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Enamel matrix derivative (EMD), a decellularized porcine extracellular matrix (ECM), is used clinically in periodontal tissue
regeneration. Amelogenin, EMD’s principal component, spontaneously assembles into nanospheres in vivo, forming an ECM
complex that releases proteolytically cleaved peptides. However, the role of amelogenin or amelogenin peptides in mediating
osteoblast response to EMD is not clear. Human MG63 osteoblast-like cells or normal human osteoblasts were treated with
recombinant human amelogenin or a 5 kDa tyrosine-rich amelogenin peptide (TRAP) isolated from EMD and the effect on
osteogenesis, local factor production, and apoptosis assessed. Treated MG63 cells increased alkaline phosphatase specific activity
and levels of osteocalcin, osteoprotegerin, prostaglandin E

2
, and active/latent TGF-𝛽1, an effect sensitive to the effector and

concentration. Primary osteoblasts exhibited similar, but less robust, effects. TRAP-rich 5 kDa peptides yieldedmoremineralization
than rhAmelogenin in osteoblasts in vitro. Both amelogenin and 5 kDa peptides protected MG63s from chelerythrine-induced
apoptosis. The data suggest that the 5 kDa TRAP-rich sequence is an active amelogenin peptide that regulates osteoblast
differentiation and local factor production and prevents osteoblast apoptosis.

1. Introduction

Enamel matrix derivative (EMD) is a decellularized extracel-
lular matrix (ECM) isolated from porcine tooth germs and
has been used clinically in a carrier as Emdogain (Institut
Straumann AG, Basel, Switzerland) to promote periodontal
tissue regeneration, including periodontal ligament, alveolar
bone, and cementum [1–3]. It has been suggested that
EMD induces periodontal tissue regeneration by mimicking
events in normal periodontal tissue development [4]. During
tooth formation, enamel matrix proteins are secreted by
ameloblasts and Hertwig’s epithelial root sheath. In addi-
tion to providing the structural matrix for the developing
enamel, these proteins also act as mediators at the epithe-
lial/mesenchymal interface, resulting in formation of peri-
odontal ligament, alveolar bone, and dental cementum [5–7].

EMDnot only functions as a scaffolding for cellmigration
and clot organization, but one or more of its constituents
also have biological activity associated with wound repair. In
addition to its effects on periodontal bone formation, EMD
has been applied to long bone defects, increasing de novo
trabecular bone formation [8]. It has also been used to heal
acute and chronic skin wounds, increasing the amount of
granulation tissue and reepithelialization, causing healing to
progress twice as fast as untreated wounds [9]. In addition,
amelogenin, a component of EMD [10], has been applied to
treat difficult-to-heal venous ulcers, decreasing ulcer area,
pain, and exudates [11, 12].

EMD is mainly composed of amelogenins (∼90%) [10], a
highly hydrophobic protein family that shares high homology
across species [13]. The remaining protein portion of EMD
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is composed of extracellular proteins and enzymes such as
enamelin, ameloblastin, and proteases [14–16]. Amelogenins
self-assemble into hydrophobic nanosphere aggregates [17,
18] that show high affinity to hydroxyapatite crystals and
collagen [19]. These assembled structures undergo a slow,
progressive proteolytic degradation that results in several
polypeptide fragments that are released to the matrix [17, 20,
21]. These peptides as well as isoforms and splice variants
of amelogenin can activate diverse functions in adjacent
cells or tissues [22–27]. Two smaller amelogenin peptides,
leucine-rich amelogenin peptide (LRAP) and tyrosine-rich
amelogenin peptide (TRAP) [28], have been proposed to be
the functional part of the intact amelogenin.

As is the case with other decellularized matrices, the
specific roles of individual EMD components or subsets of
components in tissue regeneration are not well understood.
It is unclear whether the therapeutic effect of EMD is due to
the full-length amelogenin protein, due to the splice variants,
or to a combination of both.Three subfractions of EMD have
been isolated by high-performance liquid chromatography:
one containing mainly a 20 kDa peptide, one represented by
two peptides of 12 kDa and 9 kDa, and one fraction identified
as a single band at 5 kDa by SDS-PAGE analysis [29]. The
20 kDa peptide corresponds to the full-length amelogenin
protein and the 5 kDa peptide corresponds to a portion of
the N-terminus of the protein that includes peptides with the
TRAP and LRAP sequences.

