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Abstract 
 
DNA profiles do not provide as much evidentiary value when either all known samples can be 
excluded or when there is no known suspect. DNA phenotyping is a technique used for 
investigative purposes to predict externally visible characteristics (EVCs) based on specific 
markers found in the genome. Most phenotyping panels are currently restricted to markers stable 
over a lifetime within an individual and are not able to predict environmental or metabolic 
impacts on EVCs. It is known that miRNA expression levels change due to environmental and 
metabolic factors, such as BMI, and research has proven associations between circulating plasma 
miRNAs and BMI. In this project, 25 dried whole blood swabs were prepared from individuals 
with varying BMI values. To accommodate the typical forensic casework protocol, a DNA 
extraction method (QIAamp DNA Investigator Kit) was utilized followed by a cDNA synthesis 
reaction. Fifteen candidate miRNAs were examined for their expression levels and analyzed 
against both BMI and weight. It was found that the calculated change in quantification cycle 
from stable miRNA expression, or DCq, of miR-486-5p and miR-885-5p both individually 
showed negative associations with BMI. The DCq of miR-486-5p additionally showed a negative 
association with weight, along with the DCq of let-7i-5p and the Cq of miR-194-5p. The 
observed associations were found to be weak, but it is proposed that this is mostly due to the 
small sample size of this study. However, the data collected in this study, when analyzed using 
predictive models, was shown to have some success with a classification and regression tree 
analysis and a high level of success when utilizing a support vector machine model. This 
research demonstrates the possibility of adding environmentally impacted EVCs into current 
phenotyping panels. Recommendations for future work include the testing of additional markers 
and the use of a larger set of samples from the population. 
 
 
Keywords: forensic science, forensic biology, DNA phenotyping, BMI estimation, blood swabs, 
miRNA expression  
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Introduction 

 The use of short tandem repeats (STRs) found in the human genome for forensic analysis 

has been regarded as the gold standard in the field of forensic biology. These have proven to  

produce reliable results even with low-level and partially degraded DNA, often the case of 

forensic samples (1). While this type of analysis can be imperative in the understanding of a 

crime, the DNA profile produced may only be useful in the comparison to known profiles. When 

suspects are eliminated from contributing to the DNA profile found on evidence or when there 

are no known suspects nor databank hits, further examination may give investigators leads based 

upon phenotypic features inferred from the same biological evidence.  

 Single nucleotide polymorphisms (SNPs) are known to be useful identifiers for specific 

genes and have been used as markers to predict various phenotypic appearances (2). SNPs 

associated with phenotypes due to pigmentation have been some of the most investigated. For 

example, blue versus brown eye color has been shown to be highly predictive with about a 90% 

success rate for each using the IrisPlex multiplex assay (3,4). In addition, the newer HIrisPlex 

system combines eye color prediction with reliable hair color prediction, both independent from 

bio-geographic ancestry (5). While less reliable and much more explorative, SNPs have been 

recognized as potential biomarkers for the prediction of facial features as well, such as eyebrow 

width, eye distance. In addition, previously identified markers for sex and biogeographic 

ancestry have also been found to aid in the prediction of facial features (6). Methods outside of 

using SNPs have also been identified as predictors of phenotypes such as DNA methylation. 

certain DNA methylation sites are associated with the age of an individual and can accurately 

predict age (±6 years) 77.30% of the time in individuals under 60 years of age (7). Known age-
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informative CpGs have since been investigated as biomarkers with low-level DNA input, as the 

case with most forensic samples, showing promising results with as low as 20ng of DNA (8). 

 MicroRNAs (miRNAs), particularly extracellular miRNAs, are RNA molecules 18-24 

nucleotides long and are known to have regulatory functions with neighboring cells (9). Their 

regulatory functions and stability due to their small size have proven miRNAs to be useful in the 

determination of the age of a biological stain as well as the age of an individual (10,11).  Similar 

to age of individuals, miRNA expression levels have been shown to suggest postmortem 

intervals in incisional wounds (12). 

 Body mass index (BMI) is a measurement of body fat, and is calculated by dividing an 

individual’s weight (kg) by their height squared (m2). BMI or body weight prediction would 

provide an immense asset to the forensic community if added to a larger panel of phenotype 

markers, providing another piece of information to create a more accurate image of an individual 

solely from a biological sample. While not yet investigated for forensic purposes, there have 

been significant advances in biomedical research regarding the relationship of certain biomarkers 

and BMI due to the known correlations that BMI has with various health risks. Similar to the 

findings about age and the methylation of CpG sites (7), methylation levels at certain loci in 

blood cells have been found to be associated with BMI (13). It has been found that high BMI 

levels are also associated in changes of messenger RNA (mRNA) expression, including 

inflammatory related mRNAs in the brain (14). Similarly, certain variants in BMI-related genes 

affect the efficiency of miRNAs to bind to those genes, making them less able to block the 

production of protein (15).  

