

Virginia Commonwealth University VCU Scholars Compass

Rice Rivers Center Research Symposium

Rice Rivers Center

2016

Assessing how disruption of methanogenic communities and their syntrophic relationships in tidal freshwater marshes via saltwater intrusion may affect CH4 emissions

David J. Berrier Virginia Commonwealth University, berrierdj@vcu.edu

Scott C. Neubauer Virginia Commonwealth University, sneubauer@vcu.edu

Rima B. Franklin Virginia Commonwealth University, rbfranklin@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/rice_symp Part of the <u>Botany Commons</u>, <u>Forest Biology Commons</u>, <u>Plant Biology Commons</u>, and the

Terrestrial and Aquatic Ecology Commons

© The Author

Downloaded from

 $http://scholarscompass.vcu.edu/rice_symp/16$

This Poster is brought to you for free and open access by the Rice Rivers Center at VCU Scholars Compass. It has been accepted for inclusion in Rice Rivers Center Research Symposium by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Assessing how disruption of methanogenic communities and their syntrophic relationships in tidal freshwater marshes via saltwater intrusion may affect CH_{4} emissions

Introduction

- Tidal freshwater wetlands (TFW), which lie at the interface of saltwater and freshwater ecosystems, are predicted to experience moderate salinity increases due to sea level rise.
- Increases in salinity generally suppress CH_4 production, but it is uncertain to what extent elevated salinity will affect CH_4 cycling in TFW. It is also unknown whether CH_4 production will resume when freshwater conditions return.
- The ability to produce CH₄ is limited to a monophyletic group of the *Euryarchaeota* phylum called methanogens (MG), who are limited to a small number of substrates (e.g., acetate, H_2 , and formate) produced from the breakdown of fermentation products.
- In freshwater anaerobic soils, the degradation of certain fermentation products (e.g., butyrate, propionate) is only energetically favorable when their catabolic byproduct, H₂ or formate, is consumed to low concentrations by MGs. This is considered a form of obligate syntrophy (Table 1).
- Sulfate reducing bacteria (SRB) are capable of utilizing a larger variety of substrates than MG, including substrates degraded by methanogenic syntrophy (e.g., butyrate, propionate).
- The introduction of sulfate (SO₄-²) into TFW via saltwater intrusion events may allow SRB to disrupt syntrophic relationships between hydrogenotrophic MG and syntrophic fermenters (Figure 1). This may select for MG taxa that differ in their rate of CH_4 production.

Objectives

- 1. Determine the effect of oligonaline SO_4^{-2} concentrations on MG community functions (i.e., CH_{4} production and syntrophic butyrate degradation).
- 2. Assess whether these functions recover after competition with SRB has been removed.

Approach

- Freshwater 30% (wt/vol) anaerobic microcosms were constructed with soil and pore water from Cumberland Marsh, a TFW located on the Pamunkey River, Virginia.
- Treated using various combinations of the following amendments:
 - 4 mM Na2SO4 to increase [SO4⁻²] as would occur with saltwater intrusion
 - 12 mM NaCl to control for the effect of increased ionic strength without increasing SO4⁻² availability
 - 2.5 mM MoO4⁻² (Na2MoO4), a SRB inhibitor
- Additions of 2.5 mM butyrate (n-butyric acid) in combination with inhibitors were used to determine the role of SRB and MG in butyrate breakdown.
 - 5 mM BESA (2-Bromoethanesulfonic acid) a MG inhibitor
 - 5 mM MoO_4^{-2} (Na₂MoO₄)
 - $H_2 > 100 Pa$

• We followed the response of the microbial community by monitoring:

- CH₄ and CO₂ production gas chromatography
- Butyrate, acetate, and formate concentrations ion chromatograph

Figure 2. The degradation of organic matter in wetlands, both in the presence of sulfate (a) and in freshwater (b). Diagram from Muyzer and Stams (2008).

Butyrate⁻ + 0.5 SO₄⁻² → 2Acetate⁻+ 0.5 -27.8 kJ -27.8 kJHS⁻⁺ 0.5 H⁺

*ΔG°'(Standard Gibbs free energy change) is expressed in kJ mol⁻¹ and calculated for H_2 in the gaseous state at 1 Pa, and CH_4 and CO_2 in the gaseous state at 10⁴ Pa. All other compounds are calculated at 10 mM.

Work Cited

Muyzer, G., & Stams, A. J. (2008). The ecology and biotechnology of sulphate-reducing bacteria. Nature Reviews Microbiology, 6(6), 441-454. Stams, A. J., & Plugge, C. M. (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews Microbiology, 7(8), 568-577.

Figure 5. The CH₄ production rates for each of the treatment groups at each sampling event. Colors correspond to the treatment groups in figure 2.

Treatment sampling butyrate assay:

Figure 6. The percentage of measurable carbon species relative to the initial total carbon measured for microcosms assayed during the treatment sampling event. Fresh control microcosms were incubated in 2.5 mM butyrate with no inhibitor(a). The SO₄ treatment group was incubated in 2.5 mM butyrate and 2.5 mM MoO₄⁻² to determine the role of SRB (b), 50 mM BESA to determine the role of MG (d), or no inhibitor control (c). The (e) graph depicts formate as a percentage of initial carbon for the butyrate assays in (a-d).

Recovery sampling butyrate assay:

Although soil slurries recovering from SRB competition produced slightly less CH₄, and broke down butyrate at slightly slower rate, these differences were not great enough to conclude that the syntrophic bacteria and MG had not recovered similar function to the fresh control (Fig. 7).

Conclusions: The syntrophic bacteria, MG, and SRB all seem to be active in breaking down butyrate when 4 mM SO₄ is present. The ability of the MG and syntrophic bacteria to functionally recover from SRB competitive stress is likely a result of their ability to maintain a metabolic functions during this competitive stress. There is a decrease in CH₄ production rates but it is difficult to determine whether this is a result of changes in the MG community as a result of SRB competition or salinity affecting metabolic activity.

Acknowledgements: Special thanks to the VCU Rice Center for their generous funding.

David Berrier, Scott Neubauer, and Rima Franklin

Contact: Berrierdj@vcu.edu

The functional response and recovery of microbial communities to SO₄⁻² availability

The CH₄ production rate was decreased by greater than 75% in the 4 mM SO₄-2 treatment group relative to the fresh control for both the treatment sampling event and the recovery sampling event (Fig. 5).

The CH₄ production rates did not recover to similar levels of the fresh control after SRB competition had been removed. However, CH₄ production rates were also lower in the salt control indicating that the inability of CH₄ production rates to recover may be a result of salinity stress rather than the lasting effect of SRB competition (Fig. 5).

While the uninhibited SO_4^{-2} treatment broke butyrate down the fastest (Fig. 6c), the breakdown appeared to be mediated through both SRB and syntrophy. This is evident by the appreciable accumulation of CH_4 and formate (fig. 6c & 6e) in the SO₄-² treatment. The inhibition of MG via BESA (Fig. 6d & 6e) in the SO_4^{-2} treatment resulted slower butyrate breakdown and significantly less formate production than when both MG and SRB were uninhibited in the SO_4^{-2} treatment (Fig. 6c).

Figure 7. The percentage of neasurable carbon species relative to the initial total carbon measured for microcosms assayed during the recovery sampling event. Fresh control (a) and recovery treatment (b) microcosms were incubated in 2.5 mM butyrate. " * " indicates no gas measurement were taken.