In vitro studies indicate that EMD has a differential effect
on osteoblast proliferation and differentiation depending on
the maturation state of the cells, increasing cell numbers
in less mature cells and increasing differentiation in more
mature cells, including increased alkaline phosphatase activ-
ity, osteocalcin, bone sialoprotein, and mineralized nodule
formation [30–33]. EMD treatment results in an increase in
proliferation of other cell types as well [34–37]. Studies using
DNA microarray technology indicate that EMD regulates
expression of genes involved in cell cycle, proliferation, and
apoptosis [38]. Whereas genes that induce apoptosis such
as MADD and TNF-𝛼 were upregulated, genes that inhibit
apoptosis and increase cell survival such as MCL1 were
upregulated as well. These conflicting observations suggest
that EMD has pleiotropic effects in part via the actions of
different constituents and in part due to differences in the
responding cell populations.Therefore, the aim of the present
study was to elucidate the contribution of the 5 kDa peptides,
specifically the TRAP sequences, to the osteogenic potential
of EMD by examining the responses of osteoblasts to these
peptides in comparison to recombinant human amelogenin.

2. Materials and Methods

2.1. Ethics Statement. Human osteoblasts (HOBs) were iso-
lated from bone obtained from a 16-year-old male patient at
Children’s Healthcare of Atlanta under Institutional Review
Board approval from the Georgia Institute of Technology and
Children’s Healthcare of Atlanta. Written informed consent
was obtained from the patient’s guardians on behalf of the
minor participant.

2.2. Cell Culture. Human MG63 osteoblast-like cells were
obtained from the American Type Culture Collection
(Rockville, MD, USA). HOBs were isolated from bone chips.
First, bone chips were washed in Dulbecco’s modification of
Eagle’s medium (DMEM, Mediatech, Manassas, VA, USA)
containing 3%penicillin-streptomycin (Invitrogen, Carlsbad,
CA, USA), followed by incubation in 0.25% trypsin-EDTA
(Invitrogen) for 1 hour. The bone was then cut into 1mm2
pieces and cultured in DMEM supplemented with 10%
fetal bovine serum (FBS, Mediatech) and 1% penicillin-
streptomycin for two weeks to allow immature osteoblasts
to migrate into the culture surface. To validate osteoblast
phenotype, isolated cells were treated for 24 hours with
10−8M 1𝛼, 25(OH)

2
D
3
, and alkaline phosphatase-specific

activity (an early marker of osteoblast differentiation) and
osteocalcin production (a later marker of osteoblast differen-
tiation) measured (data not shown). For experiments, MG63
or first passage HOB cells were plated at a seeding density
of 10,000 cells/cm2 and cultured in DMEM supplemented
with 10% FBS and 1% penicillin-streptomycin until confluent,
when they were treated as described in the following.

2.3. Proteins. Recombinant human amelogenin (rhAmelo-
genin) and the 5 kDa peptides (Fraction C) were extracted
and purified by Institut Straumann AG using a modifi-
cation of previously described methods [29, 39]. Briefly,
Fraction C was extracted from EMD via size exclusion
high-performance liquid chromatography (TSKgel SW3000,
Tosoh Bioscience GmbH, Stuttgart, Germany) in 30% ace-
tonitrile containing 0.9mM NaCl resulting in one peak
around 5 kDa. This peak was then subjected to prepara-
tive reverse phase high-performance liquid chromatography
(XBridge C8, Waters Corporation, Milford, MA, USA) lead-
ing to only two peaks (with very small shoulders), which
were identified by liquid chromatography-mass spectrometry
as two TRAP species, one 43 amino acids and the other
45 amino acids in length (Figure 1). The peaks were eluted
using a gradient of mobile phase A (Milli-Q water containing
0.1% trifluoroacetic acid (TFA)) and mobile phase B (ACN
containing 0.1% TFA) from 5% to 70% B during 7 column
volumes. The two TRAP species were identified by sequence
analysis performed at BASF SE (Ludwigshafen, Germany).