 As the understanding of miRNAs and their functions are explored, so are the 

relationships between expression levels and phenotypes. As the body mass index (BMI) of an 
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individual can be highly dependent on metabolic factors, biomarkers such as SNPs become less 

useful in the estimation of BMI from body fluid samples. miRNAs become an ideal candidate for 

predicting this category of phenotypes as the regulation of genes change alongside these 

metabolic factors.  

 Specific miRNA candidates that correlate with BMI have been identified in published 

biomedical research, demonstrating linear relationships with miRNA expression levels in plasma 

and a varying range of BMIs. In a study investigating predictors of metabolic syndrome, 

relationships were observed between two circulating plasma miRNAs and BMI, as well as 

relationships with other predictors such as waist circumference, blood pressure, and plasma 

glucose (16). A total of 19 circulating plasma miRNAs were found to have significant 

associations with BMI, with three specific miRNAs (miR-122-5p, miR-148a-3p, miR-505-3p) 

showing the most significant associations with q < 0.001 (17). In addition, some of those 

identified miRNA markers have been confirmed to correlate with BMI through previous studies 

in our research laboratory using RNA from plasma samples from individuals with known BMIs 

ranging from normal weight (BMI = 18.5-24.9) to obese (BMI ≥ 30), with the most interesting 

trends seeming to show between BMI and miRNAs miR-106a, miR-185-5p, and let-7i-5p 

(Figure 1). It is hypothesized that these same correlations between miRNA expression levels and 

BMI are to be observed in dried whole blood, commonly encountered in forensic evidence 

samples, along with various other body fluids which would allow for the addition of these 

biomarkers to a larger phenotypic panel to aid in investigative leads.  

 Furthermore, it has been previously demonstrated in our laboratory that traditional 

forensic DNA extraction methods are consistently effective in coextracting miRNA with DNA, 

although a lower miRNA yield than that observed with RNA specific extraction methods was 
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observed (18). It is therefore additionally hypothesized that using a DNA specific extraction 

method in this study would be efficiently isolate miRNA for downstream expression profile 

analysis, indicating the applicability of integrating miRNA-based techniques into forensic 

biology workflows.  

 

Methods 

Sample Selection and DNA/RNA Extraction 

 A total of 25 dried whole blood samples of known origin collected on sterile cotton 

swabs and stored at room temperature were taken from the VCU Forensic Science Department 

IRB-approved Forensic Science Biological Samples Registry (HM20002931). BMI was 

calculated and categorized according to the Centers for Disease Control and Prevention 

guidelines (19). Samples were selected so that all BMI categories were represented, ranging from 

underweight to obese, as shown in Table 1. Based on the demonstrated ability to isolate miRNA 

from DNA extracts (17), DNA was extracted from the samples using the QIAcube (Qiagen, 

Hilden, Germany) instrument using the QIAamp DNA Investigator Kit reagents and following 

the Forensic Casework sample protocol with an elution volume of 30μL. Extracts were stored at 

-20°C until use. 

Reverse Transcription of miRNA Extracts 

 Reverse transcription was performed on the Proflex PCR System (Thermo Fisher 

Scientific, Waltham, MA) using the qScriptTM miRNA Quantification System (Quanta 

Biosciences, Gaithersburg, MD). Using the reagents provided from the the qScriptTM miRNA 

Quantification System (Quanta Biosciences), the first reaction was performed by adding 2μL 

Poly(A) Tailing Buffer, 7μL of extracted DNA, and 0.6μL of Poly(A) Polymerase, followed by 
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an incubation of 37°C for 40 minutes, and then 70°C for five minutes. The cDNA synthesis 

reaction was performed by adding 9μL of microRNA cDNA Reaction Mix and 1μL of qScript 

Reverse Transcriptase to the previous reaction mix. This reaction was incubated for 20 minutes 

at 42°C followed by five minutes at 85°C. The resulting cDNA solution was stored at -20°C until 

use.  

Amplification and Detection 

 Specific qPCR primers were used for each candidate miRNA and obtained from IDT 

(Integrated DNA Technologies, Coralville, IA, USA) (Table 2). All new primers were tested 

prior to the experiment using samples consisting of DNA extract, DNase treated DNA extract, 

reverse transcribed miRNA from DNA extract, and reverse transcribed miRNA from DNase 

treated DNA extract to ensure specificity of the primer to miRNA. Only primers that showed 

similar amplification of product in the reverse transcribed DNA extract sample and product in 

the reverse transcribed DNase treated extract without amplification in either of the two non-

reverse transcribed DNA extract samples were used.  

