Targeting hepatocellular carcinoma through TGF-β pathway E3 Ligases

Kazufumi Ohshiro
The George Washington University Medical School, kazufumiohshiro@gmail.com

Jian Chen
The University of Texas MD Anderson Cancer Center, jianchen@mdanderson.org

Shulin Li
The University of Texas MD Anderson Cancer Center, SLi4@mdanderson.org

See next page for additional authors

Follow this and additional works at: http://scholarscompass.vcu.edu/hepa_cancers
Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons

© The Author(s)

Downloaded from http://scholarscompass.vcu.edu/hepa_cancers/3

This Abstract Accepted for Presentation is brought to you for free and open access by the Dept. of Pathology at VCU Scholars Compass. It has been accepted for inclusion in Hepatobiliary Cancers: Pathobiology and Translational Advances by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Targeting hepatocellular carcinoma through TGF-β pathway E3 Ligases

Kazufumi Ohshiro¹, Jian Chen², Shulin Li³, Jon White⁴, Asif Rashid⁵, and Lopa Mishra¹,⁴

¹Center for Translational Research, Department of Surgery, George Washington University, Washington DC, USA; ²Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; ³Departments of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; ⁴Surgical Service, Veterans Affairs Medical Center, Washington, DC, USA; ⁵Department of Pathology, The University of Texas MDACC, Houston, TX, USA

*corresponding author

Although RING-finger E3 ligases are instrumental in the regulation of inflammatory, apoptosis and cancer, their role in hepatocellular cancer (HCC) was unknown. We therefore analyzed the TCGA database 29 TGF-β pathway associated E3 ligases in HCC and identified mRNA alteration in 55% of the tumors, most prominently for UCHL5, PJA, WWP2, SMURF1/2 and KEAP1. We recently uncovered increased PJA1 expression in TGF-β deficient (β2SP−/+;Smad3−/+ ) mice, which develop a human stem cell syndrome and HCC. Analyses of primary HCC datasets reveal increased PJA1 correlates with decreased levels of TGF-β/Smad3 and their regulated genes including Smad9 and TGFBR3. PJA1 interacts with the Smad3 MH2 domain and β2SP N- and C-terminal domains to promote ubiquitin-mediated Smad3 degradation in a TGF-β dependent manner. In addition, we found that PJA1 expression in HCC is negatively associated with the expression of c-FOS and SERPINE1. Overexpression of a RING-domain-deleted PJA1 reduced HCC cell proliferation and PJA1 knockdown significantly decreased HCC anchorage-independent growth and tumorigenicity. E3 ligase inhibitors, RTA402/405, originally identified as inhibitors for KEAP1, blocking KEAP1-dependent Nrf2 ubiquitination was shown to inhibit HCC cell proliferation and tumor growth in nude mice. RTA402/405 increased β2SP and TGF-β signaling target expression and luciferase activity and RTA402 was shown to bind PJA1 RING-finger domain by molecular docking experiment. Finally, our results demonstrate that PJA1 promotes liver cancer stem cell formation in Smad3−/+ mice. Taken together, these studies demonstrate that loss of β2SP and Smad3 through PJA1 could play an important role in the development of HCC and reveals that PJA1 may be novel therapeutic targets for this lethal disease.