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Alloreactivity compromising clinical outcomes in stem cell transplantation is observed

despite HLA matching of donors and recipients. This has its origin in the variation

between the exomes of the two, which provides the basis for minor histocompatibility

antigens (mHA). The mHA presented on the HLA class I and II molecules and the

ensuing T cell response to these antigens results in graft vs. host disease. In this paper,

results of a whole exome sequencing study are presented, with resulting alloreactive

polymorphic peptides and their HLA class I and HLA class II (DRB1) binding affinity

quantified. Large libraries of potentially alloreactive recipient peptides binding both sets

of molecules were identified, with HLA-DRB1 generally presenting a greater number of

peptides. These results are used to develop a quantitative framework to understand

the immunobiology of transplantation. A tensor-based approach is used to derive the

equations needed to determine the alloreactive donor T cell response from the mHA-HLA

binding affinity and protein expression data. This approach may be used in future studies

to simulate the magnitude of expected donor T cell response and determine the risk for

alloreactive complications in HLA matched or mismatched hematopoietic cell and solid

organ transplantation.

Keywords: stem cell transplantation, GVHD, antigen response, HLA, tensors, vectors and operators, matrices, T

cell response

INTRODUCTION

Graft-vs.-host Disease (GVHD) represents a significant cause of morbidity and mortality in stem-
cell transplant (SCT) recipients (1). GVHD in an HLA-matched allogeneic stem cell transplant is
the archetype of an adaptive immune response with donor derived T cells responding to recipient
antigens presented on shared HLA class I and class II antigens (2–4). HLA matching has been the
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bedrock principle of donor selection in SCT, and this is
particularly so when the donor is not a close relative (5, 6).
Improvements in the fidelity of HLAmatching between unrelated
transplant donors and recipients has yielded incremental benefits
in patient outcomes, with improvements in survival resulting
from both a reduction in GVHD risk, as well as reduction in
graft loss and optimization of relapse risk. Nevertheless, GVHD
remains a therapeutic challenge, and there is little that can be
done to predict the outcomes of specific donor-recipient pairs.

This challenge may be surmounted by accounting for
genomic variation between the donors and recipients which
yields the peptides presented on HLA molecules, known as
minor histocompatibility antigens (mHA) (7). While mHA
have had a recognized pathophysiologic role in allogeneic
SCT outcomes, especially in GVHD pathogenesis, it has not
been possible to apply the notion to clinical practice because
mHA characterization is a cumbersome process (8–11). Two
developments in the past decade have potentially changed
this situation. First, the emergence of next generation DNA
sequencing techniques, such as single nucleotide polymorphism
mapping (12, 13) and whole exome sequencing (WES) to
identify the potential antigenic differences (14, 15). The second
is the development of machine learning algorithms which allow
determination of the binding affinity that different antigens may
have for specific HLA molecules (16–18). These two techniques
have been combined to develop algorithms that may be used
to determine the complex array of recipient antigens that a
given donor’s T cells may encounter in a recipient (19, 20).
Studies reporting exome-wide or other genomic disparities
in donors and recipients, have demonstrated a large body
of DNA sequence differences between transplant donors and
recipients, independent of relatedness and HLA matching (13–
15). These large genomic differences have been translated to
peptides and HLA class I binding affinities for the resulting
peptides determined (19). This too yields large libraries of
antigens which may be analyzed by either simulating alloreactive
donor T cell responses to these recipient antigens or by more
conventional statistical methodology to determine predictive
power for alloreactive T cell responses (21, 22). To date, these
models have examined recipient peptide presentation on HLA
class I and studied the resulting associations. Thus far, no obvious
linear relationship has been identified between the magnitude of
antigen burden and occurrence of clinical alloreactivity.

As noted above, HLA-matched SCT remains fraught with
uncertainty as patients with HLA-matched donors continue
to have disparate outcomes (23, 24). A quantitative model
of transplant alloreactivity would allow a more complete
understanding of the molecular immunology of SCT, potentially
help to identify the most suitable donors for specific recipients,
and allow personalized determination of the optimal level
of immunosuppression. A central assumption in one such
quantitative model, the dynamical system model of T cell
responses, is that alloreactivity (such as GVHD) risk is a function
of the cumulative mHA variation in the context of the HLA
type of each donor-recipient pair (DRP) and may thus be
regarded as an alloreactivity potential for that pair (14, 19, 25).
Clinical outcomes partially depend on the cumulative donor T

cell responses to the burden of polymorphic recipient peptides.
Previous work applying this dynamical system model to HLA
class I presented molecules demonstrates that there are large
differences in the simulated T cell responses between different
HLAmatched DRP (21, 22). In this hypothesis developing paper,
previously reported findings of WES of SCT DRP are extended
with an analysis of the HLA class II presentation of polymorphic
peptides. A comparison of the difference in magnitude of the
derived peptide libraries presented on the HLA class I and HLA
class II molecules in the DRP is presented. Next, a hypothetical
quantitative model is developed which may allow the prediction
of alloreactive T cell responses to similar large antigen arrays and
their eventual application in clinical medicine. The mathematics
introduced in the previously reported dynamical systems model
of alloreactive T cell responses is generalized to include both
HLA class I and HLA class II presented peptides. The model is
expanded to account for different variables which may influence
antigen-driven proliferation of T cells, including their own state
of antigen-responsiveness and the cytokine milieu. This model
may, in the future, permit successful simulation of alloreactive T
cell responses between different donors and recipients in SCT.

METHODS

Whole Exome Sequencing
After obtaining approval from the institutional review board
(IRB) at the Virginia Commonwealth University (VCU),
whole exome sequencing (WES) was performed on previously
cryopreserved DNA samples from 77 HLA-matched DRP
(Supplementary Table 1) as previously described (14, 21).
Patients with recurrent or high-risk hematological malignancies
undergoing allogeneic SCT at VCU were included in this
retrospective study. DNA samples were de-identified by clinical
research staff, and submitted for sequencing. The VCU IRB
waived the need for informed consent on all adult participants as
samples were all archived and previously de-identified, with only
VCU BMT clinical research staff retaining access to any patient
specific information involved in the retrospective analysis. The
Sequencing team did not have access to the sample identity
and clinical team did not have access to exome sequencing
data. Nextera Rapid Capture Expanded Exome Kit was used
to extract exomic regions from the deidentified DNA samples,
which were then multiplexed and sequenced on an Illumina
HiSeq 2500 to achieve an average coverage of ∼90X per sample.
2X100 bp sequencing reads were then aligned to the human
reference genome using BWA aligner. Duplicate read alignments
were detected and removed using Picard tools. Single nucleotide
polymorphisms (SNPs) in both the donor and recipients’ exomes
were determined using GATK HaplotypeCaller walker. GATK
best practices were then implemented to filter and recalibrate
the SNPs; and store them in variant call file (VCF) format. To
identify SNPs unique to the recipient and absent in the donor
the results from the GATK pipeline in VCF format were then
parsed through the in-house TraCS (Transplant pair Comparison
System) set of perl scripts. TraCS traverses through the genotypes
of the called SNPs, systematically excluding identical SNPs or
editing them to align with the graft-vs.-host (GVH) direction

Frontiers in Immunology | www.frontiersin.org 2 October 2018 | Volume 9 | Article 2284

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Salman et al. Quantifying Immune Response to Antigen Diversity

thereby generating a new VCF with SNPs for a particular DRP
in the GVH direction (SNP present in the recipient, absent
in the donor; R+/D−). All non-synonymous single-nucleotide
polymorphisms (nsSNPs) present in the recipient and donor
were identified and recorded in the.vcf format. Subsequent
processing of the.vcf files was done using custom python scripts
to remove synonymous mutations, eliminate duplicates, and
record the coordinates of the SNPs. Non-synonymous SNPs that
exist in the recipient but not in the donor were recorded and
identified as a potential source of alloreactive antigens. Non-
synonymous, single nucleotide polymorphisms (nsSNP) in each
DRP would correspond to potential antigens due to the resulting
amino acid substitution in oligopeptides which bind HLA in that
DRP (Figure 1A).