 Each miRNA target was amplified in single wells for each sample by mixing 6.25μL 

PerfeCTa SYBR Green SuperMix (2X) (Quanta Biosciences), 0.25μL PerfeCTa microRNA 

Assay Primer (10μM) (Integrated DNA Technologies), 0.25μL PerfeCTa Universal PCR Primer 

(10μM) (qScriptTM miRNA Quantification System, Quanta Biosciences), 3.75μL nuclease-free 

water, and 2μL microRNA cDNA. The 3-step cycling protocol was as follows: 2min pre-

incubation at 95°C; 40 PCR cycles consisting of 95°C for 5sec, 60°C for 15sec, and 70°C for 

34sec; and a final extension stage comprised of 95°C for 15sec, 60°C for 1min, and 95°C for 

15sec. 
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 Raw data was analyzed within the QuantStudio TM Real-Time PCR software v1.3 

(Thermo Fisher Scientific) using a quantification cycle (Cq) threshold of 0.015. Differential 

expression or delta cycle threshold (DCq) values were calculated by subtracting the candidate 

miRNA Cq value from the let-7g Cq value, as let-7g has been shown to show stable expression 

across samples (20). All samples with an undetectable amount of miRNA expression were given 

a Cq value of 40 for analysis purposes.  

Data Analysis 

 Data was first visualized using Microsoft Excel (Microsoft Corporation, Redmond, WA) 

to show general trends between BMI, DCq, Cq, and weight. Promising markers from visual 

examination of the data were then analyzed in RStudio v4.0.2 (Integrated Development 

Environment for R, Boston, MA) (21). Linearity and homoscedasticity were confirmed for all 

sample sets using quantile-quantile plots. A simple linear regression test was performed; due to 

the preliminary nature of this work, a confidence level of 0.90 was utilized (p < 0.10 was 

considered statistically significant). To assess the predictive qualities and strength of the miRNA 

markers selected in this study, data from all markers (both raw Cq and DCq) were combined and 

used in a classification and regression tree (CART) analysis in RStudio using the rpart and 

rpart.plot packages. Additionally, a support vector machine (SVM) model (type: C-classification; 

kernel: linear; cost: 1) was analyzed using the package e1071. R code for each analysis is shown 

in Supplemental Table 1.  

 

Results and Discussion 

Sample Selection and Primer Validation 
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 Selection of samples used in this project were limited to those with recorded weight and 

height. The CDC’s guidelines for BMI calculation were used to determine if the samples 

belonged to the underweight, normal, overweight, or obese categories. Samples were then chosen 

in order to have representation among all four categories, as shown in Table 1. Due to the 

limitations of only being able to use samples with recorded weight and height and not being able 

to collect new samples due to the COVID-19 pandemic, all BMI categories could not be equally 

represented. In addition, two miRNA primers selected for this study could not be validated using 

the methods described above. These two miRNA candidates, miR-193b-3p and miR-122-5p, 

were therefore not tested or further used for this study.  

Preliminary Analysis/Visualization 

 Analysis of the raw results from amplification of the selected miRNA candidates showed 

that seven of the 15 targets had at least one sample with undetectable amounts of miRNA 

expression. While it has been demonstrated that miRNA can be coextracted using traditional 

DNA extraction methods, there is known reduction in sensitivity when comparing RNA 

extraction methods to DNA extraction methods for the purpose of extraction RNA (19). While 

this issue could be resolved using specific RNA extraction techniques, it would be at the cost of 

implementing a separate step from the already established DNA workflow for the lab analyst, 

costing time, materials, and consumption of sample. It is important to note that while random 

undetectable miRNA expression is an issue with some of the observed results of this experiment, 

observing an entire category of samples with mostly undetectable miRNA expression may 

strengthen the power of using these miRNAs to discriminate between BMI categories. 

 When amplification results were analyzed visually, there was also interest in evaluating 

the data strictly by weight as well as the initial proposal of analyzing BMI, as it is known that 
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BMI is not a perfect system of determining body fat percentage (22). Two specific miRNA 

targets, miR-486-5p and miR-885-5p, showed interesting trends when analyzed using 

scatterplots based on DCq and BMI (Figure 2). Additionally, DCq expression from miR-486-5p 

seemed to show a linear trend when compared against donor weight (Figure 3). Two final 

markers of interest were let-7i-5p and miR-194-5p, which seemed to show trends between their 

respective raw Cq values and donor weight (Figure 4). In contrast, miR-143-3p demonstrated no 

apparent trend in the data and therefore was not selected for any further statistical analysis 

(Figure 5). Once these preliminary visual identifications were made, miR-486-5p, miR-885-5p, 

miR-486-5p, let-7i-5p, and miR-194-5p were analyzed for association using RStudio. All 

selected targets were firstly analyzed using quantile-quantile plots to determine linearity and 

homoscedasticity (Figure 6).  

