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We study a general discrete planar system for modeling stage-structured populations. Our results include conditions for the global
convergence of orbits to zero (extinction) when the parameters (vital rates) are time and density dependent. When the parameters
are periodic we obtain weaker conditions for extinction. We also study a rational special case of the system for Beverton-Holt type
interactions and show that the persistence equilibrium (in the positive quadrant) may be globally attracting even in the presence
of interstage competition. However, we determine that with a sufficiently high level of competition, the persistence equilibrium
becomes unstable (a saddle point) and the system exhibits period two oscillations.

1. Introduction

Stage-structured models of single-species populations with
lowest dimension in discrete time are expressed as planar
systems of difference equations. For a general expression of
these models, consider system

𝐴 (𝑡 + 1) = 𝑠
1
(𝑡) 𝜎
1
(𝑐
11

(𝑡) 𝐽 (𝑡) , 𝑐
12

(𝑡) 𝐴 (𝑡)) 𝐽 (𝑡)

+ 𝑠
2
(𝑡) 𝜎
2
(𝑐
21

(𝑡) 𝐽 (𝑡) , 𝑐
22

(𝑡) 𝐴 (𝑡)) 𝐴 (𝑡) ,

(1a)

𝐽 (𝑡 + 1) = 𝑏 (𝑡) 𝜙 (𝑐
1
(𝑡) 𝐽 (𝑡) , 𝑐

2
(𝑡) 𝐴 (𝑡)) 𝐴 (𝑡) (1b)

from [1] in which 𝐽(𝑡) and 𝐴(𝑡) are numbers (or densities) of
juveniles and adults, respectively, remaining after 𝑡 (juvenile)
periods. The vital rates 𝑠

𝑖
and 𝑏 (survival and inherent low

density fertility) as well as the competition coefficients 𝑐
𝑖
and

𝑐
𝑖𝑗
in (1a) and (1b) may be density dependent; that is, they

may depend on 𝐽 and 𝐴 and also explicitly on time; that is,
the systemmay be nonautonomous. Early examples of matrix
models used in species populations dynamics can be found in
[2–5] and their comprehensive treatment is provided in [6].

Under certain constraints on the various functions,
including periodic vital rates and competition coefficients
having the same common period 𝑝, sufficient conditions

for global convergence to zero (extinction) as well as the
existence of periodic orbits for (1a) and (1b) are established
in [1]. If 𝜇 is the mean fertility rate (the mean value of 𝑏(𝑡)
above), then it is also shown that orbits of period 𝑝 appear
when 𝜇 exceeds a critical value 𝜇

𝑐
, while global convergence

to 0 or extinction occurs when 𝜇 < 𝜇
𝑐
. On the other hand,

conditions underwhich the species survives (i.e. permanence)
were studied in [7, 8].

In this paper, we study the following abstraction of the
matrix model (1a) and (1b):

𝑥
𝑛+1

= 𝜎
1,𝑛

(𝑥
𝑛
, 𝑦
𝑛
) 𝑦
𝑛
+ 𝜎
2,𝑛

(𝑥
𝑛
, 𝑦
𝑛
) 𝑥
𝑛
, (2a)

𝑦
𝑛+1

= 𝜙
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) 𝑥
𝑛
, (2b)

where for each time period 𝑛 ≥ 0 the functions 𝜎
1,𝑛

, 𝜎
2,𝑛

, 𝜙
𝑛
:

[0,∞)
2

→ [0,∞) are bounded on the compact sets in
[0,∞)

2. This feature allows for (0, 0) to be a fixed point of the
system and it is true if, for example, 𝜎

1,𝑛
, 𝜎
2,𝑛
, 𝜙
𝑛
are continu-

ous functions for every 𝑛. Under biological constraints on the
parameters, we may think of 𝑥

𝑛
= 𝐴(𝑛) and 𝑦

𝑛
= 𝐽(𝑛) as in

(1a) and (1b).
System (2a) and (2b) includes typical stage-structured

models in the literature. For instance, the tadpole-adult
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model for the green tree frog Hyla cinerea population that is
proposed in [9] may be expressed as

𝑥
𝑛
=

𝑦
𝑛

𝑎 + 𝑘
1
𝑦
𝑛

+
𝑥
𝑛

𝑐 + 𝑘
2
𝑥
𝑛

, (3a)

𝑦
𝑛
= 𝑏
𝑛
𝑥
𝑛
. (3b)

This is a system of type (2a) and (2b) with Beverton-Holt
type functions𝜎

1
and 𝜎
2
. Competition in (3a) and (3b) occurs

separately among juveniles and adults but not between the
two classes, as they feed on separate resources; thus 𝜎

1
and

𝜎
2
do not depend on both juvenile and adult numbers and

𝜙 is independent of both numbers. Two cases are analyzed
in [9]: (i) continuous breeding with constant 𝑏

𝑛
= 𝑏 so

that (3a) and (3b) is autonomous and (ii) seasonal breeding
where 𝑏

𝑛
is periodic. In addition to considering extinction

and survival in the autonomous case, it is shown that seasonal
breedingmay be deleterious (relative to continuous breeding)
for populations with high birth rates, but it can be beneficial
with low birth rates.

Another system of type (2a) and (2b) is the autonomous
stage-structured model with harvesting that is discussed in
[10, 11], which may be written as

𝑥
𝑛+1

= (1 − ℎ
𝑗
) 𝑠
𝑗
𝑦
𝑛
+ (1 − ℎ

𝑎
) 𝑠
𝑎
𝑥
𝑛
, (4a)

𝑦
𝑛+1

= 𝑥
𝑛
𝑓 ((1 − ℎ

𝑎
) 𝑥
𝑛
) . (4b)

The numbers ℎ
𝑗
, ℎ
𝑎

∈ [0, 1] denote the harvest rates
of juveniles and adults, respectively. The stock-recruitment
function 𝑓 : [0,∞) → [0,∞) may be compensatory
(e.g., Beverton-Holt [12]) or overcompensatory (e.g., Ricker
[13]). Compensatory recruitment is used in populations
where recruitment increases with increase in densities before
reaching an asymptote, while in overcompensatory models
recruitment declines as density increases (see [11, 14]). A
thorough analysis of the dynamics of (4a) and (4b) with
the Ricker function appears in [10]. The results in [10, 11]
clarify many issues with regard to the effects of harvesting
in stage-structured models such as global convergence to 0
and the existence of a stable survival equilibrium as well as
the so-called hydra effect for different harvesting scenarios
and with different recruitment functions; this refers to the
counter-intuitive situation where an increase in the harvest
or mortality rate results in a corresponding increase in the
total population; for example, see [15–17].

Also studied in [10] is the occurrence of periodic and
nonperiodic attractors and chaotic behavior for certain
parameter ranges.

Next, the model in [18] studies the harvesting and preda-
tion of sex- and age-structured populations. Although the
added stage for two sexes results in a three-dimensional
model, the existence of an attracting, invariant planar mani-
fold reduces the study of the asymptotics of the system to that
of the planar system:

𝑥
𝑛+1

= 𝑝𝑠
𝑌
𝑦
𝑛
+ 𝑠𝑥
𝑛
, (5a)

𝑦
𝑛+1

= 𝑥
𝑛
𝑓(𝑦
𝑛
+

𝑥
𝑛

𝑝
) , (5b)

where the density-dependent per capita reproductive rate 𝑓

may be Beverton-Holt or Ricker similarly to 𝑓 in (4b). Here
𝑥
𝑛
is the number of females and 𝑦

𝑛
is the number of young

members in the population (the male population is a fixed
proportion of the females).

We also mention the adult-juvenile model

𝑥
𝑛+1

= 𝑠
1
𝑦
𝑛
, (6a)

𝑦
𝑛+1

= 𝑥
𝑛
𝑓 (𝑥
𝑛
, 𝑦
𝑛
) (6b)

in which all adults are removed through harvesting, preda-
tion, migration, or just dying after one period, as in the case
of semelparous species, that is, an organism that reproduces
only once before death. In [19] conditions for the global
attractivity of the positive fixed point and the occurrence
of two cycles for (6a) and (6b) are obtained. A significant
difference between (5a), (5b), (6a), and (6b) and systems (3a),
(3b), (4a), and (4b) is the fact that 𝑦

𝑛+1
in (5b) or in (6b) may

depend on both 𝑥
𝑛
and 𝑦

𝑛
.

We study the qualitative properties of the orbits of (2a)
and (2b) such as uniform boundedness and global conver-
gence to 0 under minimal restrictions on time-dependent
parameters. Biological constraints may be readily imposed to
obtain special cases relevant to population models.

We also investigate convergence to zero with periodic
parameters (extinction in a periodic environment). In par-
ticular, we show that convergence to zero occurs even if the
mean value of 𝜎

2,𝑛
exceeds 1, a situation that cannot occur if

𝜎
2,𝑛

is constant in 𝑛; see Remark 16 below.
In the final section we study the dynamics of a rational

special case of (2a) and (2b). Sufficient conditions for the
global asymptotic stability of a fixed point in the positive
quadrant [0,∞)

2 as well as conditions for the occurrence
of orbits of prime period two are obtained. In particular,
we establish that a sufficiently high level of interspecies
competition tends to destabilize the survival fixed point and
result in periodic oscillations.

Discrete population models generally have been studied
by numerous authors; see, for example, [20–32] and the
references therein.

2. Uniform Boundedness of Orbits

Conditions under which the orbits of (2a) and (2b) are
bounded are not transparent. In this section we obtain
general results about the uniform boundedness of orbits of
(2a) and (2b) in the positive quadrant [0,∞)

2. We begin with
a simple, yet useful lemma.

Lemma 1. Let 𝛼 > 0, let 0 < 𝛽 < 1, and let 𝑥
0
≥ 0. If for all

𝑛 ≥ 0

𝑥
𝑛+1

≤ 𝛼 + 𝛽𝑥
𝑛 (7)

then for every 𝜀 > 0 and all sufficiently large values of 𝑛

𝑥
𝑛
≤

𝛼

1 − 𝛽
+ 𝜀. (8)
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Proof. Let 𝑢
0
= 𝑥
0
and note that every solution of the linear,

first-order equation 𝑢
𝑛+1

= 𝛼+𝛽𝑢
𝑛
converges to its fixed point

𝛼/(1 − 𝛽). Furthermore,

𝑥
1
≤ 𝛼 + 𝛽𝑥

0
= 𝛼 + 𝛽𝑢

0
= 𝑢
1
,

𝑥
2
≤ 𝛼 + 𝛽𝑥

1
≤ 𝛼 + 𝛽𝑢

1
= 𝑢
2

(9)

and, by induction, 𝑥
𝑛
≤ 𝑢
𝑛
. Since 𝑢

𝑛
→ 𝛼/(1 − 𝛽) for every

𝜀 > 0 and all sufficiently large 𝑛,

𝑥
𝑛
≤ 𝑢
𝑛
≤

𝛼

1 − 𝛽
+ 𝜀. (10)

Theorem 2. Let 𝜎
1,𝑛
, 𝜎
2,𝑛
, 𝜙
𝑛
be bounded on the compact sets

in [0,∞)
2 for each 𝑛 = 0, 1, 2, . . . and suppose that for some

𝑟,𝑀 > 0

sup
(𝑢,V)∈[0,𝑟]2

𝜎
2,𝑛

(𝑢, V) ≤ 𝑀 ∀𝑛 ≥ 0; (11)

that is, the sequence of functions {𝜎
2,𝑛

} is uniformly bounded
on the square [0, 𝑟]

2. If there are numbers 𝑀
0
,𝑀
1

> 0 and
𝜎 ∈ (0, 1) such that uniformly for all 𝑛

𝑢𝜙
𝑛
(𝑢, V) ≤ 𝑀

0
𝑖𝑓 (𝑢, V) ∈ [0,∞)

2
, (12)

𝜎
1,𝑛

(𝑢, V) ≤ 𝑀
1

𝑖𝑓 (𝑢, V) ∈ [0,∞) × [0,𝑀
0
] , (13)

𝜎
2,𝑛

(𝑢, V) ≤ 𝜎 𝑖𝑓 (𝑢, V) ∈ (𝑟,∞) × [0,𝑀
0
] , (14)

then all orbits of (2a) and (2b) are uniformly bounded and for
all sufficiently large values of 𝑛 satisfy

0 ≤ 𝑥
𝑛
≤

𝑀
0
𝑀
1
+ 𝑟𝑀 + 𝜎

1 − 𝜎
,

𝑦
𝑛
≤ 𝑀
0
.