In silico Determination of Alloreactive
Peptide Sequences
HLA class I bound 9-mer peptides were generated as previously
described (19). Briefly, the SNPs in the VCF were annotated
either as synonymous or non-synonymous using Annovar. For
HLA class I binding affinity determination, the corresponding
amino acid polymorphisms along with flanking regions of
each protein were extracted using Annovar to build peptide
libraries of 17-mers for each DRP, with the SNP encoded AA
occupying the central position. This library was further expanded
by sliding a 9-mer window over each 17-mer such that the
polymorphic amino-acid position changes in each 9-mer. This
resulted in the generation of 9 nona-meric peptides/SNP. The
HLA class I binding affinity and IC50 values, which quantify the
interactions between all these 9-mers for each DRP and all six
HLA class I donor molecules (HLA-A, B, and C) was determined;
NetHMCpan version 2.8 was run iteratively in parallel mode
on a linux cluster using custom python scripts. Parsing the
NetMHCPan output, unique peptide-HLA combinations present
in the recipient but not in the donor, i.e., possessing a GVHD
vector, were identified and organized in order of declining mHA-
HLA affinity. To derive the peptide sequences bound to HLA
class II molecules an average peptide length of 15 amino acids was
used (26). Each of the nsSNPs could potentially be incorporated
into the alloreactive peptide of 15 amino acids. The position of
the nsSNP encoded polymorphic amino acid in the peptide could
vary from the N-terminus to the C-terminus of the peptide. The
possible library of peptides will thus be contained within a 29-
mer oligopeptide (Figure 1B). Thus, there are 15 different HLA-
II binding peptides that could potentially be generated from each
nsSNP identified by WES. ANNOVAR was used to generate 29-
mer peptides for each nsSNP respectively to study HLA class
II presentation. In ANNOVAR, a sliding window method was
used with the “seq_padding” option of the “annotate_variation”
function to generate the 15 different 15-mers resulting from each
nsSNP. Tissue expression of the proteins fromwhich the peptides
were derived was determined as previously described (22).
Briefly, the Genotype-Tissue Expression (GTEx) portal V6 has
publicly available expression level information (Reads/kilobase
of transcripts/million mapped reads, RPKM values; http://www.
gtexportal.org/home/) for a variety of human tissues over a large

number of genes. Since the gene-ids for the proteins that generate
the peptides in the DRP peptide library are known, the RPKM
values from the GTEx portal for the specific gene across the whole
array of tissues of interest were parsed in, namely, skin, lung,
salivary gland, esophagus, small intestine, stomach, colon, and
liver.

Calculating HLA Binding Affinity of
Alloreactive Peptides
Once the peptide library was created for each DRP, the HLA
types for the recipient were tabulated from the medical records.
HLA matching was performed using high resolution typing
for the unrelated donor SCT recipients, and in related donor
recipients intermediate resolution typing was performed for
HLA class I, and high resolution typing for class II antigens.
For class II HLA, HLA-DRB1 alleles for each patient were
recorded. Each patient’s HLA-DRB1 allele types (and HLA class
I alleles, as previously described) along with peptide library were
analyzed using NetMHCIIpan 2.0 to derive the binding affinity
of each peptide-HLA complex. This was given as an IC50 (half-
maximal inhibitory concentration) for each peptide, measured
in nano-Molar. This measure of binding affinity provided the
concentration of peptide required to displace 50% of a standard
peptide from the HLA type to which it would have been bound.

Data Analysis
Peptides present in the recipient but absent in the donor,
generated from the ANNOVAR sliding window with IC50 values
for all the different patient HLA types were tabulated and
duplicates were deleted. Any peptide with the same amino acid
sequence but different SNP position along the peptide must have
generated from a different area of the exome and was therefore
retained in the enumeration. When compiling the peptides
binding to different HLA alleles, the patients with homozygous
allele for DRB1 had their peptide values doubled to simulate
having double the normal number of allele-specific HLA bound
peptides presented. Analysis of the number of strongly bound
(SB; IC50 ≤ 50 nM) and bound peptides (BP; IC50 ≤ 500 nM)
for each patient-HLA allele combination was done by listing the
peptides in descending order of binding affinity, as measured by
IC50 levels (Tables 1A,B). HLA class I and HLA class II bound
peptides were compared numerically for this perspective paper.

RESULTS AND DISCUSSION

HLA Bound Alloreactive Peptides
Whole exome sequencing (WES) was performed on the cohort
of 77 donor recipient pairs (DRP) of which 75 were evaluable for
this analysis. SNPs were identified, following which alloreactive
peptide binding affinities to HLA class I and HLA-DRB1
molecules were derived. There was marked variability in the
number of peptides presented on the different HLA class I &
II molecules between individuals in the cohort. An average of
1,085± 513 alloreactive peptides strongly bound (IC50< 50 nM)
all the HLA class I molecules/DRP, vs. 8,320 ± 11,158 peptides
binding the two HLA class II molecules/DRP. When compared
to an arbitrary sample with a standard deviation of 100 peptides,
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FIGURE 1 | Non-synonymous single nucleotide polymorphisms present in the recipient and absent in the donor yield alloreactive peptides which may be presented to

the donor T cells on HLA class I and II molecules. HLA class II presentation and CD4+ T cell recognition and response depicted (A). Schematic depicting the analytic

sequence from exome sequencing to HLA class II mHA prediction (B).

the variability observed in the test sample was highly significant
(P≤ 0.0001).

In considering theHLA class II bound peptides, HLAmatched
unrelated donor (MUD)DRP exhibited a higher number of HLA-
DRB1-bound peptide (BP); mean: 39,584 alloreactive peptides
in HLA matched related donors (MRD) vs. 67,987 in MUD (t-
test P < 0.001). When only the strongly bound (SB) peptides are
analyzed, this trend while present, no longer remains statistically
significant, mean SB 6,077 alloreactive peptides in MRD vs. 9,535
in MUD (p = 0.168) (Figures 2A,B). This is consistent with the
larger burden of exome variation in MUD transplant recipients.
Significantly more MUD DRP had BP > the median 52,983
peptides for the whole cohort (34/49 vs. 4/26, Fishers Exact test p
< 0.0001), as well as SB >4,245 (30/49 vs. 8/26, p= 0.012), when
compared to MRD DRP. There was marked variability in the
HLA DRB1 allele binding affinity in the various peptides as well
as the tissue expression of the proteins from which peptides were
derived (Table 1A). This is likely an effect of the randomness
observed in exome sequence variation, and the variation in
HLA binding affinity of the resulting alloreactive peptides
with different HLA molecules, and illustrates the potential for
variability in alloreactive antigen presentation between different
donors and recipients who undergo SCT.

Computing Donor T Cell Responses From
Recipient Antigen Arrays
These data illustrate the large potential that HLA class I and HLA
class II molecules have for recipient peptide antigen presentation
in the context of allogeneic SCT. Further complexity is added
to the antigen driven donor T cell responses by variable tissue
expression and different peptide cleavage potential (27, 28).
Mass spectrometry studies have in general corroborated the
presence of a large number of HLA class I and II bound
peptides with several thousand unique peptides identified in
studies of both malignant as well as non-malignant cell lines
(29–31). These mass spectrometry studies also demonstrate
significant variability in the distribution of presented peptides

across different HLA class I and class II molecules, with antigen
processing and post translational modification playing a role in
antigen presentation, in addition to the antigen affinity of the
HLA molecules (10, 32). All considered, the magnitude of this
antigen burden across the patient population makes it difficult to
predict which individual patient will have a poor outcome when
utilizing simple statistically determined associations. However,
while in and of themselves these parameters may not be definitive
for GVHD prediction, given the uniformly large magnitude of
mHA identified in the patient cohort examined, these measures
if appropriately analyzed, may give insight into the quantitative
principles governing the alloreactive T cell immune responses. To
accomplish this, it is imperative to understand the quantitative
principles at work in donor immune response and use these
principles to develop methodology to simulate transplants with
different donors in silico. The mHA prediction methodology
presented previously and extended herein, augmented by analysis
of peptide cleavage sites to more accurately determine the
probability of the generation of specific HLA binding alloreactive
peptides may allow prediction of alloreactivity potential for
different DRP in the future (28). As a first step toward this
goal, it was previously shown that donor CD8+ T cell growth
simulations may identify patients at risk for moderate to severe
GVHD, however these associations were relatively weak (22).
While one possible explanation for this is the stochastic nature
of alloreactive antigen presentation on HLA molecules (both
alloreactive and non-alloreactive peptides may bind HLA), an
important limitation in the special case of the model described
(HLA class I antigen presentation) was its lack of information
on HLA class II mHA presentation and consequent inability to
simulate CD4+ helper T cell responses in the donor-recipient
pairs involved. Normally, CD4+ T helper cells play an important
role in the homing of cytotoxic T cells to infected tissues, and in
the case of GVHD to the target tissues (33–35). In the transplant
setting, T helper cells will recognize their target alloreactive
antigens bound to HLA class II molecules; notably, these differ
from the antigens recognized by CD8+ cytotoxic T cells and

Frontiers in Immunology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 2284

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Salman et al. Quantifying Immune Response to Antigen Diversity

T
A
B
L
E
1
|
E
xa

m
p
le
o
f
th
e
st
ro
n
g
b
in
d
in
g
p
e
p
tid

e
s
fo
r
H
L
A
c
la
ss

II
(A
)
a
n
d
H
L
A
c
la
ss

I(
B
)
in

a
D
R
P.