Association Analyses 

 When preliminarily visualizing data, a seemingly linear relationship was observed 

between DCq and BMI for both miR-486-5p and miR-885-5p (Figure 2). The results from a 

simple linear regression analysis showed that the DCq value of miR-486-5p (p = 0.0822, R2 = 

0.1256) and miR-885-5p (p = 0.0939, R2 = 0.1172) could explain 12.56% and 11.72% of the 

observed variability in BMI respectively, leading to a determination that both have a negative 

association with BMI (Figure 7A&B). Likewise, analysis of the DCq from miR-486-5p (p = 

0.036, R2 = 0.1775) showed it could explain 17.75% of the observed variability in donor weight, 

demonstrating a negative association as well (Figure 7C).  

 While the previously mentioned associations were found using DCq, let-7i-5p and miR-

194-5p seemed to show a linear relationship between the raw Cq values and donor weight 

(Figure 4). Using a simple linear regression analysis, let-7i-5p (p = 0.04977, R2 = 0.1572) and 
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miR-194-5p (p = 0.0866, R2 = 0.1223) could explain 15.72% and 12.23% of the observed 

variability in donor weight respectively, leading to a determination that both have a negative 

association with donor weight (Figure 8).  

 Markers found to be significant from the simple linear regression analyses with similar 

predictors were analyzed together using a multiple linear regression analysis. When analyzed 

together against the calculated BMI, the DCq values from miR-486-4p and miR-885-5p did not 

prove to hold any statistical significance (p = 0.1085). Additionally, the Cq values from let-7i-5p 

and miR-194-5p were analyzed together using a multiple linear regression analysis, but had no 

statistical significance as well (p = 0.1518).   

 While not found to be statistically significant, interesting trends were observed for 

several miRNA targets from the visual examination of the data by scatterplots. Interesting trends 

of note were between DCq and BMI with two observed outliers for miR-365-3p, between DCq 

and BMI with three observed outliers for miR-20a-5p, between DCq and weight for miR-145-5p, 

and between Cq and weight for miR-505-3p when excluding observed outliers from undetectable 

samples (Figure 9).  

 While it was initially proposed that the trends observed for circulating plasma miRNAs 

would continue with dried whole blood samples, starkly different trends were observed. For 

example, when using blood serum and an RNA extraction method, no meaningful trends were 

observed when DCq was plotted against BMI for either miR-486-5p or miR-885-5p (Figure 1). 

However, these two markers showed a statistically significant association between DCq and BMI 

with dried whole blood samples and using a DNA extraction method, as discussed above. 

Additionally, markers which seemed to be promising from the previous validation, such as miR-

106a or miR-99a-5p, did not show any significance or possible trends in this study. It should also 
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be noted that the previous validation using blood serum and an RNA extraction method did not 

include any underweight individuals. Even so, the visualized trends from the normal to obese 

samples did not correspond with the results presented from this study either.  

 The most obvious potential explanation for the differences observed in this study could 

be due to the shift from analyzing total miRNA from blood serum to total miRNA in whole 

blood. While individual miRNA expression profiles may be consistent when analyzing 

circulating miRNAs specifically, analyzing miRNA expression from whole blood will also 

display any intracellular miRNA expression from leukocytes and erythrocytes as well, 

potentially changing the entire expression profile (23, 24). This is especially true for this study 

and miRNAs associated with BMI, as leukocyte count can increase with higher BMI levels (25). 

In addition to leukocytes, erythrocytes also contain miRNA and miR-486-5p, a statistically 

significant marker in this study, has specifically been observed to be one of the major miRNAs 

found in erythrocytes (26). It is also a possibility that the chosen extraction method could be a 

factor in the difference in observed results. Random samples with undetectable amounts of 

amplification product were observed for some miRNA targets in this study, and therefore 

contributed as outliers, potentially skewing trends with either BMI or donor weight.  

 For the four markers found to hold statistically significant associations from the simple 

linear regression analyses, boxplots were constructed to analyze any potential differences 

observed between the reported sexes of the donors. Plots were first made to compare if any 

overall differences between sexes for both BMI and donor weight could be identified (Figure 

10). As it was already known that more female samples were used in the sample set for this study 

(19 females, six males), it was not surprising to see that females were shown to have a lower 

average weight than males, as males were more underrepresented in the underweight and normal 
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BMI categories, however distribution of BMI was similar between the two. Plots were also 

constructed to show the distribution of either DCq or Cq for each marker found to be of statistical 

significance from the simple linear regression analysis with either BMI or donor weight (Figure 

11). Although differences were observed, distributions were not different enough to be 

unexpected considering the sample size. While no notable differences were observed in regards 

to sex in these results, future studies should try to maintain equal representation of sexes within 

sample sets when available.  

 It is not too surprising that the four significant markers identified from the simple linear 

regression analyses in this study have some sort of association with weight or the calculated BMI 

as there have been published studies discussing their potential roles with weight-related factors. 