(15)

Proof. By (2b) and (12) 𝑦
𝑛
≤ 𝑀
0
for 𝑛 ≥ 1 so by (2a) and (13)

0 ≤ 𝑥
𝑛+1

≤ 𝑀
0
𝑀
1
+ 𝜎
2,𝑛

(𝑢, V) 𝑥
𝑛
. (16)

By (11) and (14)

0 ≤ 𝑥
𝑛+1

≤ 𝑀
0
𝑀
1
+max {𝜎𝑥

𝑛
,𝑀𝑟}

≤ 𝜎𝑥
𝑛
+ 𝑀
0
𝑀
1
+ 𝑟𝑀.

(17)

Next, applying Lemma 1 with 𝜀 = 𝜎/(1−𝜎), we obtain for
all (large) 𝑛

0 ≤ 𝑥
𝑛
≤

𝑀
0
𝑀
1
+ 𝑟𝑀

1 − 𝜎
+ 𝜀 =

𝑀
0
𝑀
1
+ 𝑟𝑀 + 𝜎

1 − 𝜎
(18)

as stated.

Corollary 3. For functions 𝜎
1,𝑛
, 𝜎
2,𝑛
, 𝜙
𝑛
defined on [0,∞)

2 for
𝑛 = 0, 1, 2, . . . assume that there are numbers 𝑀

0
,𝑀
1
> 0 and

𝜎 ∈ (0, 1) such that for all (𝑢, V) ∈ [0,∞)
2 and all 𝑛

𝑢𝜙
𝑛
(𝑢, V) ≤ 𝑀

0
,

𝜎
1,𝑛

(𝑢, V) ≤ 𝑀
1
,

𝜎
2,𝑛

(𝑢, V) ≤ 𝜎.

(19)

Then all orbits of (2a) and (2b) are uniformly bounded and for
all sufficiently large values of 𝑛

0 ≤ 𝑥
𝑛
≤

𝑀
0
𝑀
1
+ 𝜎

1 − 𝜎
,

𝑦
𝑛
≤ 𝑀
0
.

(20)

Theorem 2 is more general than the preceding corollary.
For instance, Corollary 3 does not apply to system

𝑥
𝑛+1

= 𝑎𝑥
𝑛
+

𝑏𝑦
2

𝑛

1 + 𝑐𝑥
𝑛

,

𝑦
𝑛+1

=
𝛼𝑥
𝑛

1 + 𝛽𝑥
𝑛
+ 𝛾𝑦
𝑛

.

(21)

However, if 𝑎 ∈ (0, 1), 𝑏, 𝛼, 𝛽 > 0, and 𝑐, 𝛾 ≥ 0, then
all orbits of this system with initial values in [0,∞)

2 are
uniformly bounded byTheorem 2.

3. Global Attractivity of the Origin

In this section we obtain general sufficient conditions for
the convergence of all orbits of the system to (0, 0). For
population models these yield conditions that imply the
extinction of species.

3.1. General Results. We start with the following lemma; see
[33] for the proof and some background on this result.

Lemma 4. Let 𝛼 ∈ (0, 1) and assume that the functions 𝑓
𝑛
:

[0,∞)
𝑘+1

→ [0,∞) satisfy the inequality

𝑓
𝑛
(𝑢
0
, . . . , 𝑢

𝑘
) ≤ 𝛼max {𝑢

0
, . . . , 𝑢

𝑘
} (22)

for all (𝑢
0
, . . . , 𝑢

𝑘
) ∈ [0,∞) and all 𝑛 ≥ 0. Then for every

solution {𝑥
𝑛
} of the difference equation

𝑥
𝑛+1

= 𝑓
𝑛
(𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑘

) (23)

the following is true:

𝑥
𝑛
≤ 𝛼
𝑛/(𝑘+1)max {𝑥

0
, 𝑥
−1
, . . . , 𝑥

−𝑘
} . (24)

Note that (22) implies that 𝑥
𝑛
= 0 is a constant solution of

(23) and furthermore (24) implies that this solution is globally
exponentially stable.

Throughout this section we assume that 𝜎
𝑖,𝑛
, 𝜙
𝑛
are all

bounded functions for 𝑖 = 1, 2 and every 𝑛 = 0, 1, 2, . . .. Then
the following are well-defined sequences of real numbers:

𝜎
𝑖,𝑛

= sup
𝑢,V≥0

𝜎
𝑖,𝑛

(𝑢, V) ,

𝜙
𝑛
= sup
𝑢,V≥0

𝜙
𝑛
(𝑢, V) .

(25)

Theorem 5. If the inequality

lim sup
𝑛→∞

(𝜎
1,𝑛

𝜙
𝑛−1

+ 𝜎
2,𝑛

) < 1 (26)



4 Discrete Dynamics in Nature and Society

holds, then lim
𝑛→∞

𝑥
𝑛

= 0 for every orbit {(𝑥
𝑛
, 𝑦
𝑛
)} of the

planar system (2a) and (2b) in the positive quadrant [0,∞)
2.

If also either the sequence {𝜙
𝑛
} is bounded or the inequality

lim inf
𝑛→∞

𝜎
1,𝑛

> 0, (27)

holds, then every orbit of (2a) and (2b) converges to (0, 0).

Proof. By (26) there is 𝛿 ∈ (0, 1) such that 𝜎
1,𝑛

𝜙
𝑛−1

+ 𝜎
2,𝑛

≤ 𝛿

for all (large) 𝑛. From (2a)

𝑦
𝑛
≤ 𝜙
𝑛−1

𝑥
𝑛−1

(28)

so for all (large) 𝑛 (2b) yields

𝑥
𝑛+1

≤ 𝜙
𝑛−1

𝜎
1,𝑛

𝑥
𝑛−1

+ 𝜎
2,𝑛

𝑥
𝑛

≤ (𝜎
1,𝑛

𝜙
𝑛−1

+ 𝜎
2,𝑛

)max {𝑥
𝑛
, 𝑥
𝑛−1

}

≤ 𝛿max {𝑥
𝑛
, 𝑥
𝑛−1

} .

(29)

Lemma 4 now implies that lim
𝑛→∞

𝑥
𝑛
= 0. Furthermore

either by hypothesis there is a positive number 𝜇 such that
𝜙
𝑛
≤ 𝜇 or by (27) there is a positive number 𝜌 such that 𝜎

1,𝑛
≥

𝜌 for all (large) 𝑛 so that

𝜙
𝑛−1

≤
𝛿 − 𝜎
2,𝑛

𝜎
1,𝑛

≤
𝛿

𝜌
(30)

for all sufficiently large values of 𝑛.Now, if𝑀 = 𝜇 or𝑀 = 𝛿/𝜌

as the casemay be, then from (2b) in the planar systemwe see
that

lim
𝑛→∞

𝑦
𝑛
≤ lim
𝑛→∞

𝜙
𝑛−1

𝑥
𝑛−1

≤ 𝑀 lim
𝑛→∞

𝑥
𝑛−1

= 0 (31)

and the proof is complete.

Remark 6. (1) Theorem 5 is valid even if the separate
sequences {𝜎

1,𝑛
} or {𝜙

𝑛
} are not bounded by 1 as long as for

all 𝑛 large enough 𝜎
1,𝑛

𝜙
𝑛−1

≤ 𝛿 − 𝜎
2,𝑛
.

(2) If (26) is satisfied but {𝜙
𝑛
} is unbounded and {𝜎

1,𝑛
}

does not satisfy (27) then 𝑦
𝑛
may not converge to 0; see the

example following Corollary 18 below.

We consider an application of Theorem 5 to “noisy”
autonomous system next. Let 𝜀

𝑛
, 𝜀
𝑖,𝑛
, 𝑖 = 1, 2, be bounded

sequences of real numbers and let

𝜀 = sup
𝑛≥1

𝜀
𝑛
,

𝜀
𝑖
= sup
𝑛≥1

𝜀
𝑖,𝑛
, 𝑖 = 1, 2.

(32)

Additionally, let 𝜎
1
, 𝜎
2
, 𝜙 : [0,∞)

2
→ [0,∞) be

bounded functions and denote their supremums over [0,∞)
2

by 𝜎
1
, 𝜎
2
, 𝜙, respectively. If in (2a) and (2b) we have

𝜙
𝑛
(𝑥
𝑛
, 𝑦
𝑛
) = 𝜙 (𝑥

𝑛
, 𝑦
𝑛
) + 𝜀
𝑛
,

𝜎
𝑖,𝑛

(𝑥
𝑛
, 𝑦
𝑛
) = 𝜎
𝑖
(𝑥
𝑛
, 𝑦
𝑛
) + 𝜀
𝑖,𝑛
, 𝑖 = 1, 2

(33)

then we refer to (2a) and (2b) as an autonomous system with
low-amplitude disturbances or fluctuations in the rates 𝜎

1
, 𝜎
2
,

𝜙, assuming that all three of these are positive functions and
for all 𝑢, V ≥ 0

|𝜀| ≤ 𝜙 (𝑢, V) ,
󵄨󵄨󵄨󵄨𝜀𝑖

󵄨󵄨󵄨󵄨 ≤ 𝜎
𝑖
(𝑢, V) , 𝑖 = 1, 2.

(34)

These inequalities ensure that the functions𝜙
𝑛
and𝜎
𝑖,𝑛
are

positive, as required for (2a) and (2b).