P
e
p
ti
d
e

S
e
q
id

G
e
n
e
id

H
L
A
-D

R
B
1
0
3
:0
1

H
L
A
-D

R
B
1
0
4
:0
1

C
o
lo
n

E
s
o
p
h
a
g
u
s

L
iv
e
r

L
u
n
g

S
a
li
v
a
ry

g
la
n
d

S
k
in

S
m
a
ll
in
te
s
ti
n
e

S
to
m
a
c
h

A V
L
A
L
T
Y
D
S
A
R
L
R
W
Y
F

s0
1
0
8
6

G
P
R
3
7

1
2
.1

1
7
7
.1

0
.4

2
.2

4
.6

0
.2

0
.6

1
.2

0
.3

0
.6

Q
H
R
L
R
L
R
A
Q
M
R
L
R
R
L

s0
4
0
2
2

A
E
B
P
1

1
2
.7

5
1
5
.4

6
2
.0

5
1
.0

8
.0

1
1
3
.5

3
5
.0

5
3
.0

5
1
.1

3
1
.7

A
W
L
L
L
R
S
L
P
R
R
Y
IIA

s0
4
6
6
1

S
L
C
2
2
A
4

1
2
.7

4
6
.2

0
.9

0
.3

0
.3

1
.6

1
.3

1
.0

3
.3

0
.4

H
R
L
R
L
R
A
Q
M
R
L
R
R
L
N

s0
4
0
2
2

A
E
B
P
1

1
2
.9

5
9
0
.0

6
2
.0

5
1
.0

8
.0

1
1
3
.5

3
5
.0

5
3
.0

5
1
.1

3
1
.7

R
L
R
L
R
A
Q
M
R
L
R
R
L
N
A

s0
4
0
2
2

A
E
B
P
1

1
3
.1

6
9
0
.0

6
2
.0

5
1
.0

8
.0

1
1
3
.5

3
5
.0

5
3
.0

5
1
.1

3
1
.7

TA
W
L
L
L
R
S
L
P
R
R
Y
II

s0
4
6
6
1

S
L
C
2
2
A
4

1
3
.1

3
7
.4

0
.9

0
.3

0
.3

1
.6

1
.3

1
.0

3
.3

0
.4

G
N
S
S
IIA

D
R
IA
L
K
LV

s0
7
6
4
2

M
T
H
F
D
1

1
3
.1

1
2
9
.7

8
.7

1
0
.6

4
4
.2

8
.8

7
.2

9
.7

9
.2

8
.6

H
N
R
F
R
T
L
P
P
A
L
A
A
L
R

s0
2
2
6
9

R
A
B
G
G
TA

2
9
7
.0

9
.6

8
.8

9
.4

6
.4

1
3
.4

1
2
.9

1
2
.8

1
3
.0

1
1
.8

S
H
N
R
F
R
T
L
P
P
A
L
A
A
L

s0
2
2
6
9

R
A
B
G
G
TA

3
7
6
.3

9
.9

8
.8

9
.4

6
.4

1
3
.4

1
2
.9

1
2
.8

1
3
.0

1
1
.8

N
R
F
R
T
L
P
P
A
L
A
A
L
R
C

s0
2
2
6
9

R
A
B
G
G
TA

3
6
7
.9

1
0
.7

8
.8

9
.4

6
.4

1
3
.4

1
2
.9

1
2
.8

1
3
.0

1
1
.8

L
S
H
N
R
F
R
T
L
P
P
A
L
A
A

s0
2
2
6
9

R
A
B
G
G
TA

6
5
3
.9

1
2
.5

8
.8

9
.4

6
.4

1
3
.4

1
2
.9

1
2
.8

1
3
.0

1
1
.8

P
L
A
L
Q
F
L
M
T
S
P
M
R
G
A

s0
6
8
3
3

T
C
N
2

1
2
9
.7

1
4
.1

1
2
.9

7
.3

3
.7

2
7
.2

8
.3

5
.5

3
8
.2

1
0
.7

L
A
L
Q
F
L
M
T
S
P
M
R
G
A
E

s0
6
8
3
3

T
C
N
2

1
2
1
.2

1
4
.1

1
2
.9

7
.3

3
.7

2
7
.2

8
.3

5
.5

3
8
.2

1
0
.7

IS
W
F
S
S
L
L
N
N
K
H
F
L
I

s0
3
9
4
8

P
L
X
N
D
1

2
4
0
.9

1
4
.2

1
0
.3

9
.8

4
.4

4
0
.8

8
.7

1
1
.8

1
3
.3

9
.1

R
F
R
T
L
P
P
A
L
A
A
L
R
C
L

s0
2
2
6
9

R
A
B
G
G
TA

5
4
2
.7

1
4
.6

8
.8

9
.4

6
.4

1
3
.4

1
2
.9

1
2
.8

1
3
.0

1
1
.8

L
K
E
F
Y
LT

R
N
S
P
A
E
M
L

s0
0
6
3
5

P
A
R
V
G

4
2
9
.4

1
4
.7

1
.9

1
.2

1
.6

1
2
.0

1
.9

0
.6

7
.9

1
.7

A
L
Q
F
L
M
T
S
P
M
R
G
A
E
L

s0
6
8
3
3

T
C
N
2

1
0
4
.3

1
4
.9

1
2
.9

7
.3

3
.7

2
7
.2

8
.3

5
.5

3
8
.2

1
0
.7

#
p
e
p
ti
d
e

S
e
q
id
s

G
e
n
e
id
s

H
L
A
-

A
0
2
:0
1

H
L
A
-

A
3
0
:0
2

H
L
A
-

B
1
8
:0
1

H
L
A
-

B
5
5
:0
1

H
L
A
-

C
0
3
:0
3

H
L
A
-

C
0
5
:0
1

C
o
lo
n

E
s
o
p
h
a
g
u
s

L
iv
e
r

L
u
n
g

S
a
li
v
a
ry

g
la
n
d

S
k
in

S
m
a
ll

in
te
s
ti
n
e

S
to
m
a
c
h

B Y
L
F
D
V
L
P
L
L

s0
2
2
3
8

O
R
8
B
4

1
.7

3
1
4
1
.1

1
1
1
9
3
.9

1
9
7
5
4
.1

8
4
.4

1
2
5
0
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

IL
M
E
H
IH
E
L

s0
3
5
5
4

R
P
L
1
9

1
.9

6
2
3
4
.5

1
3
5
6
5
.2

1
5
4
8
1
.0

3
0
.2

1
2
7
4
.2

6
6
3
.3

6
2
6
.5

2
9
9
.9

5
6
6
.2

6
6
4
.8

9
5
8
.0

6
0
1
.2

6
3
8
.2

F
M
L
F
F
IY
A
V

s0
1
8
2
6

C
A
C
N
A
1
S

2
.2

6
7
5
6
.0

1
6
8
6
7
.4

1
1
1
1
5
.8

2
9
5
8
.2

1
2
2
2
7
.5

0
.0

0
.0

0
.0

0
.1

0
.0

0
.0

0
.0

0
.0

F
M
G
D
M
L
P
S
V

s0
2
4
9
2
,s
0
6
9
2
1

U
S
P
1
0

2
.4

7
1
6
4
.3

2
7
0
2
4
.0

1
3
9
8
5
.6

9
8
9
.7

3
9
9
9
.9

1
2
.8

1
2
.3

7
.6

1
1
.4

1
0
.3

1
2
.9

1
3
.5

1
0
.9

A
L
A
P
L
A
F
F
V

s0
4
2
1
9

S
L
C
1
6
A
1
3

2
.5

2
7
3
3
.3

3
3
1
9
8
.9

2
2
7
2
4
.5

1
2
3
7
6
.0

4
1
3
3
.6

0
.6

0
.6

1
4
.2

2
.2

2
.5

1
.8

3
.5

0
.6

R
Q
R
S
Q
FA

F
Y

s0
5
7
0
8

B
4
G
A
LT

5
1
9
6
7
4
.3

5
.6

4
6
2
7
.8

1
0
5
9
8
.8

2
0
8
9
5
.8

2
7
2
9
8
.7

1
5
.2

1
8
.0

7
.5

1
9
.3

1
5
.5

7
.0

1
0
.4

1
0
.5

R
S
R
R
L
F
S
H
Y

s0
2
9
2
0

G
N
A
1
5

3
0
6
5
0
.3

7
.5

1
4
6
7
7
.8

1
0
7
1
0
.2

8
7
4
1
.3

1
4
7
5
4
.2

1
.5

2
.3

0
.4

9
.5

7
.5

2
3
.8

1
.6

1
.5

A
S
W
T
M
S
A
LY

s0
0
6
0
7

O
R
7
A
5

2
1
1
7
9
.7

1
0
.0

1
0
5
3
6
.7

1
4
5
2
6
.3

5
9
8
1
.8

6
1
5
7
.7

0
.0

0
.0

0
.0

0
.0

0
.1

0
.1

0
.0

0
.0

L
S
A
F
H
Y
G
LY

s0
1
3
7
9
,s
0
2
4
3
9

A
B
C
A
5

2
6
5
3
7
.2

1
0
.4

7
9
2
7
.2

1
2
5
9
7
.3

4
1
8
2
.4

4
6
9
1
.6

4
.5

4
.9

8
.6

3
.9

7
.1

1
0
.8

1
2
.7

6
.5

R
M
TA

N
H
G
S
Y

s0
3
0
2
3
,s
0
3
8
6
0

A
R
H
G
A
P
2
4

2
4
0
6
4
.5

1
2
.6

1
0
8
5
2
.2

1
0
6
2
2
.3

5
3
6
9
.1

1
5
0
7
5
.7

2
.2

2
.3

0
.9

4
.3

2
.2

2
.9

3
.1

4
.4

Y
E