The first discussed target, miR-486-5p, has been demonstrated to be involved in the regulation of 

proliferation of human adipose-derived mesenchymal stem cells (27). While this does not 

explain the observed results from this study, knowing the roles that these miRNAs play with 

adipocytes is not surprising considering the relationship between adipocyte hyperplasia and BMI 

(28). In addition, an upregulation of miR-885-5p has been observed in individuals with fatty liver 

disease (29). The association observed in this study may potentially be partially explained by this 

association as BMI is known to be associated with fatty liver risk (30). Another significant 

marker, let-7i-5p, has been suggested to be involved in the browning process of white 

adipocytes, having a decreased expression in brite adipocytes (31). While more studies need to 

be performed to confirm, these findings seem to contradict the results observed from this study, 

since it can be inferred that individuals with lower overall weight would have increased 

browning of adipose tissue when compared to individuals with higher weight; however, the 

overexpression of let-7i-5p was observed to repress brite adipocyte function (31). Lastly, miR-
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194-5p is not very well characterized with its relationship to BMI or weight; however, it has 

been observed that there is a significant decrease in expression levels when analyzing the kidney 

tissue of diabetic mice (32). 

Predictive Models 

 Although any associations analyzed were found to be weak, a CART analysis was 

included to determine when Cq and DCq data from all markers were combined, if any useful 

determinations could be made to allow for the classification of samples into BMI groups. The 

resulting classification tree is shown in Figure 12A with the Cq data from miR-505-3p being 

recognized as the most predictive, separating samples with a Cq value ³ 35 into the normal 

weight category, with the rest of the samples categorized as overweight. As shown in Table 3A, 

eight out of the nine normal weight individuals were correctly classified (88%), while one 

individual was misclassified as overweight. Five out of seven individuals were correctly 

classified as overweight (71%), with two individuals misclassified as normal. Four of the obese 

individuals were classified as normal, two obese individuals classified as overweight, and all 

underweight individuals were classified as normal (52% correct overall). The same results were 

yielded when a CART analysis was performed using strictly raw Cq data.  

 Additionally, a CART analysis was performed using strictly DCq values for each target 

miRNA, and miR-194-5p was determined to be the most predictive separating individuals with a 

DCq of -4.6 or greater into the normal category, and all other individuals into the obese category 

(Figure 12B). As shown in Table 3B, eight normal weight individuals were correctly classified 

(88%), while one individual was classified as obese. Four out of the five obese individuals were 

correctly classified (80%), with one individual incorrectly classified as normal. Five overweight 

individuals were classified as normal, with the other two overweight individuals classified as 
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obese. One underweight individual was classified as normal, with the other four classified as 

obese (48% correct overall). The addition of sex as a predictor in all CART analyses did not 

prove to contribute to any predictions.  

 In addition to the CART analyses, a SVM model was used for classification prediction of 

individuals. The SVM was able to correctly classify each individual to its corresponding BMI 

category when blindly tested using both the raw Cq and DCq values collected from this study as 

a training set (100% correct overall) (Table 4A). While the correct classification rate for this 

model is incredibly high, it is important to emphasize the role that the small size of the dataset 

may play with these predictions. The small sample size contributes to the potential that the data 

is overfit, meaning more data will most likely render the model less accurate than observed in 

this study. Consequently, when only using raw Cq values as the training set, one individual was 

misclassified (94% correct overall) (Table 4B). A larger sample set will need to be analyzed to 

evaluate the true classification accuracy of using SVM as a model for phenotypic prediction.  

Integration into Phenotypic Panel 

 Although the association between the analyzed miRNA expression patterns and 

BMI/weight were not considerably strong, there was some found success observed in the 

categorization of samples into BMI categories using a CART analysis and SVM model. These 

observed associations, along with the success in using this small sample set with predictive 

models, provides confidence that further research may discover that BMI or weight prediction in 

a phenotypic panel is very much possible. Further research with an expanded sample set 

including all BMI categories and a variance in weight of individuals is needed to confirm the 

associations and success with this project.  
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 Along with an expanded sample set, an increase in miRNA targets is suggested as well, 

including miR-223, miR-125b, miR-221, miR-199b-3p, miR-199-5p, miR-100, miR-10a, miR-

34a, miR-199a-5p, miR-1229, miR-210, miR-99b, miR-92a, miR-142-5p, miR-130b, miR-484, 

miR-133b, and miR-236. It has been observed that circulating miR-223 expression in blood 

serum is lower in individuals with higher BMI than in normal-weight individuals, and 

additionally has been shown to increase when the BMI of individuals is lowered due to lifestyle 

changes (33). Additionally, miR-133b and miR-236 should be investigated further as potential 

biomarkers to help identify underweight individuals. These two miRNAs have been observed to 

offer a potential connection between their expression values, nutrition, and age-related skeletal 

muscle decline when analyzing expression values in plasma (34). While a classification of 

underweight with respect to BMI does not strictly mean an individual is malnourished, it is 

proposed that these two miRNAs may potentially show an association between underweight 

individuals and observed expression. Lastly, the remaining miRNAs addressed above have been 

observed to have significant associations with BMI when analyzing subcutaneous adipose tissue 

(35). Since two of the associated markers in this study have been demonstrated to be expressed 

in and have functions with adipocytes, it is hypothesized that these listed markers may also have 

detectable levels of expression in whole blood samples. Additions to the four miRNAs observed 

in this study would be helpful in strengthening the value of BMI/weight predictive models when 

integrating into a phenotypic panel. 

