DAPI staining is indicative of cellular nuclei. (D) Lentiviral

expression of GFP and SOX5-GFP fusion proteins in RAJI cells

analyzed by flow cytometry. Stably transduced RAJI cells were

sorted into GFP-low and GFP-hi as well as SOX5-GFP-low,
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SOX5-GFP-int and SOX5-GFP-hi fraction and RT-PCR analy-

ses for the expression of GAPDH and 59L3S-SOX5 transcript

were performed. (E) RT-PCR analysis for the expression of known

SOX5 target genes: RHOB, S100A1 and S100B as well as SOX-

trio genes, SOX6 and SOX9 in stably transduced and GFP-sorted

RAJI cell fractions. In agarose gel pictures DNA markers were cut

out, since they were loaded between the tested samples and the

control sample. Human costal cartilage cells served as a control.

(PDF)

Figure S4 Expression of human cell cycle genes in
SOX5-transduced and in vitro differentiated human
primary B cells. Human cell cycle RT2 Profiler PCR Array

containg 84 pathway specific genes were run for RNA samples of

GFP- and SOX5-GFP-transduced human primary B cells at day 3

upon CD40L+IL4+IL21 stimulation in vitro. Negative regulatory

genes of cell cycle are indicated in red, whereas positive regulatory

genes of cell cycle are depicted in green. Black color shows the

regulation of RAD51 gene, which is involved in the homologous

recombination and repair of DNA. Dashed lines indicate a

threshold of 2 fold up- or down-regulation of genes.

(PDF)

Figure S5 Comparison of known functional domains in
L-SOX5B and L-SOX5F proteins. Both SOX5 proteins

contain the same known functional domains and share the same

translation initiation site, except for different exon 3 (exon 3a and

exon 3b). NL – nuclear localization domain.

(PDF)

Table S1 Primer sequences used in this study. Primer

sequences are listed and subdivided into sections according to the

assay type and in the order as they appear in the text.

(PDF)
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