Y
T
G
A
N
V
Y

s0
0
4
4
7

IB
S
P

3
3
8
7
8
.5

7
7
9
.8

6
.3

1
7
9
4
6
.0

5
9
7
6
.1

1
8
4
0
2
.2

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

IE
Y
E
R
F
V
P
F

s0
3
2
1
6
,s
0
5
4
6
8

G
R
IA
3

8
4
2
6
.0

7
4
5
8
.9

6
.4

1
3
6
1
7
.5

2
4
3
9
.6

2
4
4
1
6
.2

0
.3

0
.1

0
.4

0
.1

0
.1

0
.3

0
.2

0
.3

T
E
T
E
A
IH
V
F

s0
0
1
1
1

M
U
C
1
6

3
1
9
1
6
.8

1
8
6
8
2
.9

7
.6

3
4
6
9
9
.1

1
9
9
4
7
.8

2
3
2
6
8
.2

0
.0

0
.0

0
.0

0
.0

1
.4

0
.0

0
.0

0
.0

(C
o
n
ti
n
u
e
d
)

Frontiers in Immunology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 2284

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Salman et al. Quantifying Immune Response to Antigen Diversity

T
A
B
L
E
1
|
C
o
n
tin

u
e
d

#
p
e
p
ti
d
e

S
e
q
id
s

G
e
n
e
id
s

H
L
A
-

A
0
2
:0
1

H
L
A
-

A
3
0
:0
2

H
L
A
-

B
1
8
:0
1

H
L
A
-

B
5
5
:0
1

H
L
A
-

C
0
3
:0
3

H
L
A
-

C
0
5
:0
1

C
o
lo
n

E
s
o
p
h
a
g
u
s

L
iv
e
r

L
u
n
g

S
a
li
v
a
ry

g
la
n
d

S
k
in

S
m
a
ll

in
te
s
ti
n
e

S
to
m
a
c
h

W
E
F
C
Q
A
A
L
F

s0
3
2
3
8

S
T
R
C

2
0
9
8
7
.4

1
0
3
3
3
.5

8
.1

2
8
5
1
8
.2

1
5
5
0
5
.0

2
4
5
0
8
.0

0
.1

0
.0

0
.0

0
.0

0
.2

0
.2

0
.2

0
.1

Q
E
F
P
G
S
P
A
F

s0
1
4
2
1
,s
0
4
9
6
8

N
U
B
P
2

2
4
7
5
2
.6

1
0
8
0
6
.4

8
.2

2
3
1
7
0
.9

4
7
5
3
.2

2
6
1
5
0
.7

1
1
.1

1
1
.3

1
2
.2

1
0
.3

9
.7

1
2
.7

9
.9

1
1
.7

H
P
Y
L
P
LV

TA
s0

2
0
8
8
,s
0
2
1
2
1
,

s0
8
5
0
0

R
U
N
D
C
3
A

1
7
7
6
2
.9

2
6
3
5
1
.5

1
2
5
9
9
.4

7
5
.0

3
4
2
4
.7

2
8
3
4
4
.1

1
.8

0
.6

0
.1

0
.3

0
.3

4
.0

0
.7

1
.3

L
P
F
F
R
S
L
P
I

s0
0
8
3
3
,s
0
1
1
1
6
,

s0
1
4
3
0
,s
0
1
4
8
7
,

s0
2
6
5
3
,s
0
3
1
5
5
,

s0
3
4
1
2
,s
0
3
6
4
7
,

s0
4
8
8
5
,s
0
5
4
9
0
,

s0
6
2
1
3
,s
0
6
6
4
9
,

s0
7
2
3
1
,s
0
8
4
6
0
,

s0
8
6
1
9

N
R
1
I3

1
2
5
2
2
.5

1
6
0
2
1
.9

7
7
3
4
.8

8
9
.1

2
4
4
.5

1
9
4
8
1
.6

0
.1

0
.1

5
4
.0

0
.1

0
.0

0
.3

0
.3

0
.1

F
P
H
Y
T
P
S
V
A

s0
5
8
5
7

R
N
F
4
3

3
0
9
1
6
.8

3
4
5
7
7
.0

1
9
1
7
4
.2

9
7
.2

1
6
9
3
.0

2
4
7
1
6
.0

0
.2

0
.1

1
.5

1
.0

2
.8

3
.1

5
.2

1
.9

L
P
W
L
S
H
P
S
V

s0
0
1
1
7

M
U
C
1
6

9
3
1
4
.3

2
4
6
9
0
.0

1
0
6
7
8
.5

1
1
0
.9

2
6
8
3
.1

2
2
5
2
2
.3

0
.0

0
.0

0
.0

0
.0

1
.4

0
.0

0
.0

0
.0

F
P
R
S
V
N
V
T
V

s0
1
2
2
0

A
Z
U
1

1
9
9
3
1
.4

2
7
7
3
0
.1

1
4
7
3
7
.5

1
1
5
.0

1
1
0
0
.3

1
9
7
5
5
.0

0
.1

0
.1

0
.3

3
.2

0
.1

0
.1

0
.1

0
.1

F
S
Y
P
S
S
H
P
F

s0
6
0
1
1

TA
S
2
R
3
1

1
7
4
6
.9

8
1
0
.7

1
8
3
8
.5

3
5
0
8
.5

2
.6

2
3
4
.5

0
.2

0
.1

0
.0

0
.2

0
.1

0
.2

0
.2

0
.2

M
A
A
P
G
S
C
A
L

s0
4
2
4
6

C
O
Q
5

2
9
9
6
.9

1
0
7
2
9
.4

1
2
7
6
8
.5

2
2
6
3
.3

2
.9

8
5
0
.6

1
2
.2

9
.9

1
8
.1

1
0
.3

1
0
.1

1
1
.6

1
2
.5

1
0
.8

FA
H
L
S
T
Y
S
L

s0
0
1
7
6
,s
0
3
7
6
0

C
D
2
0
0

7
2
3
.1

1
1
0
5
4
.9

1
0
5
0
4
.8

1
8
2
3
.7

3
.3

6
8
9
.4

3
.3

2
.8

0
.2

4
.7

5
.5

1
.9

4
.6

2
.6

F
S
A
TA

A
S
S
L

s0
5
5
5
4

T
N
F
S
F
1
2

4
1
5
7
.5

9
6
7
3
.6

2
3
7
2
5
.5

6
7
6
9
.4

3
.5

2
3
3
.5

5
1
.6

5
4
.7

9
.1

4
2
.1

1
8
.1

1
6
.2

2
4
.5

2
1
.9

Y
S
S
S
G
L
S
P
M

s0
2
3
8
2

O
R
1
3
F
1

2
6
3
4
.9

2
2
6
4
.7

1
0
6
8
0
.6

9
4
3
0
.4

3
.6

2
9
9
.1

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

0
.0

Y
T
D
P
Y
A
Q
P
L

s0
3
1
0
6

K
M
T
2
D

9
2
.3

5
4
2
7
.4

1
7
4
5
8
.2

1
8
3
1
3
.6

1
0
.3

6
.5

5
.5

6
.0

2
.3

7
.6

6
.4

7
.4

7
.7

6
.2

F
S
D
E
W
V
A
C
L

s0
1
9
6
0

G
E
M
IN
4

1
0
9
.9

1
8
3
6
8
.6

2
5
0
5
9
.0

2
6
4
3
6
.0

7
7
.7

8
.8

4
.6

5
.5

2
.4

5
.2

5
.6

1
1
.4

5
.4

6
.9

L
A
D
E
G
T
Y
E
I

s0
0
6
0
6

H
E
P
A
C
A
M

3
3
9
.0

2
2
1
2
2
.9

2
5
3
5
9
.9

1
1
7
9
3
.1

8
4
.7

1
0
.8

0
.2

0
.1

1
.2

0
.0

0
.1

0
.0

0
.1

0
.1

R
T
D
P
IQ
M
P
F

s0
5
7
8
1

M
P
P
E
D
1

7
0
9
2
.1

4
0
0
.9

2
1
7
4
3
.7

1
6
4
2
2
.4

2
5
1
.3

1
1
.3

0
.0

0
.0

4
.6

0
.0

0
.4

0
.1

0
.0

0
.2

IS
D
D
T
T
Q
P
I

s0
0
6
8
9
,s
0
1
2
4
7
,

s0
7
2
0
0

G
G
T
1

6
1
2
7
.1

1
4
7
5
7
.8

3
5
6
8
8
.4

2
0
3
2
3
.9

3
5
2
.7

1
5
.5

2
.5

1
.2

1
5
.4

8
.2

3
.0

1
.2

1
6
.3

6
.9

M
o
s
t
p
e
p
ti
d
e
s
h
a
ve

re
le
va
n
t
in
te
ra
c
ti
o
n
w
it
h
o
n
e
H
L
A
m
o
le
c
u
le
b
u
t
s
o
m
e
b
in
d
m
u
lt
ip
le
H
L
A
m
o
le
c
u
le
s
,
m
o
re
s
o
w
it
h
H
L
A
c
la
s
s
II
m
o
le
c
u
le
s
.
T
h
e
b
o
ld
le
tt
e
rs
c
o
rr
e
s
p
o
n
d
to
th
e
p
o
ly
m
o
rp
h
ic
a
m
in
o
a
c
id
c
o
d
e
d
b
y
th
e
n
s
S
N
P.