Expansion to Other Forensically Relevant Body Fluids 

 If continued associations were to be observed using an expanded sample set with dried 

whole blood, it is suggested that this project should be expanded to investigate associations with 

other forensically relevant body fluids, such as saliva. Since inflammatory response proteins can 
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be detected in saliva samples (36), it is proposed that saliva would potentially uphold many 

associations found between miRNA and BMI/weight observed in whole blood. It has been 

documented that adipose tissue is responsible for an inflammatory response to obesity (37). 

Since two of the miRNAs discussed in this study are known to be related to adipocytes and 

therefore potentially inflammation, inflammatory-related miRNAs (triggered by a high BMI) 

may potentially be able to be detected in saliva samples at similar expression patterns as shown 

in whole blood. 

 

Conclusion 

 With increasing amounts of biological samples being submitted to forensic laboratories, 

the issue of producing DNA profiles without any useful known profile for comparison is also 

increasing. Predictive phenotyping is currently being introduced in such cases where a suspect 

may be unknown; however, this method for investigative leads currently only provides specific 

information from markers that are stable in the genome from birth. If associations between 

miRNA expression levels and metabolic or environmentally impacted phenotypes could be 

identified, characteristics such as BMI or weight could then be predicted just as hair, eye, or skin 

color. The goal of this project was to identify miRNA candidates that correlate with BMI using 

dried whole blood samples and methodology typical for a forensic laboratory to be used in 

further research for incorporation of these markers into a larger phenotyping panel for 

investigative purposes.  

 Previous work had identified multiple circulating plasma miRNAs shown to have strong 

associations with BMI (17), which were the markers selected for investigation in this study. In 
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contrast to the previous study, a DNA extraction method was used to show the ability to integrate 

miRNA analysis easily into the current typical forensic case workflow.  

 It was initially proposed that similar trends would be observed in this study as compared 

to those from a previous validation of the same markers using blood serum and an RNA 

extraction technique. The results of this study prove that while the same trends are not observed, 

miRNA targets analyzed still demonstrated statistically significant associations with either BMI 

or weight. Two candidate miRNAs (miR-486-5 and miR-885-5p) have an association with BMI 

and three candidate miRNAs (miR-486-5p, let-7i-5p, and miR-194-5p) have an association with 

weight. While these associations are not strong, these findings, put into perspective with the 

small sample size used, are promising for further research.  

 Through the use of a CART analysis as a means of a predictive model, eight out of nine 

normal weight individuals and five out of seven overweight individuals are correctly classified, 

with a total of 13 out of 25 total samples correctly classified using the combined Cq and DCq 

values. Using only raw Cq values, eight out of nine normal weight individuals and four out of 

five obese individuals are correctly classified, with a total of 12 out of 25 total samples correctly 

classified. All samples are correctly predicted into their respective BMI categories using an SVM 

model and combined Cq and DCq data. However, the possibility of the data being overfit due to 

the small sample size is very likely. This demonstrates the need for the addition of a larger 

sample size and the addition of more miRNA markers to further the ability to confidently 

separate between BMI groups.  

 In conclusion, the findings of this study prove that associations between miRNA 

expression due to a response to metabolic factors, such as BMI or weight, can be detected in 

complex forensic sample types such as whole dried blood. It is proposed that with a larger 
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sample set, stronger associations may be identified and, therefore, be used for the optimization of 

predictive models for either BMI or weight. In order to further this research, a larger sample size 

should be used along with the testing of more target miRNAs. If continued associations were to 

be found, predictive modeling applications, such as the CART analyses and SVM model 

predictions demonstrated in this study, could be optimized. If accurate, miRNA markers could be 

used in conjunction together for BMI or weight prediction and added to a larger forensic DNA 

phenotyping panel to be used for investigative purposes.  
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Figure 1. miRNA expression from preliminary study using blood serum and an RNA isolation 
method and samples with known BMI ranging from normal (BMI = 18.5-24.9), overweight 
(BMI = 25-29.9), to obese (BMI ≥ 30). Expression normalized to let-7g. 
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Table 1. Selected samples 
 