Corollary 7. Suppose that (2a) and (2b) is an autonomous
system with low-amplitude disturbances or fluctuations in the
above sense. If

(𝜎
1
+ 𝜀
1
) (𝜙 + 𝜀) + 𝜎

2
+ 𝜀
2
< 1 (35)

then the origin is the unique, globally asymptotically stable
fixed point of (2a) and (2b) relative to the positive quadrant
[0,∞).

Note that (35) holds for nontrivial sequences 𝜀
𝑛
, 𝜀
𝑖,𝑛
of real

numbers if 𝜎
1
𝜙 + 𝜎
2
< 1.

Remark 8. Since in the above discussion the sequences 𝜖
𝑛
,

𝜖
𝑖,𝑛
, 𝑖 = 1, 2, are arbitrary bounded sequences, they can

also be sequences of random variables that are drawn from
distributions with finite support. For example, 𝜖

𝑛
, 𝜖
𝑖,𝑛

can be
drawn from uniform distribution on some interval [0, 𝜃] so
long as

(𝜎
1
+ 𝜃) (𝜙 + 𝜃) + 𝜎

2
+ 𝜃 < 1. (36)

Corollary 7 will hold, implying that the origin is globally
attracting even in the presence of noise.

In the autonomous case where the three parameter
functions 𝜎

1,𝑛
, 𝜎
2,𝑛
, 𝜙
𝑛
do not depend on 𝑛 at all, we have the

following planar system:

𝑥
𝑛+1

= 𝜎
1
(𝑥
𝑛
, 𝑦
𝑛
) 𝑦
𝑛
+ 𝜎
2
(𝑥
𝑛
, 𝑦
𝑛
) 𝑥
𝑛
, (37a)

𝑦
𝑛+1

= 𝜙 (𝑥
𝑛
, 𝑦
𝑛
) 𝑥
𝑛
. (37b)

If in Corollary 7 we set 𝜀
𝑖
, 𝜀 = 0 in (35) then we obtain the

following result for the above autonomous system.

Corollary 9. Assume that 𝜎
1
, 𝜎
2
, 𝜙 : [0,∞)

2
→ [0,∞) are

bounded functions and the following inequality holds:

𝜎
1
𝜙 + 𝜎
2
< 1; (38)

then the origin is the unique, globally asymptotically stable
fixed point of (37a) and (37b) relative to the positive quadrant
[0,∞)

2.

Inequality (38) may be explicitly related to the local
asymptotic stability of the origin for (37a) and (37b) when
the functions 𝜎

1
, 𝜎
2
, 𝜙 are smooth. Consider the associated

mapping

𝐹 (𝑢, V) = (𝑢𝜎 (𝑢, V) + V𝜎
1
(𝑢, V) , 𝑢𝜙 (𝑢, V)) (39)
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whose linearization at (0, 0) has eigenvalues

𝜆
±
=

𝜎
2
(0, 0) ± √𝜎

2
(0, 0)
2
+ 4𝜎
1
(0, 0) 𝜙 (0, 0)

2
.

(40)

These are real and a routine calculation shows that |𝜆±| <
1 if

𝜎
1
(0, 0) 𝜙 (0, 0) + 𝜎

2
(0, 0) < 1. (41)

Under suitable differentiability hypotheses, this inequal-
ity is implied by (38) and is equivalent to it if the suprema of
𝜎
2
and 𝜎

1
𝜙 occur at (0, 0).

3.2. Folding the System. In the next and later sections it will
be convenient to fold system (2a) and (2b) to a second-order
equation; see [34] formore details on folding. System (2a) and
(2b) in general folds as follows: substitute for 𝑦

𝑛+1
from (2b)

into (2a) to obtain

𝑥
𝑛+2

= 𝜎
1,𝑛+1

(𝑥
𝑛+1

, 𝜙
𝑛
(𝑥
𝑛
, ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

)) 𝑥
𝑛
)

⋅ 𝜙
𝑛
(𝑥
𝑛
, ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

)) 𝑥
𝑛

+ 𝜎
2,𝑛+1

(𝑥
𝑛+1

, 𝜙
𝑛
(𝑥
𝑛
, ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

)) 𝑥
𝑛
) 𝑥
𝑛+1

,

(42)

where

ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

) = 𝑦
𝑛 (43)

is derived by solving (2a) for 𝑦
𝑛
. Although an explicit formula

for ℎ
𝑛
is not feasible in general, it is readily obtained in typical

cases; for instance, suppose that 𝜎
2,𝑛

(𝑢, V) = 𝜎
2,𝑛

(𝑢) and
𝜎
1,𝑛

(𝑢, V) = 𝜎
1,𝑛

(𝑢) are both independent of (or constant in)
V for all 𝑛; note that systems (3a), (3b), (4a), (4b), (5a), (5b),
(6a), and (6b) are all of this type. In this case it is clear that

𝑦
𝑛
= ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

) =
𝑥
𝑛+1

− 𝜎
2,𝑛

(𝑥
𝑛
) 𝑥
𝑛

𝜎
1,𝑛

(𝑥
𝑛
)

(44)

and furthermore (42) reduces to

𝑥
𝑛+2

= 𝜎
1,𝑛+1

(𝑥
𝑛+1

) 𝜙
𝑛
(𝑥
𝑛
,
𝑥
𝑛+1

− 𝜎
2,𝑛

(𝑥
𝑛
) 𝑥
𝑛

𝜎
1,𝑛

(𝑥
𝑛
)

) 𝑥
𝑛

+ 𝜎
2,𝑛+1

(𝑥
𝑛+1

) 𝑥
𝑛+1

.

(45)

The pair of first-order equations (44) and (45) represents
folding of (2a) and (2b). Note that with positive parameter
functions, each pair 𝑥

0
, 𝑦
0
≥ 0 generates an orbit {(𝑥

𝑛
, 𝑦
𝑛
)} of

(2a) and (2b) that is in [0,∞)
2 for all 𝑛. So we have 𝑥

𝑛+1
, 𝑥
𝑛
≥

0 and also by (43) ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

) ≥ 0 so 𝜙
𝑛
(𝑥
𝑛
, ℎ
𝑛
(𝑥
𝑛
, 𝑥
𝑛+1

)) is
well defined for every such orbit of (2a) and (2b).

Remark 10. An even simpler reduction than the above is
possible if 𝜙

𝑛
(𝑢, V) = 𝜙

𝑛
(𝑢) is independent of (or constant

in) V. In this case,

𝑥
𝑛+2

= 𝜎
1,𝑛+1

(𝑥
𝑛+1

, 𝜙
𝑛
(𝑥
𝑛
) 𝑥
𝑛
) 𝜙
𝑛
(𝑥
𝑛
) 𝑥
𝑛

+ 𝜎
2,𝑛+1

(𝑥
𝑛+1

, 𝜙
𝑛
(𝑥
𝑛
) 𝑥
𝑛
) 𝑥
𝑛+1

(46)

and it is not necessary to solve (2a) for 𝑦
𝑛
implicitly (i.e., the

system folds without inversions). Special cases of this type
include systems (3a), (3b), (4a), and (4b).

3.3. Global Convergence to Zero with Periodic Parameters.
The results in this section show that global convergence to
zero may occur even if (26) does not hold; see Remark 16
below. Recall from the proof of Theorem 5 that

𝑥
𝑛+1

≤ 𝜎
1,𝑛

𝜙
𝑛−1

𝑥
𝑛−1

+ 𝜎
2,𝑛

𝑥
𝑛
. (47)

The right-hand side of the above inequality is a linear
expression. Consider the linear difference equation

𝑢
𝑛+1

= 𝑎
𝑛
𝑢
𝑛
+ 𝑏
𝑛
𝑢
𝑛−1

,

𝑎
𝑛+𝑝
1

= 𝑎
𝑛
,

𝑏
𝑛+𝑝
2

= 𝑏
𝑛
,

(48)

where the coefficients 𝑎
𝑛
and 𝑏

𝑛
are nonnegative and their

periods 𝑝
1
and 𝑝

2
are positive integers with least common

multiple 𝑝 = lcm(𝑝
1
, 𝑝
2
); we say that the linear difference

equation (48) is periodic with period 𝑝. In this study we
assume that

𝑎
𝑛
, 𝑏
𝑛
≥ 0, 𝑛 = 0, 1, 2, . . . . (49)

By Lemma 4 every solution of (48) converges to zero if
𝑎
𝑛
+ 𝑏
𝑛
< 1 for all 𝑛. However, it is known that convergence

to zero may occur even when 𝑎
𝑛
+ 𝑏
𝑛
exceeds 1 (for infinitely

many 𝑛 in the periodic case). We use the approach in [35]
to examine the consequences of this issue when the planar
system has periodic parameters. The following result is an
immediate consequence of Theorem 13 in [35].

Lemma 11. Assume that 𝛼
𝑗
, 𝛽
𝑗
for 𝑗 = 1, 2, . . . , 𝑝 are obtained

by iteration from (48) from the real initial values:

𝛼
0
= 0,

𝛼
1
= 1;

𝛽
0
= 1,

𝛽
1
= 0.

(50)

Suppose that the quadratic polynomial

𝛼
𝑝
𝑟
2
+ (𝛽
𝑝
− 𝛼
𝑝+1

) 𝑟 − 𝛽
𝑝+1

= 0 (51)

is proper, that is, not 0 = 0, and suppose that it has a real root
𝑟
1

̸= 0. If the recurrence

𝑟
𝑛+1

= 𝑎
𝑛
+

𝑏
𝑛

𝑟
𝑛

(52)

generates nonzero real numbers 𝑟
2
, . . . , 𝑟

𝑝
then {𝑟

𝑛
}
∞

𝑛=1
is

periodic with preiod 𝑝 and yields a triangular system of first-
order equations that is equivalent to (48) as follows:

𝑡
𝑛+1

= −
𝑏
𝑛

𝑟
𝑛

𝑡
𝑛
,

𝑡
1
= 𝑢
1
− 𝑟
1
𝑢
0
,

(53)

𝑢
𝑛+1

= 𝑟
𝑛+1

𝑢
𝑛
+ 𝑡
𝑛+1

. (54)
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System (53) and (54) is also known as a semiconjugate
factorization of (48); see [36] for an introduction to this
concept. The sequence {𝑟

𝑛
} that is generated by (52) is said to

be (unitary) eigensequence of (48). Eigenvalues are essentially
constant eigensequences for if 𝑝 = 1 in Lemma 11 then (51)
reduces to

𝛼
1
𝑟
2
+ (𝛽
1
− 𝛼
2
) 𝑟 − 𝛽

2
= 0,

𝑟
2
− 𝑎
1
𝑟 − 𝑏
1
= 0

(55)

and the latter equation is the standard characteristic equation
of (48) with constant coefficients; see [35] for more details
on the semiconjugate factorization of linear difference equa-
tions.