Frontiers in Immunology | www.frontiersin.org 6 October 2018 | Volume 9 | Article 2284

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Salman et al. Quantifying Immune Response to Antigen Diversity

FIGURE 2 | HLA class II bound peptides in HLA MRD and MUD DRP. Depicting SB and BP on standard (A) and logarithmic scales (B).

presented by HLA class I. The T helper cells initiate signaling
by secretion of appropriate cytokines (IFN-?, IL-2, IL-12, IL-
17 etc.) and set up the homing signal for the cytotoxic T cells
to invade the target tissue, which cause tissue injury through
direct cytolytic activity. In the present study we estimate the
magnitude of alloreactive antigen burden encountered by donor
cytotoxic T cells and helper T cells in HLA matched DRP.
While this estimate is limited due to lack of protein cleavage site
information, and absence of mass spectrometry verification, it
may yet allow a more accurate calculation of the likelihood that a
patient may develop T cell mediated tissue injury following SCT,
then is possible with the current standard of conventional HLA
matching.

Comparing HLA Class I and II Bound
Alloreactive Peptides
How big a difference might the additional CD4+ T cell
simulations make to the alloreactivity predictions of CD8+ T cell
simulations performed earlier (22). To estimate this, the in silico

derived HLA-DRB1 binding peptide libraries were compared to
the numbers of BP and SB on all Class I HLA alleles for the same
patients. On average, the number of alloreactive peptides bound
to the two HLA-DRB1 alleles with an IC50<500 nM, was far
greater than the number bound to the HLA class I loci (all 6 HLA-
A, B, & C alleles). Significantly more peptides bound HLA DRB1
molecules compared to all the HLA class I molecules combined;
BP for HLA DRB1 median 52,983 compared with BP for all HLA
class I molecules 4,532, with a median ratio BP-HLA class I/BP-
HLA DRB1 per DRP of 0.09 (range: 0.03–0.29; t-test p < 0.0001).
The same association was observed with SB with a median ratio
of 0.23 per DRP (range: 0.02–4.48; p=0.0001) (Figure 3A). There
was correlation between the number of BP and SB for both HLA
class I and to a lesser extent in HLA class II molecules in the DRP
studied; Pearson correlation coefficient, R 0.71, p < 0.0001 for
HLA DRB1 & 0.94, p < 0.0001 for all HLA class I molecules
together (Figure 3B). There was little overlap in the binding
affinities of various alloreactive peptides to different HLA class I
molecules (Table 1B). The difference observed in HLA class I and
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II antigen presentation using this computational methodology,
may be related to the longer peptide length (15 amino acids)
usually presented on the dimeric HLA class II molecules and used
for calculations in this study. This increases the size of the peptide
pool on offer (9-mer alloreactive peptides/SNP for HLA I vs. 15-
mer for HLA II), and consequently the likelihood that alloreactive
peptides will be presented. Therefore, validation of these findings
utilizing mass spectrometry will be an important next step in this
investigation.

Tissue expression of the proteins from which the peptides
presented on HLA class I and class II were derived was also
determined. In a subset of patients analyzed (n = 32), analogous
to the variability in the number of peptides presented on HLA
molecules. Indeed, there was a close correlation between the
total number of SB peptides and the SB peptides expressed
in each organ (R = 0.99 for both HLA class I and HLA
class II molecules). There were differences observed in the
expression levels of the proteins of origin for the alloreactive
peptides (Tables 1A,B). However, when ordered by expression
level as determined by RPKM values reported in the GTEX
data base, the number of alloreactive peptides presented in
different organs within an individual tended to be relatively
similar (Supplementary Figure 1), hinting at the ubiquitous
nature of proteins bearing polymorphisms. These overall counts
of expressed peptides notwithstanding there is variation in the
level of expression of different proteins, identifying this as
another critical variable in simulating T cell responses.

T Cell Clonal Proliferation in Response to
mHA-HLA Complexes: The Logistic
Equation of Growth
The relative differences in HLA class I and HLA class II peptide
presentation observed here may contribute to the T cell subset
repertoire diversity observed under normal circumstances (36).
Previous work has shown there to be far greater diversity in the
T cell repertoire of CD4+ T cells than in the CD8+ T cells in
the post-transplant period in both allogeneic and autologous SCT
(37), particularly when the memory T cell subsets are compared
(38). In fact, CD4+ T cell diversity has been found to be about
several times greater than CD8+ T cell diversity (39). This may
be due to the ability of HLA class II molecules to present a larger
number of peptide sequences compared toHLA class I molecules.
The antigen-binding region of HLA Class II molecules consists
of both an invariant α and a variable β domain, whereas that of
HLA Class I molecules contains only α domains. This may allow
HLA class IImolecules to bind a wider range of peptide sequences
(6, 40). This differential antigen presentation likely contributes
to the quantitative difference observed between the two classes
of T cells and may be understood using the dynamical systems
approach. In this model, growth equations have been used to
simulate the cytotoxic T cell growth in response to HLA class I
presented antigen,

Nt (Tx) =
(Py.K(Tx)

ByZx )∗N0(Tx)
(

(Py.K(Tx)
ByZx )− Nt−1(Tx)

)

(e−rtBy )+ 1
... (1)

This iterating equation describes the logistic growth of a CD8+
T cell clone Tx in a polyclonal T cell graft infused into a recipient
(Figure 4, Supplementary Table 2). N0(Tx) is the T cell count at
the time of transplantation (assumed to be 1 for this equation),
Nt(Tx) is the T cell count after t iterations (time) following SCT.
Nt−1(Tx) represents the T cell count for the previous iteration
and K is the proliferation constant that will determine the T
cell count at the asymptote (steady state conditions after infinite
iterations), K (Tx), representing the maximum T cell count the
system would support (carrying capacity); r is the growth rate.
In the logistic equation, the steady state count for each T cell
clone (KBZ) will be proportional to the product of the binding
affinity of the target peptide mHA (peptide y) for the HLA
molecule (afmHA = 1/IC50 in Koparde et al., in this paper, By
for peptide y) and the affinity of T cell clone, Tx’s T cell receptor
for the mHA-HLA complex (afTCR = 1/IC50 in Koparde et al.,
now Zx for T cell clone Tx) (22, 41) . In its current form
this equation assumes uniform expression levels of the T cell
receptors. Presumably in activated T cells, TCR may have a
higher levels of expression. Since this equations describes the
expansion of T cell clones in response to the cognate antigens,
it is likely that higher level of TCR expression may increase the
probability of the T cell clones interacting with the APC that
present the relevant antigens. In this model, the parameter r,
determines the growth rate of the specific clone and reflects the
effect of the co-stimulatory molecules and cytokines driving T
cell proliferation. This iterating equation gives instantaneous T
cell count (magnitude of the proliferative response) in response
to antigens presented. The tissue expression of proteins from
which peptide y is derived (Py) is a coefficient/multiplier for the

steady state T cell population KBZ , and may be estimated by
RNA sequencing techniques, and reported as Reads or Fragments
Per Kilobase of transcript per Million mapped reads (RPKM or
FPKM) (42). In real-world situations the term Py will have a
time modifier, et , associated with it, as protein expression and
antigen amount declines over time because of tissue injury. This
time relationship will be ignored for simplicity at this time. It is
important to recognize that in HLA class I-presented antigen-
driven T cell expansion, this term is utilized in its entirety
given that HLA class I molecules are loaded using peptides
derived from proteins present in the cytosol. This however is
not the case for HLA class II molecules, which generally present
antigens endocytosed from the extracellular environment (43).
This means that when calculating helper T cell growth, the
term P will be modified to P.c, with a constant, c, reflecting the
attenuation of antigen concentration given its “scavenged” nature
as opposed to direct cytosolic presence, in other words, 0 < c <

1 (for CD8+ T cells, c = 1). Thus, the equation for determining
helper T cell growth will take the general form,

Nt (Tx) =
(Pyc.K(Tx)

ByZx )∗N0(Tx)
(

(Pyc.K(Tx)
ByZx )− Nt−1(Tx)

)

(e−rtBy )+ 1
. . . (2)

Adjusting the variable P means that the absolute magnitude of
the steady state T cell population for each of the dominant (high-
ranked) helper T cell clones will be smaller than that for each
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FIGURE 3 | Comparison of HLA class I & class II bound peptides in HLA MRD and MUD DRP. Depicting SB peptides on standard scale in descending order and

differentiated by donor type (A). (B) Correlation of SB and BP for both HLA class I and class II molecules in MRD and MUD DRP.