Sample Sex Race Weight (lbs) Height (in) BMI 
7046 Male Caucasian 115 69 17.0 
5117 Female Asian 106 65 17.6 
8018 Female Asian 105 64 18.0 
1222 Female African American 123 69 18.2 
8021 Female Caucasian 130 65 21.6 
8026 Female African American 119 62 21.8 
1087 Female Asian 125 63 22.1 
8004 Female Hispanic 135 65 22.5 
5137 Female Caucasian 145 67 22.7 
8016 Female Caucasian 150 68 22.8 
8020 Female Caucasian 146 66 23.6 
1213 Male Asian 160 69 23.6 
1088 Female African American 140 64 24.0 
8008 Male  Caucasian 175 68 26.6 
7042 Male African American 175 66 28.2 
1090 Female Caucasian 162 63.5 28.2 
1081 Female Caucasian 170 65 28.3 
8031 Female Asian 150 61 28.3 
7505 Male Asian 198 70 28.4 
1089 Female Hispanic 180 66 29.0 
7504 Female Asian 180 65 30.0 
7507 Female African American 180 65 30.0 
1220 Male Caucasian/Pacific Islander 225 71 31.4 
8015 Female Chinese 125 52 32.5 
1085 Female Caucasian 210 66 33.9 

Blood samples selected from the IRB-approved registry and used for testing. BMI is colored 
based on category with green representing underweight individuals (BMI < 18.5) (4), yellow 
representing normal weight individuals (BMI = 18.5-24.9) (9), orange representing overweight 
individuals (BMI = 25-29.9) (7), and red representing obese individuals (BMI ≥ 30) (5). 
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Table 2. Candidate miRNAs 
 

miRNA ID Accession # Human miRNA Sequence Primer Sequence 

hsa-miR-20a-5p* MIMAT0000075 UAAAGUGCUUAUAGU
GCAGGUAG 

CGCTAAAGTGCTT
ATAGTGCAGGT 

hsa-miR-93-5p* MIMAT0000093 CAAAGUGCUGUUCGU
GCAGGUAG 

AAAGTGCTGTTCG
TGCAGGT 

hsa-miR-99a-5p** MIMAT0000097 AACCCGUAGAUCCGA
UCUUGUG 

CGCCAACCCGTAG
ATCC 

hsa-miR-106a-5p MIMAT0000103 AAAAGUGCUUACAGU
GCAGGUAG 

CGCCAAAAGTGCT
TACAGTGC 

hsa-miR-143-3p* MIMAT0000435 UGAGAUGAAGCACUG
UAGCUC 

TGAGATGAAGCAC
TGTAGCTCAAA 

hsa-miR-145-5p MIMAT0000437 GUCCAGUUUUCCCAG
GAAUCCCU 

CAGTTTTCCCAGG
AATCCCTAA 

hsa-miR-148a-3p* MIMAT0000243 UCAGUGCACUACAGA
ACUUUGU 

CGCTCAGTGCACT
ACAGAACTTT 

hsa-miR-185-5p MIMAT0000455 UGGAGAGAAAGGCAG
UUCCUGA 

TGGAGAGAAAGGC
AGTTCCTG 

hsa-miR-194-5p MIMAT0000460 UGUAACAGCAACUCC
AUGUGGA 

ACAGCAACTCCAT
GTGGAAAA 

hsa-miR-215-5p MIMAT0000272 AUGACCUAUGAAUUG
ACAGAC 

CGCATGACCTATG
AATTGACAGAC 

hsa-miR-365a-3p* MIMAT0000710 UAAUGCCCCUAAAAA
UCCUUAU 

CGTAATGCCCCTA
AAAATCCTT 

hsa-miR-486-5p MIMAT0002177 UCCUGUACUGAGCUG
CCCCGAG 

GAGCTGCCCCGAG
AAAAA 

hsa-miR-505-3p MIMAT0002876 CGUCAACACUUGCUG
GUUUCCU 

CGTCAACACTTGC
TGGTTTCC 

hsa-miR-885-5p MIMAT0004947 UCCAUUACACUACCC
UGCCUCU 

TCCATTACACTAC
CCTGCCTCT 

hsa-let-7i-5p MIMAT0000415 UGAGGUAGUAGUUUG
UGCUGUU 

CGTTCTGAGGTAG
TAGTTTGTGCT 

*excluded from combined (Cq and DCq) support-vector machine analysis due to missingness 
from some samples 
**excluded from all statistical analyses due to lack of expression in all but two samples  
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A. 

 

B. 

 
 
Figure 2. Observed relationships between DCq and BMI 
Calculated DCq using let-7g as the normalizer plotted against the known donor BMI for (A) 
miR-486-5p and (B) miR-885-5p. Samples are colored according to BMI classification with 
underweight (green), normal (yellow), overweight (orange), and obese (red). Trendline added to 
show potential negative association between miRNA expression and BMI. 
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Figure 3. Observed relationship between DCq and weight 
Calculated DCq using let-7g as the normalizer plotted against the known donor weight for miR-
486-5p. Trendline added to show potential negative association between miRNA expression and 
donor weight.  
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A. 

 

B. 