Lyophilized proteins were reconstituted in 0.1% acetic
acid and sterile filtered with a low binding protein filter
(Millex-GV Filter Unit, Millipore, Billerica, MA, USA) to
produce a 1mg/mL stock solution. Further dilutions of
proteins (0.01–100𝜇g/mL) were performed in culture media.

2.4. Osteoblast Differentiation Assays. Confluent cultures of
MG63 and HOB cells were treated with either vehicle (0.01%
acetic acid) or protein (rhAmelogenin, Fraction C) for 24
hours. After 24 hours, conditioned media were collected and
assayed. Osteocalcin was measured using a radioimmunoas-
say (Biomedical Technologies, Inc., Stoughton, MA, USA).
Levels of osteoprotegerin (OPG), active and latent trans-
forming growth factor beta-1 (TGF-𝛽1), vascular endothelial
growth factor-A (VEGF-A), and fibroblast growth factor 2
(FGF-2) weremeasured using ELISA (DuoSet, R&D Systems,
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Figure 1: Preparative reverse phase high-performance liquid chro-
matography spectrum of Fraction C. HPLC spectrum of Fraction C,
demonstrating two peaks corresponding to 43 and 45 amino acid
tyrosine-rich amelogenin peptide sequences.

Minneapolis, MN, USA). To differentiate between active
and latent TGF-𝛽1, an aliquot of conditioned medium was
acidified and used to calculate total TGF-𝛽1. Active TGF-𝛽1
was measured in a second, nonacidified aliquot. Latent TGF-
𝛽1 was calculated by subtracting the active TGF-𝛽1 from the
total. The amount of prostaglandin E

2
(PGE
2
) in the con-

ditioned medium was measured using radioimmunoassay
(Perkin Elmer, Waltham, MA, USA) as described previously
[40].

Cell monolayers were rinsed twice with PBS and lysed
in 0.05% Triton X-100 (Sigma-Aldrich, St. Louis, MO,
USA). Total DNA was quantified using PicoGreen (Quant-
iT PicoGreen dsDNA kit, Invitrogen) following themanufac-
turer’s instructions. Briefly, lysates were incubatedwith 0.5𝜇L
PicoGreen for 5min and fluorescence intensity measured on
a fluorescent plate reader (Beckman Coulter, Brea, CA, USA)
using excitation at 480 nm and emission at 520 nm. Con-
centration was calculated using a DNA standard. Alkaline
phosphatase was assayed in the cell lysates by measuring the
release of p-nitrophenol from p-nitrophenylphosphate at pH
10.2 [41] and normalized to total protein (Pierce BCA Protein
Assay, Thermo Fisher, Rockford, IL, USA).

2.5. Alizarin Red Staining. HOBs were plated in 24-well
plates at 10,000 cells/cm2. Cells were cultured in DMEM
containing 10% FBS and 1% penicillin-streptomycin and
treated with 1𝜇g/mL rhAmelogenin or Fraction C for 14
days.Monolayers were assayed for Alizarin red staining using
a quantitative method [42]. Briefly, monolayers were fixed
in 10% neutral buffered formalin and stained with 40mM
Alizarin red solution. Monolayers were solubilized in 10%
(v/v) acetic acid, heated to 85∘C, and neutralized with 10%
(v/v) ammonium hydroxide. 100 𝜇L aliquots were read at

405 nm and quantities extrapolated to initial stain uptake
using known dilutions of Alizarin red.