of the dominant cytotoxic T cell clones, nevertheless because
of the greater number of possible antigens presented by HLA
class II molecules there may be a greater number of CD4+ T
cell clones, and thus greater clonal diversity of helper T cells
when compared to cytotoxic T cells. This also means that in a
Power law clonal frequency distribution analysis (44, 45), the
contribution of the highest-ranking (most numerous) T cell
clones to the entire repertoire will be higher with cytotoxic T cells
(38). Conversely, in the T helper cell population there will be a
larger number of high-ranking clones which contribute a larger
component of the overall repertoire. Given the greater number
of antigens there may be greater competition between the clones,
which in a model accounting for competition between clones
will lead to slower growth of helper T cell clones, a relatively
frequent clinical observation (46). Also, given the restriction of
HLA class II molecules to antigen presenting cells the absolute
magnitude of steady-state helper T cell clonal populations will
be smaller; however, since HLA class I molecules are expressed
on all nucleated cells, cytotoxic T cells get a proliferative signal

frommany different cell types, therefore steady state T cell clonal
counts can be further augmented. From an evolutionary and T
cell response sensitivity and specificity standpoint, it is logical
that the cytotoxic T cell-recruiting signal provided by CD4+
T helper cells should be more sensitive, triggered by a greater
variety of antigens, but when it comes to actual tissue destruction
by CD8+ cytotoxic T cells, a more fine-tuned HLA class I bound,
shorter peptide with greater specificity required for presentation,
provides the necessary stimulus. This would come from the
prevention of non-specific binding of peptide antigens to the
more “discriminating” HLA class I molecules.

Overlap Between HLA Class I and II
Peptide Pools
To determine if there is overlap between HLA class I and II
presented peptides, two DRP (one each MRD and MUD), was
analyzed to determine the likelihood of peptide presentation
from the same proteins on both HLA class I and II molecules.
This would result in activation of both CD4+ and CD8+ T cells
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FIGURE 4 | Interaction between donor T cells and recipient antigens presented on APC. Colored circles show different T cell clones with variable antigen affinity. The

spiked spheres show antigen presenting cells with HLA molecules, colors indicate unique peptide antigens and correspond to T cell recognition. T cell growth is

indicated over time in response to various influences, i.e. peptide affinity for HLA molecules (Vector B), and TCR affinity for HLA-peptide complex (vector Z), both

leading to T cell growth. The infused allograft contains T cells with TCR of varying peptide antigen specificity (different colors), these may encounter peptides for which

they have affinity (no color difference between APC and T cells), leading to growth. This variability makes antigen response a probability function of the likelihood of T

cell presence and peptide antigen presentation (ρP & ρT ). The expression level is depicted by more cells presenting the same antigen, making up for weak affinity

driving proliferation. The cytokines made by APCs get taken up by the cytokine receptors on the T cells, leading to a diminishing effect as the T cell repertoire expands.

in the tissues expressing that protein, and greater potential for
tissue injury. A comparison of strongly bound peptides (IC50
≤50 nM) demonstrates that these DRP had 143 and 343 genes
respectively, that yielded peptides binding both HLA class I
and HLA class II. Different degrees of sequence of homology
between these 9-mer and 15-mer peptides was observed (Table 2,
Supplementary Figure 2). This overlap suggests that if the
degree of exome sequence variation in a DRP is sufficiently large,
it is plausible that most tissues will potentially present mHA
to both helper and cytotoxic T cells. It is also important to
note that such protein expression overlap in different tissues in
addition to facilitating T helper and cytotoxic T cell interactions,
may impact regulatory T cell function such that it serves a
protective function against cytotoxic T cells which may recognize
alloreactive antigens in a particular tissue. An example of such
effect will be the clinical benefit of interleukin-2 observed in
chronic GVHD (47).

Quantifying mHA-HLA-TCR Interactions:
On Matrices, Vectors, and Tensors
Following the above general discussion about T cell behavior, it is
necessary to develop a model that will account for the potentially
large arrays of antigens being presented in allogeneic SCT as
seen in the data sets reported in this paper. As noted earlier,
immunotherapy and SCT are fraught with the risk of treatment

failure either in the form of relapsed malignancy or immune
mediated normal tissue injury (GVHD or graft rejection).
Various outcome prediction algorithms and models have been
developed using increasingly sophisticated characteristics studied
statistically (48, 49). These may allow improvement in clinical
outcomes prediction, but often do not provide mechanistic
insight into the reason for the observed clinical outcomes.
Further, while principles of immune therapy and themechanisms
of T cell action are well known from work on mouse models
and in vitro (50, 51), when the antigenic complexity encountered
in vivo in human SCT recipients is considered, the existing
models do not reliably predict individual clinical outcomes. This
is also true of the T cell repertoire that emerges following SCT.

Nevertheless, mathematical methods are available that have
long been used in physics to understand natural phenomenon
and may be extrapolated to biological systems such as immune
response modeling. For example, the concept of vectors and
operators has been used to simulate aggregate T cell clonal
responses to antigen arrays (21, 22). However, this method is
limited in that it requires identification of unique mHA-HLA and
it’s cognate TCR for application. To overcome this limitation,
a related mathematical method, tensor analysis, may be used
to simulate the entire T cell clonal response to the vast library
of tissue specific antigens presented by the entire spectrum of
HLA molecules in an individual. In physics, tensors describe
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interaction between vector quantities and their components,
so they enable determination of variation in vector magnitude
and direction and subsequent mapping to a different “state.” In
other words, tensors help describe vector transformation when
multiple forces are acting upon an object, which itself may be a
vector (52–54). It is important to recognize that these methods
have been developed for use in “linear” physical systems, however
biological systems are seldom linear. They follow non-linear
dynamics such as Power laws and exponential growth patterns,
which require adaptation of this methodology to account for such
behavior and the inherent complexity in biologic systems because
of the multiplicity of variables encountered. It is because of it’s
adaptability that tensor methodology may lend itself to the study
of the alloreactive immune response problem. In the example
at hand, the donor T cell array infused into the recipient may
be considered as a vector, which is modified by the interaction
between the T cell receptors (TCR) on the donor T cell clones
and the recipient mHA-HLA complexes and is transformed to
a new state following SCT. The interacting TCR and mHA-
HLA complex in this example may be considered as a tensor,
modifying the T cell clonal vector. Tensors remain invariant
in different frames of reference and in this application of the
concept, the mHA-HLA-TCR interactions, determined by the
protein sequences remain constant, regardless of tissues and
individuals where the interactions may be occurring. In other
words, the unique peptide sequences’ affinity to specific HLA
molecules and TCR will remain the same across individuals
and tissues. In essence, such an alloreactivity tensor comprised
of recipient mHA and HLA, in the presence of donor T
cell repertoire influences the relative growth of alloreactive T
cell clones vs. the non-alloreactive clones. Accordingly, clinical
GVHDmay or may not manifest.

To understand this notion, consider a basic adaptive immune
response to a recipient alloreactive peptide following SCT (or
any other antigenic peptide); the first interaction is between the
alloreactive recipient peptide and the HLA molecule resulting
in the binding and presentation of the peptide on the HLA
molecules (Figure 5). Consider two HLA molecules H1 and H2,
and two peptides p1 and p2, each recognized by only one of these
two HLA molecules; a matrix may be constructed showing the
peptides bound to the relevant HLAmolecules (55). The possible
interactions between the peptides p1 and p2 in a system of two
HLA molecules H1 and H2, may be depicted in matrix form as
follows.

(

H1p1 H1p2
H2p1 H2p2

)

=

(

1 0
0 1

)

. . . (3)

The 0 and 1 represent conditionality of interaction between the
peptides and HLA. The matrix on the left-hand side of Equation
(3) represents vector quantities, H1p1, H1p2, H2p1, or H2p2,
which have a magnitude (binding affinity, expressed in 1/IC50,
nM−1) and a “direction” given by the specificity, i.e., unique
affinity of the peptide for the HLA molecule. Given affinity of
H1 for p1 and H2 for p2, this interaction yields an identity
matrix. The interaction between the peptides and HLAmolecules

constitute a matrix where peptide recognition and binding by an
HLA molecule is represented by 1, and the converse situation
by 0. Thus, the numbers 1 & 0 represent the selectivity of
peptides with a certain sequence (and commensurate length)
for specific HLA and vice versa. These two alloreactive HLA-
peptide complexes may then be presented to donor T cell
clones by the antigen presenting cells, (Figure 5) and specific
donor T cell receptors may recognize these unique HLA-peptide
combinations and bind. In this example, TCR1 only recognizes
H1p1 and, TCR2 only recognizesH2p2. The resulting matrices are
given below

(

H1p1 H1p2
H2p1 H2p2

)

.