Each of (53) and (54) readily yields a solution by iteration
as follows:

𝑡
𝑛
= 𝑡
1
(−1)
𝑛−1

(
𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑛−1

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑛−1

) , (56)

𝑢
𝑛
= 𝑟
𝑛
𝑟
𝑛−1

⋅ ⋅ ⋅ 𝑟
2
𝑢
1
+ 𝑟
𝑛
𝑟
𝑛−1

⋅ ⋅ ⋅ 𝑟
3
𝑡
2
+ ⋅ ⋅ ⋅ 𝑟

𝑛
𝑡
𝑛−1

+ 𝑡
𝑛

= 𝑟
𝑛
𝑟
𝑛−1

⋅ ⋅ ⋅ 𝑟
2
𝑟
1
𝑢
0
+

𝑛−1

∑

𝑖=1

𝑟
𝑛
𝑟
𝑛−1

⋅ ⋅ ⋅ 𝑟
𝑖+1

𝑡
𝑖
+ 𝑡
𝑛
.

(57)

Lemma 12. Suppose that the numbers 𝛼
𝑛
and 𝛽

𝑛
are defined

as in Lemma 11, though we do not assume that (48) is periodic
here. Then

(a) 𝛽
𝑛
= 0 for all 𝑛 ≥ 2 if and only if 𝑏

1
= 0;

(b) if (49) holds then for all 𝑛 ≥ 2

𝛼
𝑛
≥ 𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛−1

,

𝛽
𝑛
≥ 𝑏
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑛−1

,

(58)

𝛼
2𝑛−1

≥ 𝑏
2
𝑏
4
⋅ ⋅ ⋅ 𝑏
2𝑛−2

,

𝛽
2𝑛

≥ 𝑏
1
𝑏
3
⋅ ⋅ ⋅ 𝑏
2𝑛−1

.

(59)

Proof. (a) Let 𝑏
1

= 0. Then 𝛽
2

= 𝑏
1

= 0 and since 𝛽
1

= 0

by definition it follows that 𝛽
3
= 0. Induction completes the

proof that 𝛽
𝑛

= 0 if 𝑛 ≥ 2. The converse is obvious since
𝑏
1
= 𝛽
2
.

(b) Since 𝛼
2
= 𝑎
1
and 𝛽

2
= 𝑏
1
the stated inequalities hold

for 𝑛 = 2. If (58) is true for some 𝑘 ≥ 2 then

𝛼
𝑘+1

= 𝑎
𝑘
𝛼
𝑘
+ 𝑏
𝑘
𝛼
𝑘−1

≥ 𝑎
𝑘
𝛼
𝑘
≥ 𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑘−1

𝑎
𝑘
,

𝛽
𝑘+1

= 𝑎
𝑘
𝛽
𝑘
+ 𝑏
𝑘
𝛽
𝑘−1

≥ 𝑎
𝑘
𝛽
𝑘
≥ 𝑏
1
𝑎
2
⋅ ⋅ ⋅ 𝑎
𝑘−1

𝑎
𝑘
.

(60)

Now, the proof is completed by induction. The proof of
(59) is similar since

𝛼
3
= 𝑎
2
𝛼
2
+ 𝑏
2
𝛼
1
≥ 𝑏
2
,

𝛽
4
= 𝑎
3
𝛽
3
+ 𝑏
3
𝛽
2
≥ 𝑏
3
𝑏
1

(61)

and if (59) holds for some 𝑘 ≥ 2 then

𝛼
2𝑘+1

≥ 𝑏
2𝑘
𝛼
2𝑘−1

≥ 𝑏
2
𝑏
4
⋅ ⋅ ⋅ 𝑏
2𝑘−2

𝑏
2𝑘
,

𝛽
2𝑘+2

≥ 𝑏
2𝑘+1

𝛽
2𝑘

≥ 𝑏
1
𝑏
3
⋅ ⋅ ⋅ 𝑏
2𝑘−1

𝑏
2𝑘+1

(62)

which establishes the induction step.

Lemma 13. Assume that (49) holds with 𝑎
𝑖
> 0 for 𝑖 = 1, . . . , 𝑝

and (48) is periodic with period 𝑝 ≥ 2. Then one has the
following.

(a) Equation (48) has a positive (hence unitary) eigense-
quence {𝑟

𝑛
} of period 𝑝.

(b) If 𝑏
𝑖
> 0 for 𝑖 = 1, . . . , 𝑝 then

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝

=
1

2
(𝛼
𝑝+1

+ 𝛽
𝑝
+ √(𝛼

𝑝+1
− 𝛽
𝑝
)
2

+ 4𝛼
𝑝
𝛽
𝑝+1

) .

(63)

Hence, 𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
< 1 if

𝛼
𝑝
𝛽
𝑝+1

< (1 − 𝛼
𝑝+1

) (1 − 𝛽
𝑝
) . (64)

(c) If 𝑏
𝑖
< 1 for 𝑖 = 1, . . . , 𝑝 then 𝑟

1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
> 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
.

Proof. (a) Lemma 12 shows that 𝛼
𝑖
> 0 for 𝑖 = 2, . . . , 𝑝 + 1.

Now, either (i) 𝑏
1

> 0 or (ii) 𝑏
1

= 0. In case (i), the
root 𝑟+ of the quadratic polynomial (51) is positive since by
Lemma 12 𝛽

𝑝+1
> 0 and thus

𝑟
+
=

𝛼
𝑝+1

− 𝛽
𝑝
+ √(𝛼

𝑝+1
− 𝛽
𝑝
)
2

+ 4𝛼
𝑝
𝛽
𝑝+1

2𝛼
𝑝

>

𝛼
𝑝+1

− 𝛽
𝑝
+
󵄨󵄨󵄨󵄨󵄨
𝛼
𝑝+1

− 𝛽
𝑝

󵄨󵄨󵄨󵄨󵄨

2𝛼
𝑝

≥ 0.

(65)

If 𝑟
1
= 𝑟
+ then from (52) 𝑟

𝑖
= 𝑎
𝑖−1

+ 𝑏
𝑖−1

/𝑟
𝑖−1

≥ 𝑎
𝑖−1

> 0

for 𝑖 = 2, . . . , 𝑝 + 1. Thus, by Lemma 11, (48) has a unitary
(in fact positive) eigensequence of period 𝑝. If 𝑏

1
= 0 then by

Lemma 12 𝛽
𝑝
= 𝛽
𝑝+1

= 0 and (51) reduces to

𝛼
𝑝
𝑟
2
− 𝛼
𝑝+1

𝑟 = 0 (66)

which has a root 𝑟+ = 𝛼
𝑝+1

/𝛼
𝑝
> 0. As in the previous case it

follows that (48) has a positive eigensequence of period 𝑝.
(b) To establish (63), let 𝑟

1
= 𝑟
+ and note that (51) can be

written as

𝑟
1
=

𝛼
𝑝+1

𝑟
1
+ 𝛽
𝑝+1

𝛼
𝑝
𝑟
1
+ 𝛽
𝑝

. (67)

Since {𝑟
𝑛
} has period 𝑝, 𝑟

𝑝+1
= 𝑟
1
so from (52) and the

definition of the numbers 𝛼
𝑛
and 𝛽

𝑛
it follows that

𝑎
𝑝
+

𝑏
𝑝

𝑟
𝑝

= 𝑟
𝑝+1

=

𝛼
𝑝+1

𝑟
1
+ 𝛽
𝑝+1

𝛼
𝑝
𝑟
1
+ 𝛽
𝑝

=

(𝑎
𝑝
𝛼
𝑝
+ 𝑏
𝑝
𝛼
𝑝−1

) 𝑟
1
+ 𝑎
𝑝
𝛽
𝑝
+ 𝑏
𝑝
𝛽
𝑝−1

𝛼
𝑝
𝑟
1
+ 𝛽
𝑝

=

𝑎
𝑝
(𝛼
𝑝
𝑟
1
+ 𝛽
𝑝
) + 𝑏
𝑝
(𝛼
𝑝−1

𝑟
1
+ 𝛽
𝑝−1

)

𝛼
𝑝
𝑟
1
+ 𝛽
𝑝

= 𝑎
𝑝
+

𝑏
𝑝

(𝛼
𝑝
𝑟
1
+ 𝛽
𝑝
) / (𝛼
𝑝−1

𝑟
1
+ 𝛽
𝑝−1

)

.

(68)
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Since 𝑏
𝑝

̸= 0 it follows that

𝑟
𝑝
=

𝛼
𝑝
𝑟
1
+ 𝛽
𝑝

𝛼
𝑝−1

𝑟
1
+ 𝛽
𝑝−1

. (69)

We claim that if 𝑏
𝑖

̸= 0 for 𝑖 = 1, . . . , 𝑝 then

𝑟
𝑝−𝑗

=

𝛼
𝑝−𝑗

𝑟
1
+ 𝛽
𝑝−𝑗

𝛼
𝑝−𝑗−1

𝑟
1
+ 𝛽
𝑝−𝑗−1

, 𝑗 = 0, 1, . . . , 𝑝 − 2. (70)

This claim is easily seen to be true by induction; we
showed that it is true for 𝑗 = 0 and if (70) holds for some
𝑗 then by (52)

𝑎
𝑝−𝑗−1

+

𝑏
𝑝−𝑗−1

𝑟
𝑝−𝑗−1

= 𝑟
𝑝−𝑗

=

(𝑎
𝑝−𝑗−1

𝛼
𝑝−𝑗−1

+ 𝑏
𝑝−𝑗−1

𝛼
𝑝−𝑗−2

) 𝑟
1
+ (𝑎
𝑝−𝑗−1

𝛽
𝑝−𝑗−1

+ 𝑏
𝑝−𝑗−1

𝛽
𝑝−𝑗−2

)

𝛼
𝑝−𝑗−1

𝑟
1
+ 𝛽
𝑝−𝑗−1

=

𝑎
𝑝−𝑗−1

(𝛼
𝑝−𝑗−1

𝑟
1
+ 𝛽
𝑝−𝑗−1

) + 𝑏
𝑝−𝑗−1

(𝛼
𝑝−𝑗−2

𝑟
1
+ 𝛽
𝑝−𝑗−2

)

𝛼
𝑝−𝑗−1

𝑟
1
+ 𝛽
𝑝−𝑗−1

= 𝑎
𝑝−𝑗−1

+

𝑏
𝑝−𝑗−1

(𝛼
𝑝−𝑗−2

𝑟
1
+ 𝛽
𝑝−𝑗−2

)

𝛼
𝑝−𝑗−1

𝑟
1
+ 𝛽
𝑝−𝑗−1

(71)

from which it follows that

𝑟
𝑝−𝑗−1

=

𝛼
𝑝−𝑗−1

𝑟
1
+ 𝛽
𝑝−𝑗−1

𝛼
𝑝−𝑗−2

𝑟
1
+ 𝛽
𝑝−𝑗−2

(72)

and the induction argument is complete. Now, using (70), we
obtain

𝑟
𝑝
𝑟
𝑝−1

⋅ ⋅ ⋅ 𝑟
2
𝑟
1

=

𝛼
𝑝
𝑟
1
+ 𝛽
𝑝

𝛼
𝑝−1

𝑟
1
+ 𝛽
𝑝−1

𝛼
𝑝−1

𝑟
1
+ 𝛽
𝑝−1

𝛼
𝑝−2

𝑟
1
+ 𝛽
𝑝−2

⋅ ⋅ ⋅
𝛼
2
𝑟
1
+ 𝛽
2

𝛼
1
𝑟
1
+ 𝛽
1

𝑟
1

= 𝛼
𝑝
𝑟
1
+ 𝛽
𝑝
.