2.6. Apoptosis Assays. In all assays, confluent cultures were
pretreated with 10 𝜇Mchelerythrine (EMDChemicals, Gibb-
stown, NJ, USA) for 30 minutes to induce apoptosis [43, 44].
Cells were then incubated with rhAmelogenin or Fraction
C. Cell viability was determined using MTT assay after 24
hours of treatment. Cultures were incubated with 5 𝜇g/mL 3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromid)
(Sigma-Aldrich) for 4 hours. After incubation, cell layerswere
rinsed with PBS and dissolved in dimethyl sulfoxide (Sigma
Aldrich) and absorbance measured at 570 nm. Apoptosis
was assessed using DNA fragmentation. After 20 hours
of treatment, cultures were incubated with 1 𝜇Ci/mL 3H-
thymidine for 4 hours. Cells were trypsinized and lysed and
fragmentedDNA separated by ultracentrifugation. Percent of
fragmented DNA was determined by measuring intact and
fragmented DNA by liquid scintillation counter. Caspase-3
activity was measured in cell lysates 6 hours after treatment
using a Caspase-3 Colorimetric Assay (R&D Systems) and
normalized to total protein content. Phosphorylated p53
was measured in cell lysates 6 hours after treatment using
a commercially available ELISA following manufacturer’s
instructions (R&D Systems).

2.7. Statistical Analysis. Data presented are from one rep-
resentative example of two independent experiments with
similar results. Data are the mean ± SEM of six independent
cultures per variable. Data were analyzed using ANOVA,
and significance between groups was determined using
Bonferroni’s modification of Student’s t-test. 𝑃 < 0.05 was
considered significant.

3. Results

3.1. Osteogenic Response of MG63 Cells. Treatment with
rhAmelogenin or Fraction C had no effect on DNA content
of MG63 cells, regardless of the protein concentration used
(Figure 2(a)). rhAmelogenin increased alkaline phosphatase-
specific activity (Figure 2(b)). MG63 cells treated with Frac-
tion C had higher alkaline phosphatase-specific activity than
untreated cells, with the greatest effect seen in cultures treated
with 1 𝜇g/mL.

Treatment with rhAmelogenin increased levels of osteo-
calcin over control levels at all doses (Figure 2(c)). Effects
were greatest in cultures treated with 1 𝜇g/mL protein. Frac-
tion C had a comparable effect on osteocalcin at doses
up to 1 𝜇g/mL, but at higher concentrations the peptide
was less stimulatory than rhAmelogenin, and at the highest
concentration osteocalcin levels were comparable to those of
control cultures.

rhAmelogenin also increased OPG in the conditioned
medium, with the greatest effect seen in cultures treated with
1 𝜇g/mL (Figure 2(d)). Fraction C had a robust stimulatory
effect on OPG at lower concentrations. Peak effects were seen
in cultures treated with 1 𝜇g/mL, but in cultures treated with
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Figure 2: Effect of rhAmelogenin and Fraction C on DNA content and osteoblast phenotype of MG63 cells. MG63 cells were grown to
confluence and then treated with 0𝜇g/mL or 0.01 𝜇g/mL–100𝜇g/mL rhAmelogenin or Fraction C for 24 hours. DNA content (a) and alkaline
phosphatase-specific activity (b) were measured in the cell lysate, and osteocalcin (c) and osteoprotegerin (d) measured in the conditioned
media. ∗𝑃 < 0.05, versus 0𝜇g/mL; ∙𝑃 < 0.05, versus 1𝜇g/mL.

the highest concentration of Fraction C OPG levels were
comparable to those seen in control cultures.

PGE
2
was increased by all proteins (Figure 3(a)). Effects

of rhAmelogenin were independent of dose. In contrast,
Fraction C was stimulatory only at the higher concentrations
of 10 and 100 𝜇g/mL.

TGF-𝛽1 was differentially regulated by each fraction
(Figure 3(b)). rhAmelogenin increased active TGF-𝛽1 at
doses of 1 and 10 𝜇g/mL. However, at 100 𝜇g/mL it was no
longer stimulatory. In contrast, Fraction C was stimulatory
at all doses tested and to a comparable extent. All protein
fractions increased latent TGF-𝛽1 (Figure 3(c)), an effect
independent of dose.

VEGF-A and FGF-2 were also differentially regulated
(Figures 4(a) and 4(b)). VEGF-Awas increased to the greatest
extent by 100 𝜇g/mL rhAmelogenin and Fraction C. rhAmel-
ogenin induced highest FGF-2 production in cultures treated
with 1 𝜇g/mL, while Fraction C induced FGF-2 production in
a dose-dependent manner.