 
 
Figure 4. Observed relationship between Cq and weight 
Observed Cq plotted against the known donor weight for (A) let-7i-5p and (B) miR-194-5p. 
Trendline added to show potential negative association between miRNA expression and weight.  
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Figure 5. Example miRNA of no interest 
Example of miRNA marker (miR-143-3p) showing no trend of interest when calculated DCq was 
plotted against the known donor BMI. Samples are colored according to BMI classification with 
underweight (green), normal (yellow), overweight (orange), and obese (red).  
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Figure 6. Q-Q plots for association analyses 
Quantile-quantile (Q-Q) plots showing linearity and homoscedasticity for (A) BMI and (B) DCq 
observations from miR-486-5p dataset, (C) BMI and (D) DCq from the miR-885-5p dataset, (E) 
donor weight from the miR-486-5p dataset, (F) donor weight and (G) Cq from the let-7i-5p 
dataset, and (H) donor weight and (I) Cq from the miR-194-5p dataset.  
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A.                                 B. 

         

 
C. 

 
 

Figure 7. Q-Q plots of residuals for associations with DCq 
Quantile-quantile (Q-Q) plot of residuals from simple linear regression analysis between (A) 
calculated DCq values and BMI for miR-486-5p, (B) miR-885-5p. Q-Q plot of residuals between 
(C) DCq values and donor weight for miR-486-5p also shown. 
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A. 

 
 

B. 

 
 

Figure 8. Q-Q plot of residuals for associations with Cq 
Quantile-quantile plot of residuals from simple linear regression analysis between observed Cq 
values and donor weight of (A) let-7i-5p expression and (B) miR-194-5p.  
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Figure 9. Observations from preliminary study 
Trends observed in preliminary visualization of data found to not be statistically significant for 
miR-365-3p, miR-20a-5p, miR-145-5p, and miR-505-3p. Samples in plotted against BMI are 
colored according to BMI classification with underweight (green), normal (yellow), overweight 
(orange), and obese (red). Trendlines added where appropriate to show potential trends. 
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Figure 10. Observed differences between sexes for BMI and weight 
Boxplots showing observed differences between (A) reported donor sex and BMI, as well as (B) 
donor weight. Differences in distribution of female vs male donor weight due to more females 
represented in sample set. 19 females and six males were included in the sample set. 
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Figure 11. Observed differences between sexes for analyzed miRNAs 
Boxplots showing observed distribution of either DCq or Cq of miRNA markers with statistically 
significant association to either BMI or donor weight with reported sex of donor. No differences 
identified between sexes were noted as unexpected for any miRNA markers.19 females and six 
males were included in the sample set. 
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B. 

 
 

Figure 12. Graphical representation of CART predictions 
Visualization of CART analyses using both raw Cq and DCq from all markers (A), as well as just 
DCq data (B).   
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Table 3. BMI predictions from CART analyses 
 

A. 
Actual Prediction 

Underweight Normal Overweight Obese 
Underweight 0 4 0 0 
Normal 0 8 1 0 
Overweight 0 2 5 0 
Obese 0 4 1 0 

 

B. 
Actual Prediction 

Underweight Normal Overweight Obese 
Underweight 0 1 0 3 
Normal 0 8 0 1 
Overweight 0 5 0 2 
Obese 0 1 0 4 

 
Categorical BMI prediction of samples compared to known BMI categorization using CART 
analysis for (A)  all data (52% correct) and (B) just DCq data (48% correct).  
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Table 4. BMI predictions from SVM analyses 
 

A. 
Actual Prediction 

Underweight Normal Overweight Obese 
Underweight 4 0 0 0 
Normal 0 9 0 0 
Overweight 0 0 7 0 
Obese 0 0 0 5 

 

B. 
Actual Prediction 

Underweight Normal Overweight Obese 
Underweight 4 0 0 0 
Normal 0 6 0 0 
Overweight 1 0 3 0 
Obese 0 0 0 4 

 
Categorical BMI prediction using the support vector machine model using (A) combined Cq and 
DCq data (100% correct) and (B) just raw Cq data (94% correct). SVM analysis using combined 
data had 22 support vectors and the SVM analysis had 18 support vectors. Due to sample 
missingness, miRNA markers with any missing values were eliminated from the combined 
analysis. Markers used for the combined analysis were: miR-106a-5p, miR-145-5p, miR-185-5p, 
miR-194-5p, miR-215-5p, miR-486-5p, miR-505-3p, miR-885-5p, let-7i-5p. All markers were 
used for analysis consisting only of Cq values, which contributed to samples being excluded and 
the N=18 as shown in B.  
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Supplemental Table 1. List of R code used for each analysis in RStudio for this study 
 

Function R Code 
Quantile-Quantile Plot qqPlot() 
Simple/Multiple Linear Regression lm() 

Classification and Regression Tree rpart() 
rpart.plot() 

Support Vector Machine svm() 
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