(73)

Given that 𝑟
1
= 𝑟
+ (73) implies that

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝

= 𝛼
𝑝

𝛼
𝑝+1

− 𝛽
𝑝
+ √(𝛼

𝑝+1
− 𝛽
𝑝
)
2

+ 4𝛼
𝑝
𝛽
𝑝+1

2𝛼
𝑝

+ 𝛽
𝑝

=
1

2
(𝛼
𝑝+1

+ 𝛽
𝑝
+ √(𝛼

𝑝+1
− 𝛽
𝑝
)
2

+ 4𝛼
𝑝
𝛽
𝑝+1

)

(74)

and (63) is obtained. Hence, 𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
< 1 if

𝛼
𝑝+1

+ 𝛽
𝑝
+ √(𝛼

𝑝+1
− 𝛽
𝑝
)
2

+ 4𝛼
𝑝
𝛽
𝑝+1

< 2. (75)

Upon rearranging terms and squaring,

(𝛼
𝑝+1

− 𝛽
𝑝
)
2

+ 4𝛼
𝑝
𝛽
𝑝+1

< 4 − 4 (𝛼
𝑝+1

+ 𝛽
𝑝
) + (𝛼

𝑝+1
+ 𝛽
𝑝
)
2

(76)

which reduces to (64) after straightforward algebraic manip-
ulations.

(c) First, assume that 𝑝 is odd. Then by (59)

𝛼
𝑝
𝛽
𝑝+1

= (𝑏
2
𝑏
4
⋅ ⋅ ⋅ 𝑏
𝑝−1

) (𝑏
1
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑝
) = 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝

(77)

so from (63)

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
> √𝛼
𝑝
𝛽
𝑝+1

= √𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
. (78)

If 𝑏
𝑖

< 1 for 𝑖 = 1, . . . , 𝑝 then 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝

< 1 so
√𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
> 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
as required. Now let 𝑝 be even.Then

from (63) and (59)

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
>

𝛼
𝑝+1

+ 𝛽
𝑝

2
≥

𝑏
2
𝑏
4
⋅ ⋅ ⋅ 𝑏
𝑝
+ 𝑏
1
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑝−1

2
. (79)

If 𝑏
𝑖
< 1 for 𝑖 = 1, . . . , 𝑝 then 𝑏

2
𝑏
4
⋅ ⋅ ⋅ 𝑏
𝑝

≥ 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
and

𝑏
1
𝑏
3
⋅ ⋅ ⋅ 𝑏
𝑝−1

≥ 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
and the proof is complete.

Some of the numbers 𝑎
𝑖
may exceed 1 in Lemma 13 with-

out affecting the conclusions of the lemma. Additionally, not
all the conditions in Lemma 13 are necessary. For instance,
if 𝑏
1

= 0 then Lemma 13(c) holds trivially. Additionally, by
Lemma 12(a), 𝛽

𝑛
= 0 for 𝑛 ≥ 2 so the following equality must

hold instead of (63):

𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
= 𝛼
𝑝+1

. (80)

This is in fact true because 𝑟
1

= 𝑟
+

= 𝛼
𝑝+1

/𝛼
𝑝
so

repeating the argument in the proof of Lemma 13(b) yields
𝑟
𝑝−𝑗

= 𝛼
𝑝−𝑗

/𝛼
𝑝−𝑗−1

for 𝑗 = 0, 1, . . . , 𝑝 − 2. Hence

𝑟
𝑝
𝑟
𝑝−1

⋅ ⋅ ⋅ 𝑟
2
𝑟
1
=

𝛼
𝑝

𝛼
𝑝−1

𝛼
𝑝−1

𝛼
𝑝−2

⋅ ⋅ ⋅
𝛼
2

𝛼
1

𝛼
𝑝+1

𝛼
𝑝

= 𝛼
𝑝+1 (81)

as claimed.These observations establish the following version
of Lemma 13.

Lemma 14. Let 𝑎
𝑖
> 0 and let 𝑏

𝑖
≥ 0 for 𝑖 = 1, . . . , 𝑝 with 𝑏

1
=

0. Then the linear equation (48) has a positive (hence unitary)
eigensequence {𝑟

𝑛
} of period 𝑝 given by

𝑟
1
=

𝛼
𝑝+1

𝛼
𝑝

,

𝑟
𝑗
=

𝛼
𝑗

𝛼
𝑗−1

, 𝑗 = 2, . . . , 𝑝

(82)

and 0 = 𝑏
1
𝑏
2
⋅ ⋅ ⋅ 𝑏
𝑝
< 𝑟
1
𝑟
2
⋅ ⋅ ⋅ 𝑟
𝑝
< 1 if 𝛼

𝑝+1
< 1.
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In Lemma 14 some of the numbers 𝑎
𝑖
or 𝑏
𝑖
may exceed 1

without affecting the conclusions of the lemma.

Theorem 15. Assume that (27) holds and the sequences and
{𝜎
1,𝑛

𝜙
𝑛−1

} and {𝜎
2,𝑛

} have period 𝑝with 𝜎
2,𝑖

> 0 and 𝜎
1,𝑖
𝜙
𝑖−1

≥

0 for 𝑖 = 1, . . . , 𝑝. Additionally let the numbers 𝛼
𝑛
, 𝛽
𝑛
be as

previously defined with 𝑎
𝑛

= 𝜎
2,𝑛

and 𝑏
𝑛

= 𝜎
1,𝑛

𝜙
𝑛−1

. All
nonnegative orbits of the planar system converge to (0, 0) if
either one of the following holds:

(a) 0 < 𝜎
1,𝑖
𝜙
𝑖−1

< 1 and (64) holds.

(b) 𝜎
1,1

𝜙
0
= 0 and 𝛼

𝑝+1
< 1.

Proof. Let {𝑢
𝑛
} be a solution of the linear equation (48) with

𝑎
𝑛
= 𝜎
2,𝑛
, 𝑏
𝑛
= 𝜎
1,𝑛

𝜙
𝑛−1

, 𝑢
0
= 𝑥
0
, and 𝑢

1
= 𝑥
1
. Then by (47)

𝑥
2
≤ 𝜎
1,1

𝜙
0
𝑥
0
+ 𝜎
2,1

𝑥
1
= 𝜎
1,1

𝜙
0
𝑢
0
+ 𝜎
2,1

𝑢
1
= 𝑢
2
,

𝑥
3
≤ 𝜎
1,2

𝜙
2
𝑥
2
+ 𝜎
2,2

𝑥
2
≤ 𝜎
1,2

𝜙
1
𝑢
1
+ 𝜎
2,2

𝑢
2
= 𝑢
3
.

(83)

By induction it follows that 𝑥
𝑛

≤ 𝑢
𝑛
. If (64) holds

then, by Lemma 13, lim
𝑛→∞

𝑢
𝑛

= 0 so {𝑥
𝑛
} converges to 0.

Furthermore, lim
𝑛→∞

𝑦
𝑛

= 0 as in the proof of Theorem 5
and the proof is complete.

Remark 16. (1) Condition (64) involves the numbers 𝛼
𝑗
, 𝛽
𝑗

rather than the coefficients of (48) directly. In the case of
period 𝑝 = 2 the role of 𝑎

𝑖
and 𝑏
𝑖
is more apparent. Inequality

(64) in this case is

𝛼
2
𝛽
3
< (1 − 𝛼

3
) (1 − 𝛽

2
) ,

𝑎
1
𝑎
2
𝑏
1
< (1 − 𝑏

2
− 𝑎
1
𝑎
2
) (1 − 𝑏

1
)

(84)

and simple manipulations reduce the last inequality to

𝑎
1
𝑎
2
< (1 − 𝑏

1
) (1 − 𝑏

2
) . (85)

(2) Inequality (85) holds even if 𝑎
1

> 1 or 𝑎
2

> 1 thus
showing how global convergence to (0, 0) my occur when
(26) does not hold. Furthermore, it is possible that (85) holds
together with

𝑎
1
+ 𝑎
2

2
> 1. (86)

Note that (85) holds even with arbitrarily large mean
value in (86) if say 𝑎

1
→ 0 as 𝑎

2
→ ∞. In population

models this implies that if (85) holds with 𝑎
𝑛

= 𝜎
2,𝑛

and
𝑏
𝑛
= 𝜎
1,𝑛

𝜙
𝑛−1

then extinction may still occur after restocking
the adult population to raise the mean value of the composite
parameter 𝜎

2,𝑛
above 1 by a wide margin.

(3) In Theorem 15 the individual sequences 𝜎
1,𝑛
, 𝜙
𝑛
need

not be periodic or even bounded. Therefore, the theorem
applies to (2a) and (2b) even if the system itself is not periodic
as long as the combination 𝜎

1,𝑛
𝜙
𝑛−1

of parameters is periodic
along with 𝜎

2,𝑛
.

4. Dynamics of a Beverton-Holt
Type Rational System

In this section we apply some of the preceding results and
obtain some new ones to study boundedness, extinction, and
modes of survival in some rational special cases of (2a) and
(2b). In population models these types of systems include
the Beverton-Holt type interactions. Specifically, we consider
the following nonautonomous system and some of its special
cases:

𝑥
𝑛+1

=
𝛼
1,𝑛

𝑦
𝑛

1 + 𝛽
1,𝑛

𝑥
𝑛
+ 𝛾
1,𝑛

𝑦
𝑛

+
𝛼
2,𝑛

𝑥
𝑛

1 + 𝛽
2,𝑛

𝑥
𝑛
+ 𝛾
2,𝑛

𝑦
𝑛

, (87a)

𝑦
𝑛+1

=
𝑏
𝑛
𝑥
𝑛

1 + 𝑐
1,𝑛

𝑥
𝑛
+ 𝑐
2,𝑛

𝑦
𝑛

, (87b)

where we assume that for all 𝑛 ≥ 0 and 𝑖 = 1, 2

𝛼
1,𝑛

> 0,

𝑏
𝑛
, 𝛼
2,𝑛

, 𝛽
𝑖,𝑛
, 𝛾
𝑖,𝑛
, 𝑐
𝑖,𝑛

≥ 0

𝑏
𝑛
> 0 for infinitely many 𝑛.

(88)

For example, if we think of 𝛼
𝑖
as the natural survival rates

then the population model (3a) and (3b) is a special case of
(87a) and (87b). If we allow 𝛼

𝑖
to include additional factors

such as harvesting rates then (87a) and (87b) is an extension
of the model in [11] (with a Beverton-Holt recruitment
function) in the sense that the competition coefficients 𝛽

𝑖,𝑛
,

𝛾
𝑖,𝑛
, and 𝑐

𝑖,𝑛
may be nonzero as well as time-dependent.