3.2. Osteogenic Response of Human Osteoblasts. HOB cells
were regulated in a similar manner. There was no effect on
cell number by any of the proteins (Figure 5(a)). Both pro-
tein fractions increased alkaline phosphatase-specific activity
(Figure 5(b)), osteocalcin levels (Figure 5(c)), andOPG levels
(Figure 5(d)). Whereas there were no differences in response
between 1 and 10 𝜇g/mL for these parameters, VEGF-A
(Figure 5(e)) and PGE

2
(Figure 5(f)) were differentially reg-

ulated. VEGF-A was increased by Fraction C only and only at
1 𝜇g/mL. PGE

2
was decreased by rhAmelogenin and Fraction

C, but only at 10 𝜇g/mL. Moreover, the inhibitory effect of
Fraction C was more robust.

Long-term effects of rhAmelogenin and Fraction C
on osteoblast mineralization were examined after 14 days.
rhAmelogenin promoted Alizarin red staining in HOB
cultures in the absence of osteogenic media supplements
(Figure 6). However, application of Fraction C also yielded
higher mineralization than control cultures and produced
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Figure 3: Effect of rhAmelogenin and Fraction C on growth factor production of MG63 cells. MG63 cells were grown to confluence and then
treated with 0𝜇g/mL or 0.01 𝜇g/mL–100𝜇g/mL rhAmelogenin or Fraction C for 24 hours. PGE

2
(a), active TGF-𝛽1 (b), and latent TGF-𝛽1

(c) were measured in the conditioned media. ∗𝑃 < 0.05, versus 0 𝜇g/mL; ∙𝑃 < 0.05, versus 1 𝜇g/mL.
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Figure 4: Effect of rhAmelogenin and Fraction C on angiogenic factor production of MG63 cells. MG63 cells were grown to confluence and
then treated with 0𝜇g/mL or 1, 10, or 100𝜇g/mL rhAmelogenin or Fraction C for 24 hours. VEGF-A (a) and FGF-2 (b) levels were measured
in the conditioned media. ∗𝑃 < 0.05, versus 0𝜇g/mL; ∙𝑃 < 0.05, versus 1 𝜇g/mL.
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Figure 5: Effect of rhAmelogenin and Fraction C on DNA content and osteoblast phenotype of human osteoblasts. Human osteoblasts
were grown to confluence and then treated with 0, 1, or 10𝜇g/mL rhAmelogenin or Fraction C for 24 hours. DNA content (a) and alkaline
phosphatase-specific activity (b)weremeasured in the cell lysate, and osteocalcin (c), osteoprotegerin (d), VEGF-A (e), andPGE

2
(f)measured

in the conditioned media. ∗𝑃 < 0.05, versus 0𝜇g/mL; ∙𝑃 < 0.05, versus 1 𝜇g/mL.
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significantly more Alizarin red staining than rhAmelogenin
treatment (Figure 6).

3.3. Effect on MG63 Cell Apoptosis. The possible protective
effects of rhAmelogenin and Fraction C on osteoblast apop-
tosis were determined in cells pretreated with the apoptogen
chelerythrine. Treatment with chelerythrine decreased MTT
absorbance (Figure 7(a)). However, this decrease was less
robust in cells pretreated with rhAmelogenin or Fraction
C. DNA fragmentation was higher in chelerythrine-treated
cells than in control cells (Figure 7(b)). Pretreatment with
rhAmelogenin reduced this effect, while cells pretreated
with Fraction C were not different from control. While
chelerythrine increased caspase-3 activity, pretreatment with
rhAmelogenin or Fraction C decreased the effect by 33%
(Figure 7(c)). Chelerythrine induced a 100% increase in con-
trol cells, but pretreatment with rhAmelogenin or Fraction C
blocked this effect (Figure 7(d)).