(

TCR1 0
0 TCR2

)

=

(

H1p1.TCR1 +H1p2.0 H1p1.0+H1p2.TCR2
H2p1.TCR1 +H2p2.0 H2p1.0+H2p2.TCR2

)

=

(

1+ 0 0+ 0
0+ 0 0+ 1

)

=

(

1 0
0 1

)

=

(

HpT1,1 0
0 HpT2, 2

)

. . .(4)

The right-hand side of Equation (4) is a tensor with two vector
quantities, the affinity of HLA molecule for the peptide and the
affinity of the TCR for the peptide-HLA complex, which may be
summarized as follows

(

HpT1,1 0
0 HpT2,2

)

=

(

B1 Z1 0
0 B2 Z2

)

=

(

1 0
0 1

)

. . . (5)

The matrix depicted in Equation (5), is a tensor of the second
rank with two vector quantities, i.e., the affinities B and Z
(specific binding between HLA & peptide (B) and between HLA-
peptide & TCR (Z)), which are depicted by HpT1,1 and HpT2,2.
HpT in this case symbolizes the HLA molecules, peptides and
TCR interacting with each other, and the subscripts 1 and 2
are called indices in tensor terminology, identifying interactions
between specific molecules (e.g., p1 and p2). The identity matrix
reflects the affinity of specific TCR for specific mHA-HLA
combinations. It is to be noted that, the same peptides given
above may bind other HLA molecules with a different affinity
and there may be TCR which bind these alternative antigen
complexes with different affinities, constituting different vectors
(56) (Figures 6A,B). Along the same lines, a given peptide or
TCRmay interact with different partners yielding different vector
components. For example, in the above matrices, TCR1 may
interact with both H1p1 and H1p2, the magnitude of the former
will be 1 and the latter, 0. However, given the continuous nature
of the IC50s observed for different peptides with different HLA
molecules in the analysis presented in this paper it is unlikely
that the vector magnitudes are going to be binary in nature.
The well-known phenomenon of immune cross reactivity is an
example of the vector components which are not binary (57). It
is also important to note that the forces (vectors) represented
by B (H1p1) and Z (TCR1) may be considered orthogonal
(perpendicular) because their direction is imparted by the unique
recognition of peptide sequence by HLA, and that of peptide-
HLA complex by TCR respectively. Thus, the growth of the T cell
clone resulting from this interaction may be considered a “cross”
product of these two forces (Sin 90◦ = 1, for orthogonal vectors)
(Figure 6C).
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FIGURE 5 | Tissue injury releases polymorphic recipient mHA from epithelial cells (EC); these and endogenous antigens are presented by APC; the APC proliferate

and migrate to the lymph node triggering a CD4+ and CD8+ T cell clonal expansion according to the logistic equation of growth. These T cell clones then enter the

circulation and migrate to the tissues to initiate tissue injury. Short black arrows in the oval (lymph node) below H1P1 and TCR1 indicate affinity vectors B and Z

respectively.

FIGURE 6 | Tensor diagram for the HpT tensor. Peptide p1 binds different HLA molecules, (A–C) with affinities, B1, B2 and B3 (A), while each TCR (TCR1−3) binds

these HLA-peptide complexes (with peptide, p1), with affinities Z1, Z2, and Z3 (B). The vectors p1 indicate the average effect of multiple binding affinity vectors. These

affinities will remain unaffected in different tissues and individuals. (C) T cell clonal growth in response to the polymorphic peptides is proportional to their product.

T Cell Vector Transformation: Enter
Operators
In the SCT context the alloreactivity tensor, HpT, determines
the magnitude (and direction) of T cell clonal growth vector
in response to antigens. T cell clones with receptors TCR1
and TCR2 respectively will grow in response to the HpT
Tensor. It is to be noted that the HLA-peptide driven T
cell clonal growth vector is distinct from the TCR affinity
vector for HLA-peptide complex, even if one considers that
mHA-HLA affinity vector drives T cell clonal growth of the
relevant TCR bearing clone. This relationship is analogous
to applied force, resulting in motion at a certain velocity
and consequent mass displacement which are distinct vector
quantities pointing in the same direction (with time being
the scalar distinguishing between them; T cell clonal growth
is also a time-dependent function). In the above example,
the T cell clonal growth vectors, comprising the two T cell
clones bearing the T cell receptors TCR1 and TCR2, are termed
T1 and T2 respectively. These constitute a vector matrix,
which is transformed over time t by the HpT tensor to the

vectors T1’ and T2’.
(

T′
1

T′
2

)

=
d

dt
L

(

B1 Z1 0
0 B2 Z2

)

∗

(

T1

T2

)

. . . (6)

In Equation (6), the vector

(

T1

T2

)

is transformed by the

HpT tensor and the logistic operator, d
dt
L previously

defined as the logistic equation for T cell growth,
which incorporates the term ByZx included in the HpT
tensor,

Nt (Tx) =
(Py.c.K(Tx)

ByZx )∗N0(Tx)
(

(Py.c.K(Tx)
ByZx )− Nt−1(Tx)

)

(e−rtBy )+ 1
. . . (2)

T Cell Growth: The Effect of
Co-stimulation, Checkpoints, and
Cytokines
In Equation (2) the term r quantifying growth rate is an aggregate
measure of different influences on T cells and may be considered
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a scalar multiple of a tensor quantity. This term represents the
cumulative growth effect of the costimulatory and inhibitory
molecules present on the T cells and the cytokines present
in the environment. In the dynamical system model of T cell
growth, the T cell steady state numbers are determined by TCR-
mHA-HLA affinity (BZ), also called “Signal 1.” A second critical
influence on T cell growth is provided by “Signal 2” mediated
by the costimulatory molecule CD28 and inhibitory molecule
CTLA4 (S2) may be mathematically represented by, CD28 =

1, CTLA4 = 0. Additionally, the checkpoint mechanism (CP)
comprising the PD1 receptors, if engagedmay be represented by a
variable valued at 0 because no T cell growth will occur, and when
absent, valued at 1. Finally, “Signal 3,” (S3) represents the effect of
cytokines on T cell growth (Supplementary Figure 3) (58–60).
Considering that all these variables contribute to T cell growth,
the term r is therefore a composite of the following factors,

r = CP(S2∗S3) . . . (7)

Solving this equation for lack of PD1 engagement (1) and the
presence of CD28 expression (1) yields,

r = 1(1∗S3)

r = S3

Solving the equation for CTLA4 expression or PD1 engagement
gives r a value of 0, which yields e0 = 1 in Equations (1, 2),
consistent with suppression of T cell growth. In other words, the
presence of PD1 engagement by PDL-1 or the engagement of
CTLA-4 instead of CD28, by CD80 on APC, changes r to zero,
eliminating the effect of time t, which changes the value of e to 1
(in Equation 2), leading to growth arrest of the T cell clone.

As for S3, the cytokine mediated signal may also be considered
a second order tensor quantity, consisting of a matrix with
cytokines and cytokine receptor vectors, because the cytokines
and their receptors, have different magnitudes and varying
receptor specific effects (directionality) on T cell growth and
differentiation. Ignoring the di- or trimerization of cytokine-
receptor protein subunits, a simplified version of the cytokine
tensor may be constructed as follows,

(

IL12 0
0 IL10

)

.

(

IL12R 0
0 − IL10R

)

=

(

IL12.IL12R 0
0 −IL10.IL10R

)

. . . .. (8)

This is the cytokine tensor, Ck, with the example showing
the interaction between IL-12 and IL-10 and their respective
receptors. It should be noted that cytokines may bind related
receptors with different affinities, providing different vector
components. The negative sign means a growth suppressive
effect, the net effect of cytokines can either be negative or positive
and as a multiple of the CD28-PD1 expression term, the Ck can
alter the magnitude and direction of effect of the exponent in
Equation (2) (by changing the symbol of r from – to+). Equation
(7) therefore is modified to

r = CP(S2∗ Ck
)

. . . . (9)

Further complicating these estimations from a physical
standpoint at a cellular level in Equation (8), cytokine exposure
will be variable since these effects are “local” to the tissue or
lymph nodes. Cytokines likely depend on diffusion via capillary
action in the extracellular matrix to create a “field” in which the
T cells experience the cytokine effects. These effects on growth
are of an exponential nature because of r being an exponent in
Equations (1, 2) (61). The receptor expression levels also vary
on different cells and confer a direction by means of influencing
differentiation and functional specificity to the T cell clones with
unique TCR.