4.1. Uniform Boundedness and Extinction. We now examine
boundedness and global convergence to 0 (extinction) in
(87a) and (87b). The next result is in part a consequence of
Corollary 3.

Corollary 17. Assume that (88) holds.
(a) Let the sequence {𝛼

1,𝑛
} be bounded and

lim sup
𝑛→∞

𝛼
2,𝑛

< 1. If there is 𝑀
0
> 0 such that 𝑏

𝑛
≤ 𝑀
0
𝑐
1,𝑛

for all 𝑛 larger than a given positive integer then all orbits of
(87a) and (87b) are uniformly bounded.

(b) Let the sequence {𝑏
𝑛
} be bounded and suppose that there

is 𝑀 > 0 such that
𝛼
1,𝑛

≤ 𝑀𝛾
1,𝑛

,

𝛼
2,𝑛

≤ 𝑀𝛽
2,𝑛

(89)

for all 𝑛 larger than a given positive integer. Then all orbits of
(87a) and (87b) are uniformly bounded.

Proof. (a) By hypothesis, for all (large) 𝑛,

𝑏
𝑛
𝑥
𝑛

1 + 𝑐
1,𝑛

𝑥
𝑛
+ 𝑐
2,𝑛

𝑦
𝑛

≤
𝑀
0
𝑐
1,𝑛

𝑥
𝑛

1 + 𝑐
1,𝑛

𝑥
𝑛
+ 𝑐
2,𝑛

𝑦
𝑛

< 𝑀
0
. (90)

Next, let

𝜎
1,𝑛

(𝑢, V) =
𝛼
1,𝑛

1 + 𝛽
1,𝑛

𝑢 + 𝛾
1,𝑛
V
,

𝜎
2,𝑛

(𝑢, V) =
𝛼
2,𝑛

1 + 𝛽
2,𝑛

𝑢 + 𝛾
2,𝑛
V
.

(91)
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By hypothesis, there is𝑀
1
> 0 and 𝛿 ∈ (0, 1) such that for

all 𝑢, V ≥ 0 and all sufficiently large values of 𝑛

𝜎
1,𝑛

(𝑢, V) ≤ 𝛼
1,𝑛

≤ 𝑀
1
,

𝜎
2,𝑛

(𝑢, V) ≤ 𝛼
2,𝑛

≤ 𝛿.

(92)

Now an application of Corollary 3 completes the proof of
(a).

(b) By (89) for all large 𝑛 it follows that

𝛼
1,𝑛

𝑦
𝑛

1 + 𝛽
1,𝑛

𝑥
𝑛
+ 𝛾
1,𝑛

𝑦
𝑛

≤
𝑀𝛾
1,𝑛

𝑦
𝑛

1 + 𝛽
1,𝑛

𝑥
𝑛
+ 𝛾
1,𝑛

𝑦
𝑛

< 𝑀 (93)

and, likewise,

𝛼
2,𝑛

𝑥
𝑛

1 + 𝛽
2,𝑛

𝑥
𝑛
+ 𝛾
2,𝑛

𝑦
𝑛

≤
𝑀𝛽
2,𝑛

𝑥
𝑛

1 + 𝛽
2,𝑛

𝑥
𝑛
+ 𝛾
2,𝑛

𝑦
𝑛

< 𝑀 (94)

for all large 𝑛. Therefore, 𝑥
𝑛
≤ 2𝑀. Next, if {𝑏

𝑛
} is bounded

then 𝑦
𝑛
≤ 2𝑀𝑏

𝑛
is also bounded and the proof is complete.

The next result follows readily fromTheorem 5.

Corollary 18. Theorigin (0, 0) attracts every orbit of (87a) and
(87b) in [0,∞)

2 if

lim sup
𝑛→∞

(𝛼
1,𝑛

𝑏
𝑛−1

+ 𝛼
2,𝑛

) < 1 (95)

and either 𝑏
𝑛
is bounded or lim inf

𝑛→∞
𝛼
1,𝑛

> 0.

The above corollary is false when (95) holds if 𝑏
𝑛
is

unbounded and thus 𝛼
1,𝑛

has a subsequence that converges
to 0.

Example 19. Consider system

𝑥
𝑛+1

= 𝛼
−𝑛

𝑦
𝑛
+ 𝑠𝑥
𝑛
,

𝑦
𝑛+1

=
𝛽𝛼
𝑛
𝑥
𝑛

1 + 𝑐𝑥
𝑛

,

(96)

where 𝛼 > 1, 𝛽 > 0, 0 ≤ 𝑠 < 1, 𝑐 ≥ 0, 𝜎
1,𝑛

= 𝛼
−𝑛,

and 𝑏
𝑛

= 𝛽𝛼
𝑛. Then (95) is satisfied, so lim

𝑛→∞
𝑥
𝑛

= 0.
But 𝑦
𝑛
does not approach 0 for large enough 𝛼; this may be

inferred from Lemma 4 which shows that 𝑥
𝑛
converges to 0

at an exponential rate 𝛿
𝑛/2 where 𝛿 = 𝑠 + 𝛽/𝛼 ∈ (0, 1). Thus

𝑦
𝑛
=

1

𝛼−𝑛
(𝑥
𝑛+1

− 𝑠𝑥
𝑛
) = 𝛼
𝑛
(𝑥
𝑛+1

− 𝑠𝑥
𝑛
) (97)

will not converge to 0 if 𝛼 is sufficiently large.

Corollary 17 takes a simpler form for the autonomous
special case of (87a) and (87b); namely,

𝑥
𝑛+1

=
𝛼
1
𝑦
𝑛

1 + 𝛽
1
𝑥
𝑛
+ 𝛾
1
𝑦
𝑛

+
𝛼
2
𝑥
𝑛

1 + 𝛽
2
𝑥
𝑛
+ 𝛾
2
𝑦
𝑛

, (98a)

𝑦
𝑛+1

=
𝑏𝑥
𝑛

1 + 𝑐
1
𝑥
𝑛
+ 𝑐
2
𝑦
𝑛

(98b)

with constant parameters

𝛼
1
, 𝑏 > 0,

𝛼
2
, 𝛽
𝑖
, 𝛾
𝑖
, 𝑐
𝑖
≥ 0.

(99)

The following result is applicable to (3a) and (3b) as well
as special cases of (4a), (4b), (5a), and (5b) with rational 𝑓.

Corollary 20. Assume that (99) holds. All orbits of (98a) and
(98b) in [0,∞)

2 are uniformly bounded if either one of the
following conditions holds:

(a) 𝛼
2
< 1 and 𝑐

1
> 0.

(b) 𝛾
1
, 𝛽
2
> 0.

It is noteworthy that if in part (a) above 𝑐
1
= 0 then (98a)

and (98b) may have unbounded solutions as in, for example,
system

𝑥
𝑛+1

= 𝛼
1
𝑦
𝑛
,

𝑦
𝑛+1

=
𝑏𝑥
𝑛

1 + 𝑐
2
𝑦
𝑛

,

(100)

where 𝛼
2
= 𝑐
1
= 0 and the remaining parameters are positive.

This system folds to the second-order rational equation

𝑥
𝑛+2

=
𝛼
2

1
𝑏𝑥
𝑛

𝛼
1
+ 𝑐
2
𝑥
𝑛+1

(101)

which is known to have unbounded solutions if 𝛼
1
𝑏 > 1; see

[37].
Corollary 18 likewise simplifies in the autonomous case.

Corollary 21. Assume that (99) holds with 𝛼
1
𝑏+𝛼
2
< 1. Then

the origin (0, 0) is the globally asymptotically stable fixed point
of (98a) and (98b) relative to [0,∞)

2.

4.2. Persistence and the Role of Competition. We now explore
the effects of competition in the autonomous system (98a)
and (98b). There are 6 different competition coefficients and
to reduce the number of different caseswe focus on the special
case below where 𝛽

𝑖
, 𝛾
𝑖
= 0:

𝑥
𝑛+1

= 𝛼
1
𝑦
𝑛
+ 𝛼
2
𝑥
𝑛
, (102)

𝑦
𝑛+1

=
𝑏𝑥
𝑛

1 + 𝑐
1
𝑥
𝑛
+ 𝑐
2
𝑦
𝑛

. (103)

If 𝛼
𝑖
define the natural survival rates 𝑠

𝑖
, then this system is

complementary to (3a), (3b), (4a), and (4b) in the sense that
in both of those systems 𝑐

2
= 0.

By the last two corollaries, all orbits of the rational system
(102) and (103) in [0,∞)

2 are uniformly bounded if 𝑐
1

> 0

and 𝛼
2
< 1 and they converge to the origin if 𝛼

1
𝑏 + 𝛼
2
< 1.

We now examine this rational system in more detail using its
folding, namely, the second-order rational equation

𝑥
𝑛+2

= 𝑎𝑥
𝑛+1

+
𝜎𝑥
𝑛

1 + 𝐴𝑥
𝑛+1

+ 𝐵𝑥
𝑛

, (104)
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where

𝑎 = 𝛼
2
,

𝜎 = 𝛼
1
𝑏,

𝐴 =
𝑐
2

𝛼
1

,

𝐵 =
1

𝛼
1

(𝛼
1
𝑐
1
− 𝛼
2
𝑐
2
) .

(105)

See (45); 𝑦-component is given by (44) or calculated
directly using (102) as

𝑦
𝑛
=

1

𝛼
1

(𝑥
𝑛+1

− 𝛼
2
𝑥
𝑛
) . (106)

With initial values 𝑥
0
and 𝑥

1
= 𝛼
1
𝑦
0
+ 𝛼
2
𝑥
0
derived

from (𝑥
0
, 𝑦
0
) ∈ [0,∞)

2, 𝑥-component of the orbits {(𝑥
𝑛
, 𝑦
𝑛
)}

of the system is obtained by iterating (104). The equation in
(106) is passive in the sense that after 𝑥-component of the
orbit is generated by the core equation (104) 𝑦-component
is derived from (106) without any further iterations. This
observation also establishes the nontrivial fact that solutions
of (104) that correspond to the orbits of the system in [0,∞)

2

are nonnegative and well-defined even for 𝐵 < 0.
If 𝛼
1
𝑏 + 𝛼
2
< 1, that is, 𝜎 < 1 − 𝑎, then zero is the only

fixed point of (104). Corollary 21 establishes that, in this case,
zero is globally asymptotically stable relative to [0,∞). On the
other hand, when 𝛼

1
𝑏 + 𝛼
2
> 1, that is, 𝜎 > 1 − 𝑎, then 0 is

no longer a stable fixed point of (104). By routine calculations,
one can show that zero is a saddle point when 1−𝑎 < 𝜎 < 1+𝑎

and if 𝜎 > 1 + 𝑎 then zero is a repeller.
In addition, when 𝜎 > 1 − 𝑎 and 𝑎 = 𝛼

2
< 1, system (102)

and (103) also has a fixed point in (0,∞)
2 given by

𝑥 =
𝜎 − (1 − 𝑎)

(1 − 𝑎) (𝐴 + 𝐵)
=

𝛼
1
(𝛼
1
𝑏 + 𝛼
2
− 1)

(1 − 𝛼
2
) [𝛼
1
𝑐
1
+ (1 − 𝛼

2
) 𝑐
2
]
,

𝑦 =
(1 − 𝛼

2
)

𝛼
1

𝑥.