4. Discussion

The results of this study demonstrate that individual com-
ponents of decellularized matrices can contribute to over-
all tissue regeneration by acting on cells involved in the
formation of new tissue in a differential manner. As noted
previously, EMD is processed from the unmineralized or
partially mineralized enamel matrix of porcine tooth germs,
resulting in a bioscaffold for wound healing and tissue
regeneration in periodontal, orthopaedic, and dermatologic
applications [2, 3, 45]. The major protein in EMD, amel-
ogenin, is present at the epithelial/mesenchymal transition
zone in the tooth germ [6], making it a candidate for mod-
ulating osteoblastic differentiation and osteogenesis. Our
data support this hypothesis, showing that rhAmelogenin
and Fraction C enhance markers of osteoblastic maturation
and stimulate osteoblasts to produce mineral-like tissue in
vitro. In addition, our results suggest that Fraction C has an
antiapoptotic effect on osteoblasts.

It is not clear whether the full-length amelogenin has
only a structural function or if it also activates signaling
pathways that induce cell activities. It has been suggested
that amelogenin may play both roles, working as a struc-
tural extracellular protein and working as an active peptide
that induces cell differentiation [46] by then creating an
optimal environment for osteoblast differentiation. A variety
of amelogenin peptides are produced in vivo during tooth
morphogenesis by alternative splicing and proteolytic degra-
dation [47, 48], but the biological function of many of these
peptides is not known. In contrast to the four peaks found in
the original fractionation [29], here we found that Fraction
C contained just two peaks, one of 43 amino acids and
the other one corresponding to 45 amino acids in length,
which correspond to the previously reported TRAP species
[28]. The LRAP portion of amelogenin has been shown to
induce osteogenesis in vivo [49] and osteoblast maturation
in vitro [50, 51], but the effect of Fraction C, containing the
TRAP portion, was unclear. In the current study, we provide
evidence that primary human osteoblasts and osteoblast-like
cells are sensitive to the FractionC and that this active peptide
increases osteoblast maturation.

Our results indicate that amelogenin and Fraction C have
no effect on cell number in either MG63 cells or human
osteoblasts, which is in agreement with the previously pub-
lished literature [52–56]. Our results suggest that osteoblast
maturation was promoted at the expense of cell proliferation.
Several studies showed an increase in osteocalcin levels
and alkaline phosphatase activity after recombinant human
amelogenin treatment in many cell types, supporting our
observations [53, 54].

Our study supports the hypothesis that the N-terminal
sequence of amelogenin, also found in Fraction C as
TRAP, enhances the stimulatory effects of amelogenin on
osteoblastic differentiation. rhAmelogenin and Fraction C
had similar effects on alkaline phosphatase-specific activity
in HOB cultures and on production of osteocalcin at both
treatment doses. MG63 cells were less sensitive to rhAmel-
ogenin than to Fraction C, exhibiting biphasic increases in
alkaline phosphatase-specific activity and osteocalcin levels.
The higher osteogenic response to Fraction C suggests that
immature osteoblast-like cells are more sensitive to shorter
amelogenin isoforms and proteolytic peptides than full-
length amelogenin.

Osteoblasts participate in bone formation not only by
producing and mineralizing osteoid, but also by creat-
ing a suitable osteogenic microenvironment that controls
osteoblastic differentiation of progenitor cells, differentiation
and maturation of osteoclasts, and angiogenesis [57, 58]. The
autocrine and paracrine factors of osteoprotegerin, TGF-𝛽1,
and PGE

2
are associated with this osteogenic environment

[59–61]. OPG functions as a decoy receptor of the nuclear
factor-kappa B ligand (RANKL), a member of the tumor
necrosis factor superfamily that induces osteoclast activation.
OPG blocks RANKL from binding to its specific recep-
tor, protecting bone from osteoclast resorption [62]. TGF-
𝛽1 stimulates osteoblastic differentiation [63] and inhibits
osteoclast activity [64], but at high concentrations it can
also increase scar formation [65, 66]. Thus, the ratio of
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Figure 7: Protective effect of rhAmelogenin and Fraction C on osteoblast apoptosis. MG63 cells were grown to confluence. Cultures were
pretreated for 30 minutes with 10 𝜇M chelerythrine to induce apoptosis and then treated with rhAmelogenin or Fraction C. MTT (a), DNA
fragmentation (b), caspase-3 activity (c), and phospho-p53 (d) were measured. ∗𝑃 < 0.05, versus 0𝜇g/mL; ∙𝑃 < 0.05, versus 1 𝜇g/mL.