Evolution of the T Cell Repertoire: Putting
It All Together
The above discussion illustrates the complexity inherent in the
multiple factors influencing the T cell responses to antigens
presented by HLA molecules. Nevertheless, it makes it clear that
despite the complexity, it is possible to describe the immune
interactions in mathematical terms, and therefore it is also
possible to simulate them, especially when antigen presentation
data are available. To do so one may take the example of a
random collection of tissue associated peptides. First, consider an
alloreactive peptide of any size varying between 7 and 18 amino
acids. This peptide will have a choice of binding to HLA class
I and II molecules (there are six of each). Therefore, depending
on its size and mode of acquisition (extracellular or cytosolic) it
will bind to the relevant HLA molecules with a unique binding
affinity. It is to be noted that depending on the number of binding
HLA molecules and the concentration of competing peptides,
there will be a probability function associated with each of these
interactions. As demonstrated above in Equations (4, 5), the
mHA (polymorphic peptide) binding affinity to available HLA
molecules, may be considered to represent the components of the
immune response vector to this antigen (or degrees of freedom
for the peptide). For most peptides, only one component (one
HLA-mHA complex) with the strong interaction will be relevant,
and others with weak interactions may be ignored. With the
peptide bound to one of the HLA molecules (or more depending
on binding affinity with other HLA molecules), it is presented
on the APC. If a T cell clone with a TCR which has affinity for
the HLA-peptide complex is present (a second probability term),
then depending on the CD28/CTLA-4 and PD1 expression levels
in the T cell clone, it will grow in the cytokine “field” present in
the tissue.

Thus, consider peptides (p1, p2... pn) with high affinities B1,
B2. . . Bn for HLAmoleculesH1, H2. . . Hn respectively, but with a
very low-level affinity for the non-corresponding HLAmolecules
present in the individual (e.g., the components p1H2, p2Hn, pnH1,
not considered here for the sake of simplicity in illustration, but
fundamental to the tensor concept) (Figure 6). These mHA-HLA
complexes have corresponding T cell receptors TCR1, TCR2. . .
TCRm with affinities, Z1, Z2. . . Zm, the tensorHpTmay be written
as follows,

B1Z1 B1Z2 B1Zm
B2Z1 B2Z2 B2Zm
BnZ1 BnZ2 BnZm

=

1 0 0
0 1 0
0 0 1
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Here n andm are indices which indicate the HLA-peptide affinity
(Bi) and TCR binding affinity to the HLA-peptide complex (Zj).
This is the alloreactivity tensor, and it reflects the interaction
of the alloreactive peptides with the HLA molecules in that
individual and transforms the T cell clonal vector comprised of
the array of the T cell clones bearing the above TCR <Tm>

according to the logistic function.

T′
1

T′
2

T′
m

=
d

dt
L





B1Z1 B1Z2 B1Zm
B2Z1 B2Z2 B2Zm
BnZ1 BnZ2 BnZm



 ∗

T1

T2

Tm

This results in the transformation of the infused donor T cell
repertoire, with T1, T2. . . Tm being transformed to T1’, T2’. . . Tm’
following transplant. The logistic growth equation provides the
rule for transformation, so Equation (1) may also be rewritten as
follows for the ith HLA-bound-peptide, pi, and the responding
jth T cell clone <Tj> in a repertoire comprised of T cell clones
T1 thru Tm.

<Nt (Tj)> =
<Pic.K(Tj)

BiZj> ∗ <N0 (Tj)>
(

<Pic.K(Tj)
BiZj> − <Nt−1 (Tj)>

)

(e−rt<Bi>)+ 1

Substituting the value of r from Equation (9) in this equation, we
get,

<Nt (Tj)
>

=

<Pic.K(Tj)
BiZj> ∗ <N0 (Tj)

>
(

<Pic.K(Tj)
BiZj> − <Nt−1 (Tj)

>

)

(e−(CP(S2∗Ck)t<Bi>)+ 1
. . .

(10)

The aggregate alloreactive T cell response at time, t then is

Nt (1→Tm) =

m
∑

1

<Nt (Tj) >

This general equation describes the transforming effect of the
alloreactivity tensor and the cytokine tensor on the T cell
repertoire following SCT. The risk of alloreactivity developing
clinically will in this instance be proportional to Nt(1→Tm).

Dynamical System Model of Alloreactive T
Cell Response and Clinical Observations
Does this model explain observations in clinical transplantation?
To determine this one may consider the general problem of
HLA mismatched SCT and associated negative clinical outcomes
(62, 63). In the dynamical system model this phenomenon
may be easily understood; the mismatched HLA epitopes are
highly expressed so instead of having a low concentration
alloreactive protein (the term P.c in Equation 2) governing T
cell clonal growth, T cell clones bearing TCR that recognize
epitopes on the mismatched HLA molecules may encounter an
order of magnitude higher target concentration with marked
amplification of the steady state alloreactive T cell clonal
populations. Indeed, polymorphisms impacting the level of HLA

expression correlate with the likelihood of GVHD developing
(64). Further any other peptides bound to the mismatched HLA
will be novel antigen complexes, to which thymic tolerance and
negative selection would not have occurred in the donor, so
donor-derived T cell clones will recognize these non-self-antigens
and proliferate. This would result in a strong aggregate immune
response to the mismatched HLA (and its presented peptides),
and this response may be significantly larger than a mHA-HLA
directed immune response in the HLA matched setting (65).

Despite the ability of this model to explain some common
clinical observations (logistic growth of T cells, power law
distributions, and CD4/CD8 clonal distribution), it will not be
validated unless it explains the random occurrence of GVHD
following allografting. A discussion of this has previously been
presented (22), where the competition between non-alloreactive
and alloreactive peptides for HLA binding and presentation was
invoked as a possible reason for this, resulting in a probability
distribution (ρHpn) for the alloreactive peptide pn to be presented
on HLAmoleculeH. A further consideration in the development
of GVHD from these alloreactive T cell clonal growth simulations
is the probability function introduced by peptide cleavage
potential, which affects the likelihood of antigen presentation, as
well as whether the relevant T cell clones are present following
transplantation (ρTm). The probability of peptide cleavage (ρpcl)
is determined by the amino-acid sequence at the C terminal of
the peptide antigens (66), as such, several peptides in our study
may have low likelihood of presentation and may be ignored
to simplify the model. The likelihood of alloreactive antigen
response (ρGVHD) may then be calculated as

ρGVHD =
(

ρpcl∗ρHpn
)

∗ρTm . . . . (11)

Computed for each alloreactive peptide, the probability of clonal
expansion of the mHA-targeting-T cells will be significantly
diminished as the number of probability terms are introduced
into the computations, which explains why despite many
potential alloreactive antigens being present in each donor and
recipient not every patient develops GVHD.

Another clinical phenomenon, the T cell growth amplification
effect of cytokines is well recognized clinically. This is recognized
in both the need for lymphodepletion prior to adaptive
immunotherapy and in the cytokine release syndrome seen
following it (67, 68). Thus far in the dynamical system model
discussed above the cytokine tensor effect has been described
as modulating rate of T cell clonal growth. However, cytokines
effect not only the rate, but they also effect the magnitude of
clonal expansion, amplifying the T cell clonal growth. This may
be modeled using the iterating equation

Nt (Tx) =

(

Ckt(1−(Nt(Tx)/K(Tx))
)

.




(Py.c.K(Tx)
ByZx )∗N0(Tx)

(

(Py.c.K(Tx)
ByZx )− Nt−1(Tx)

)

(e−(CP(S2∗Ck)tBy )+ 1



 . . .(12)

This equation demonstrates the effect of the cytokine tensor, Ck,
as a time-dependent function, which in the beginning increases
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the magnitude of T cell clonal growth for clones expressing the
relevant cytokine receptors by an order of magnitude. As the
number of T cells increases, this time-dependent effect declines
to a steady state level since the cytokines are taken up and utilized
by the growing T cell population. This relationship plotted over
time demonstrates the familiar T cell antigen response curve and
mirrors the effect of antigen presenting cell growth previously
described (Supplementary Figure 4) [See Koparde et al (22), for
discussion of APC-T cell interactions].

A final consideration in building this model is that the antigen
matrices presented above are “identity matrices” with binary
values of, 1 along the diagonal of a square matrix and 0 elsewhere.
In physiologic conditions, however there will be a continuum
of values because of differential binding of peptides to various
HLA molecules and cross reactivity of T cell receptors with
such antigen complexes, generating random number matrices,
rather than identity matrices (69). This will add another
element of complexity to the antigen-effector interactions, and
possibly provides a rationale for complex GVHD phenotypes
observed.

In conclusion, the considerable genetic variation present
between HLA matched transplant donors and recipients, when
analyzed in silico, yields a putative large array of recipient
mHA bound to both HLA class I and class II molecules
(Supplementary Table 3). The peptide-HLA antigen findings
reported here are likely to be revised and refined in the future as
the computational biology approach becomes more sophisticated
to account for the variables not considered in this analysis.
However, the value of this work lies in the mathematical
principles of T cell response to antigen arrays it helps illustrate.
This mathematical model may be used to optimize donor
selection and titrate immunosuppression, first, by utilizing
exome sequencing to determine the alloreactive antigen profile.
Second, contemporary high throughput sequencing of T cell
receptors would allow identification of antigen-HLA specific
motifs (70); extended to the donor T cells this may be used
to identify potential alloreactive T cell clones (37, 71). These
insights using a combination of next generation sequencing
and mathematical models accounting for the complexity of
alloreactive immune responses may be utilized to allow greater
precision in stem cell donor selection and management of
immunosuppression following transplantation in particular and
cancer immunotherapy in general.
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