(107)

We note that 𝑥 is also a positive fixed point of folding
(104). Under certain conditions, 𝑥 attracts all solutions of
(104) with positive initial values, and it is thus a survival
equilibrium.We state the following result from literature; see
[38].

Lemma 22. Let 𝐼 be an open interval of real numbers and
suppose that𝑓 ∈ 𝐶(𝐼

𝑚
,R) is nondecreasing in each coordinate.

Let 𝑥 ∈ 𝐼 be a fixed point of the difference equation

𝑥
𝑛+1

= 𝑓 (𝑥
𝑛
, 𝑥
𝑛−1

, . . . , 𝑥
𝑛−𝑚+1

) (108)

and assume that the function ℎ(𝑡) = 𝑓(𝑡, . . . , 𝑡) satisfies the
conditions

ℎ (𝑡) > 𝑡 𝑖𝑓 𝑡 < 𝑥,

ℎ (𝑡) < 𝑡 𝑖𝑓 𝑡 > 𝑥,

𝑡 ∈ 𝐼.

(109)

Then 𝐼 is an invariant interval of (108) and 𝑥 attracts all
solutions with initial values in 𝐼.

Theorem 23. Let 𝑎 < 1 < 𝑎 + 𝜎; that is, 𝛼
2
< 1 < 𝛼

1
𝑏 + 𝛼
2
. If

the function

𝑓 (𝑢, V) = 𝑎𝑢 +
𝜎V

𝐴𝑢 + 𝐵V + 1
(110)

is nondecreasing in both arguments, then the fixed point 𝑥

attracts all solutions of (104) with initial values in (0,∞).

Proof. If we let

ℎ (𝑡) = 𝑎𝑡 +
𝜎𝑡

1 + (𝐴 + 𝐵) 𝑡
(111)

then the fixed point 𝑥 is the solution of ℎ(𝑡) = 𝑡. For 𝑡 > 0, we
may write ℎ(𝑡) = 𝜙(𝑡)𝑡 where

𝜙 (𝑡) = 𝑎 +
𝜎

1 + (𝐴 + 𝐵) 𝑡
with 𝜙 (𝑥) =

ℎ (𝑥)

𝑥
= 1. (112)

Now,

𝜙
󸀠
(𝑡) = −

𝜎 (𝐴 + 𝐵)

(1 + (𝐴 + 𝐵) 𝑡)
2
< 0 (113)

for all 𝑡 > 0, so 𝜙(𝑡) is strictly decreasing for all 𝑡 > 0.
Therefore,

𝑡 < 𝑥

implies that ℎ (𝑡) = 𝜙 (𝑡) 𝑡 > 𝜙 (𝑥) 𝑡 = 𝑡,

𝑡 > 𝑥

implies that ℎ (𝑡) = 𝜙 (𝑡) 𝑡 < 𝜙 (𝑥) 𝑡 = 𝑡.

(114)

The rest of the proof follows from Lemma 22.

Note that

𝑓
𝑢
= 𝑎 −

𝐴𝜎V
(𝐴𝑢 + 𝐵V + 1)

2
,

𝑓V =
𝜎 (𝐴𝑢 + 1)

(𝐴𝑢 + 𝐵V + 1)
2
> 0.

(115)

If 𝛼
1
𝑏 + 𝛼
2

> 1 and 𝑐
2

= 0 then 𝐴 = 0, so 𝑓
𝑢
, 𝑓V > 0.

Therefore by Theorem 23 𝑥 is globally asymptotically stable.
However, if 𝑐

2
> 0, then 𝑓

𝑢
may not be positive, so the results

of Theorem 23 may not apply to this case. The next result
shows that orbits of the system may converge to 𝑥 if 𝑐

2
> 0

but not too large.

Theorem 24. Let 𝑐
1
> 0 and let 𝑎 < 1 < 𝑎 + 𝜎; that is, 𝛼

2
<

1 < 𝛼
1
𝑏+𝛼
2
.Then there exists 𝑐 > 0 such that for 𝑐

2
∈ [0, 𝑐] the

fixed point 𝑥 of (104) is globally asymptotically stable relative to
(0,∞).

Proof. Since

𝑓
𝑢
= 𝑎 −

𝐴𝜎V
(𝐴𝑢 + 𝐵V + 1)

2

=
𝑎 (𝐴𝑢 + 𝐵V)2 + 2𝐴𝑎𝑢 + 𝑎 + (2𝑎𝐵 − 𝐴𝜎) V

(𝐴𝑢 + 𝐵V + 1)
2

(116)
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to ensure that 𝑓
𝑢
≥ 0 it suffices for 2𝑎𝐵 − 𝐴𝜎 ≥ 0; that is,

2𝛼
2
(𝛼
1
𝑐
1
− 𝛼
2
𝑐
2
) − 𝑐
2
𝛼
1
𝑏 ≥ 0 (117)

which is equivalent to

𝑐
2
≤

2𝛼
1
𝛼
2
𝑐
1

𝛼
1
𝑏 + 2𝛼

2

2

≐ 𝑐 (118)

and the proof is complete.

If 𝑐
2
is sufficiently large then 𝑓

𝑢
is not positive on (0,∞).

Furthermore, 𝑥 also becomes unstable for large enough 𝑐
2
,

which we establish next by examining the linearization of
(104) around 𝑥.

The characteristic equation associated with the lineariza-
tion of (104) at 𝑥 is given by

𝜆
2
− 𝑝𝜆 − 𝑞 = 0, (119)

where

𝑝 = 𝑓
𝑢
(𝑥, 𝑥) = 𝑎 −

(1 − 𝑎)𝐴𝑥

1 + (𝐴 + 𝐵) 𝑥
,

𝑞 = 𝑓V (𝑥, 𝑥) =
𝜎 − (1 − 𝑎) 𝐵𝑥

1 + (𝐴 + 𝐵) 𝑥
.

(120)

The roots of (119) are given by

𝜆
1
=

𝑝 − √𝑝2 + 4𝑞

2
,

𝜆
2
=

𝑝 + √𝑝2 + 4𝑞

2
.

(121)

Since 𝑓V(𝑢, V) > 0 for all 𝑢, V ∈ (0,∞) it follows that 𝑞 > 0

and both roots are real with 𝜆
1
< 0 and 𝜆

2
> 0. Furthermore,

𝜆
2
< 1 if

𝑝 + √𝑝2 + 4𝑞

2
< 1 that is 𝑞 < 1 − 𝑝

(122)

which is equivalent to

2 (1 − 𝑎) (𝐴 + 𝐵) 𝑥 > 𝜎 − (1 − 𝑎) . (123)

This inequality holds, since 𝑥 > 0 under our assumptions
on the parameters. Therefore, 𝜆

2
< 1. On the other hand,

𝜆
1
> −1 if and only if

𝑝 − √𝑝2 + 4𝑞

2
> −1 that is 𝑝 + 1 > 𝑞

(124)

which is equivalent to

2 (𝐴𝑎 + 𝐵) 𝑥 > 𝜎 − (1 + 𝑎) . (125)

Note that when (1 − 𝑎) < 𝜎 < (1 + 𝑎) this is trivially the
case since 𝑥 > 0 under our assumptions on the parameters.
Thus, 𝑥 is locally asymptotically stable if 𝜎 < 1 + 𝑎.

Next, 𝜆
1
< −1 if 𝜎 > 1 + 𝑎 and

2 (𝐴𝑎 + 𝐵) 𝑥 < 𝜎 − (1 + 𝑎) . (126)

We summarize the above results in the following lemma.

Lemma 25. Let 𝑎 < 1 < 𝑎+𝜎; that is, 𝛼
2
< 1 < 𝛼

1
𝑏+𝛼
2
. Then

the fixed point 𝑥 of (104) is

(a) locally asymptotically stable if and only if (125) holds.
In particular, this is true if

1 − 𝑎 < 𝜎 < 1 + 𝑎,

𝑡ℎ𝑎𝑡 𝑖𝑠 1 − 𝛼
2
< 𝛼
1
𝑏 < 1 + 𝛼

2
.

(127)

(b) It is a saddle point if and only if (126) holds with 𝜎 >

1 + 𝑎; that is 𝛼
1
𝑏 > 1 + 𝛼

2
.

Inequality (126) implies a range for 𝑐
2
that we now

determine. Let

𝑘 =
𝜎 − (1 + 𝑎)

𝜎 − (1 − 𝑎)
< 1. (128)

Then 𝑘 ∈ (0, 1) if 𝜎 > 1 + 𝑎,

2 (𝐴𝑎 + 𝐵) 𝑥 < 𝜎 − (1 + 𝑎) 󳨐⇒

2 (𝐴𝑎 + 𝐵)

𝐴 + 𝐵
<

𝜎 − (1 + 𝑎)

𝜎 − (1 − 𝑎)
(1 − 𝑎) = (1 − 𝑎) 𝑘.

(129)

Since

2 (𝐴𝑎 + 𝐵) =
2

𝛼
1

(𝑐
2
𝛼
2
+ 𝑐
1
𝛼
1
− 𝑐
2
𝛼
2
) = 2𝑐

1
,

𝐴 + 𝐵 =
1

𝛼
1

[𝑐
1
𝛼
1
+ (1 − 𝛼

2
) 𝑐
2
]

(130)

(129) is equivalent to

2𝑐
1
𝛼
1

𝑐
1
𝛼
1
+ (1 − 𝛼

2
) 𝑐
2

< (1 − 𝑎) 𝑘 = (1 − 𝛼
2
) 𝑘. (131)

From the above inequality we obtain

𝑐
2
>

𝛼
1
𝑐
1
[2 − (1 − 𝛼

2
) 𝑘]

(1 − 𝛼
2
)
2

𝑘

≐ 𝑐. (132)

Thus if 𝑐
2
> 𝑐 then 𝑥 is a saddle point and in particular

the fixed point (𝑥, 𝑦) is unstable. These observations lead to
the following which may be compared withTheorem 24.

Corollary 26. Assume that (99) holds for system (102) and
(103) and 𝛼

2
< 1 < 𝛼

1
𝑏 + 𝛼
2
. Then the fixed point (𝑥, 𝑦) is

unstable if 𝑐
2
> 𝑐.

Our final result establishes that when 𝑐
2
> 0 is sufficiently

large system (102) and (103) can have a prime period two orbit
which occurs as 𝑥 becomes unstable. Existence of periodic
orbits is established via the folding in (104).