active growth factor to latent growth factor may be an
important variable. Finally, PGE

2
is required for osteoblastic

differentiation [67]. Our results indicate that rhAmelogenin
and Fraction C increase the levels of all three of these factors,
suggesting that these molecules contribute to osteogenesis in
vivo by their effects on local factor production by osteoblasts.
Moreover, osteoblasts at different states of maturationmay be
more responsive to individual amelogenin isoforms and sub-
sequent peptide formation by proteolytic degradation. This
is supported by the observation that OPG levels significantly
increased when MG63 cells were treated with lower doses of
Fraction C in comparison to rhAmelogenin.

Our results show that the levels of both active and
latent TGF-𝛽1 in the conditioned medium were increased by
rhAmelogenin and Fraction C, confirming previous studies
in which treatment with rhAmelogenin increased TGF-𝛽1
mRNA or protein levels [30, 68]. The increase in TGF-𝛽1
may cause an indirect effect on cell proliferation, differenti-
ation, or extracellular matrix and growth factor production

[69, 70]. EMD has been reported to have BMP- and TGF-
𝛽1-like activities [54, 71], and studies have found that EMD
stimulates BMP and TGF-𝛽 signal transduction [72]. These
hypotheses are also supported by studies in which antibodies
to TGF-𝛽1 inhibited the effect of EMD on epithelial cells
[71]. Our results suggest the possibility that the growth
factor effects being observed are due to production of these
factors induced by protein constituents of EMD and their
subsequent autocrine/paracrine actions. Further support of
this hypothesis is the fact that the rhAmelogenin in our study
was produced in Escherichia coli and yet had similar effects as
Fraction C. Moreover, Fraction C was purified using reverse-
phase, high-pressure liquid chromatography, which had a
molecular weight of 5 kDa, and an amino acid composition
distinct from any epitope of TGF-𝛽1.

Angiogenesis, sprouting of new blood vessels, is a crucial
step in bone formation and regeneration. Among the factors
involved in the new vessel formation, VEGF-A and FGF-
2 are two of the factors necessary to initiate angiogenesis
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and recruit endothelial cells [73]. VEGF-A and FGF-2 are
present in and regulate the formation of enamel and dentin
[74, 75]. However, the effects of amelogenin on angiogenesis
or in the regulation of these growth factors are unclear.
Our results showed an increase in VEGF-A and FGF-2
levels in the conditioned media of MG63 cells after 24-hour
treatment with rhAmelogenin or Fraction C. However, in
normal human osteoblasts only the lowest dose of Fraction
C increased VEGF-A. The differences in the secretion of
angiogenic factors may be attributed to the maturation state
of the MG63 cells.

Osteoblasts undergo apoptosis as a normal process in
terminal differentiation. Carinci et al. showed that EMD
regulates expression of genes involved in cell cycle regulation,
proliferation, and apoptosis using DNA microarray technol-
ogy [38]. Interestingly, the authors found an upregulation in
genes that induce apoptosis such as MADD and TNF-𝛼 but
also genes that inhibit apoptosis and increase cell survival as
MCL1. Here we found that both rhAmelogenin and Fraction
C were able to inhibit chelerythrine-induced apoptosis. It is
possible that the net bone formation seen because of clinical
EMD application is due to a delay in osteoblast apoptosis,
allowing continued matrix mineralization by osteoblasts.

Our results demonstrate that both MG63 osteoblast-
like cells and primary human osteoblasts are sensitive to
Fraction C. In the more homogeneous MG63 cells, the effect
of the peptides is dependent on dose. In committed human
osteoblasts, osteogenic markers and local factors increase
after treatment regardless of dose, suggesting differential roles
of EMD ECM components on periodontal regeneration. The
results of this study indicate that FractionC induces an angio-
genic and osteogenic environment that may be responsible
for the effects of EMD on periodontal regeneration and ulcer
healing. Taken together, the results suggest that Fraction C
could be a suitable candidate peptide for tissue engineering
applications as part of scaffold or as release peptide due to
the stronger osteogenic effect and apoptosis inhibition on
osteoblastic cells.
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