The difference equation in (104) has a positive prime
period two solution if there exist real numbers𝑚,𝑀 > 0 and
𝑚 ̸= 𝑀 such that

𝑚 = 𝑓 (𝑀,𝑚) ,

𝑀 = 𝑓 (𝑚,𝑀) ;

(133)
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that is,

𝑚 = 𝑎𝑀 +
𝜎𝑚

𝐴𝑀 + 𝐵𝑚 + 1
,

𝑀 = 𝑎𝑚 +
𝜎𝑀

𝐴𝑚 + 𝐵𝑀 + 1

(134)

from which we get

(𝑚 − 𝑎𝑀) (𝐴𝑀 + 𝐵𝑚 + 1) = 𝜎𝑚,

(𝑀 − 𝑎𝑚) (𝐴𝑚 + 𝐵𝑀 + 1) = 𝜎𝑀;

(135)

that is,

𝐴𝑚𝑀 + 𝐵𝑚
2
+ 𝑚 − 𝐴𝑎𝑀

2
− 𝑎𝐵𝑀𝑚 − 𝑎𝑀 = 𝜎𝑚, (136)

𝐴𝑚𝑀 + 𝐵𝑀
2
+ 𝑀 − 𝐴𝑎𝑚

2
− 𝑎𝐵𝑀𝑚 − 𝑎𝑚 = 𝜎𝑀. (137)

Taking the difference of the right and left sides of (136)
and (137) yields

𝐵 (𝑚
2
− 𝑀
2
) + (𝑚 − 𝑀) − 𝐴𝑎 (𝑀

2
− 𝑚
2
)

− (𝑀 − 𝑚) = 𝜎 (𝑚 − 𝑀) ,

(𝐵 + 𝐴𝑎) (𝑚 − 𝑀) (𝑚 + 𝑀)

= (𝜎 − (1 + 𝑎)) (𝑚 − 𝑀) .

(138)

When𝑚 ̸= 𝑀, we get

(𝐵 + 𝐴𝑎) (𝑚 + 𝑀) = 𝜎 − (1 + 𝑎) (139)

and since the left side of the last equation is positive this
implies that 𝜎−(1+𝑎) > 0. Stated differently, if 𝜎−(1+𝑎) < 0,
then (104) cannot have a positive prime period two solution.

Similarly, taking the sumof the right and left sides of (136)
and (137) yields

2𝐴𝑚𝑀 + 𝐵 (𝑚
2
+ 𝑀
2
) + (𝑚 + 𝑀)

− 𝐴𝑎 (𝑚
2
+ 𝑀
2
) − 2𝑎𝐵𝑀𝑚 − 𝑎 (𝑚 + 𝑀)

= 𝜎 (𝑚 + 𝑀) .

(140)

Adding and subtracting 2(𝐵 − 𝐴𝑎) to and from the left
hand side of the last expression in (140) yields

2 (𝐴 − 𝑎𝐵 − 𝐵 + 𝐴𝑎)𝑀𝑚 + (𝐵 − 𝐴𝑎) (𝑚 + 𝑀)
2

= (𝜎 − (1 − 𝑎)) (𝑚 + 𝑀) ;

(141)

that is,
2 (1 + 𝑎) (𝐴 − 𝐵)𝑀𝑚 = (𝜎 − (1 − 𝑎)) (𝑚 + 𝑀) − (𝐵

− 𝐴𝑎) (𝑚 + 𝑀)
2
= (𝑚 + 𝑀) (𝜎 − (1 − 𝑎)

− (𝐵 − 𝐴𝑎) (𝑚 + 𝑀)) = (𝑚 + 𝑀)(𝜎 − (1 − 𝑎)

−
(𝐵 − 𝐴𝑎) (𝜎 − (1 + 𝑎))

𝐵 + 𝐴𝑎
)

=
𝑚 + 𝑀

𝐴𝑎 + 𝐵
[(𝐵 + 𝐴𝑎) (𝜎 − (1 − 𝑎))

− (𝐵 − 𝐴𝑎) (𝜎 − (1 + 𝑎))] .

(142)

Simplifying the right hand side, it follows that

(1 + 𝑎) (𝐴 − 𝐵)𝑀𝑚

=
𝜎 − (1 + 𝑎)

(𝐴𝑎 + 𝐵)
2

[𝐴𝑎 (𝜎 − 1) + 𝑎𝐵] .

(143)

Now, since we are assuming that 𝜎 − (1 + 𝑎) > 0, then
𝜎 − 1 > 0, so the right side of (143) is positive, which implies
that 𝐴 − 𝐵 > 0. Stated differently, if 𝐴 < 𝐵, then (104) has no
positive prime period two solution.

From (143) we get

𝑀𝑚 =
[𝜎 − (1 + 𝑎)] [𝐴𝑎 (𝜎 − 1) + 𝑎𝐵𝑐]

(1 + 𝑎) (𝐴 − 𝐵) (𝐴𝑎 + 𝐵)
2

:= 𝑄 (144)

and let 𝑚 + 𝑀 = 𝑃, from which we obtain that 𝑀 = 𝑃 − 𝑚

and𝑚 = 𝑃 − 𝑀. This means that

𝑚(𝑃 − 𝑚) = 𝑄,

𝑀 (𝑃 − 𝑀) = 𝑄;

(145)

that is,𝑚 and𝑀 are the roots of the quadratic

𝑆 (𝑡) = 𝑡
2
− 𝑃𝑡 + 𝑄, (146)

where 𝑃,𝑄 > 0 and

𝑡
±
=

𝑃 ± √𝑃2 − 4𝑄

2
. (147)

To ensure that𝑚 and𝑀 are real, the roots of 𝑆(𝑡)must be
real, which is the case if and only if 𝑃2 − 4𝑄 > 0; that is,

[𝜎 − (1 + 𝑎)] [𝜎 − (1 + 𝑎) −
4 (𝐴𝑎 (𝜎 − 1) + 𝑎𝐵)

(1 + 𝑎) (𝐴 − 𝐵)
]

> 0.

(148)

We summarize the above results as follows.

Theorem 27. The second-order difference equation in (104)
has a positive prime period two solution if and only if all of
the following conditions are satisfied:

(a) 𝜎 − (1 + 𝑎) > 0.
(b) 𝐴 − 𝐵 > 0.
(c) (𝜎−(1+𝑎))[𝜎−(1+𝑎)−4(𝐴𝑎(𝜎−1)+𝑎𝐵)/(1+𝑎)(𝐴−

𝐵)] > 0.

The next result shows that a solution of period two
appears when 𝑥 loses its stability.

Corollary 28. The second-order difference equation in (104)
has a positive prime period two solution if and only if 𝑥 is a
saddle point.

Proof. Suppose 𝑥 is a saddle point. Then, by Lemma 25(b),
2(𝐴𝑎+𝐵)𝑥 < 𝜎−(1+𝑎) fromwhichwe infer that𝜎−(1+𝑎) > 0.

Now 2(𝐴𝑎 + 𝐵)𝑥 < 𝜎 − (1 + 𝑎) implies that

2 (𝐴𝑎 + 𝐵)

(1 − 𝑎) (𝐴 + 𝐵)
(𝜎 − (1 − 𝑎)) < 𝜎 − (1 + 𝑎) (149)
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Figure 1: Orbits illustrating period two oscillations and the saddle
point.

which is true if and only if

2 (𝐴𝑎 + 𝐵) (𝜎 − (1 − 𝑎))

< (1 − 𝑎) (𝐴 + 𝐵) (𝜎 − (1 + 𝑎)) .

(150)

Adding and subtracting (1 + 𝑎)(𝐴−𝐵)(𝜎− (1 + 𝑎)) to and
from the right hand side of the last expression in (150) yields

(1 + 𝑎) (𝐴 − 𝐵) (𝜎 − (1 + 𝑎))

+ (𝜎 − (1 + 𝑎)) ((1 − 𝑎) (𝐴 + 𝐵) − (1 + 𝑎) (𝐴 − 𝐵))

= (1 + 𝑎) (𝐴 − 𝐵) (𝜎 − (1 + 𝑎))

+ (𝜎 − (1 + 𝑎)) (2𝐵 − 2𝐴𝑎) .

(151)

Therefore,

2 (𝐴𝑎 + 𝐵) (𝜎 − (1 − 𝑎)) + 2 (𝐴𝑎 − 𝐵) (𝜎 − (1 + 𝑎))

= 4 (𝐴𝑎 (𝜎 − 1) + 𝑎𝐵)

< (1 + 𝑎) (𝐴 − 𝐵) (𝜎 − (1 + 𝑎)) ;

(152)

that is,

(1 + 𝑎) (𝐴 − 𝐵) (𝜎 − (1 + 𝑎)) − 4 (𝐴𝑎 (𝜎 − 1) + 𝑎𝐵)

> 0

(153)

from which we infer that 𝐴 − 𝐵 > 0 and the roots of 𝑆(𝑡)
are guaranteed to be real and positive. This satisfies all the
conditions of Theorem 27 which completes the proof.

Corollary 29. Assume that (99) holds and furthermore 𝛼
2
<

1 < 𝛼
1
𝑏 + 𝛼
2
and 𝑐
2

> 𝑐. Then system (102) and (103) has a
cycle of period two in (0,∞)

2.

Figure 1 shows two orbits of system (102) and (103)
from initial points (𝑥

0
, 𝑦
0
) = (2.3, 1) and (𝑥

0
, 𝑦
0
) =

(0.0001, 0.0001). Although both orbits converge to the period

two cycle, a shadow of the stable manifold of the fixed point
is also seen in the initial segments of the two orbits. If the
initial points start exactly on the stable manifold of 𝑥 then
the solutions converge to 𝑥.

We studied the dynamics of a general planar system that
includes many common stage-structured population models
that evolve in discrete time. Our hypotheses regarding system
(2a) and (2b) and its parameters are more general than
what is typically assumed in population models with the
aim of gaining a broader understanding of the mathematical
properties of the system. The study in this paper is rigorous
but incomplete and many issues remain. Generalizing the
results in Section 4 to a level closer to that in Section 3
leads to a more comprehensive treatment of planar or two-
stage, discrete population models. Among other things, this
involves a consideration of systems involving the Ricker
function where it is necessary to add the possibility of
complex behavior. A resolution of these and related issues is
left to future studies of system (2a) and (2b).

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

References

[1] J.M. Cushing, “A juvenile-adultmodel with periodic vital rates,”
Journal of Mathematical Biology, vol. 53, no. 4, pp. 520–539,
2006.

[2] H. Bernadelli, “Population waves,” Journal of the Burma
Research Society, vol. 35, pp. 1–18, 1941.

[3] L. P. Lefkovitch, “The study of population growth in organisms
grouped by stages,” Biometrics, vol. 21, no. 1, pp. 1–18, 1965.

[4] P. H. Leslie, “On the use of matrices in certain population
mathematics,” Biometrika, vol. 33, pp. 183–212, 1945.

[5] E. G. Lewis, “On the generation and growth of a population,”
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