
Virginia Commonwealth University
VCU Scholars Compass

Biostatistics Publications Dept. of Biostatistics

2015

Evaluation of the Performance of Smoothing
Functions in Generalized Additive Models for
Spatial Variation in Disease
Umaporn Siangphoe
Virginia Commonwealth University

David C. Wheeler
Virginia Commonwealth University, dcwheeler@vcu.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/bios_pubs

Part of the Medicine and Health Sciences Commons

Copyright © 2015 the author(s), publisher and licensee Libertas Academica Ltd. This is an open-access article
distributed under the terms of the Creative Commons CC-BY-NC 3.0 License.

This Article is brought to you for free and open access by the Dept. of Biostatistics at VCU Scholars Compass. It has been accepted for inclusion in
Biostatistics Publications by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

Downloaded from
http://scholarscompass.vcu.edu/bios_pubs/32

http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://www.vcu.edu/?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/bios_pubs?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/bios?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/bios_pubs?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/648?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
http://scholarscompass.vcu.edu/bios_pubs/32?utm_source=scholarscompass.vcu.edu%2Fbios_pubs%2F32&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:libcompass@vcu.edu


107CanCer InformatICs 2015:14(s2)

Introduction
The use of spatial analytic techniques has substantially advanced 
in the last two decades due to increasing access to specialized 
software and increased computing capacity.1 Modern analytic 
techniques enable researchers to address public health con-
cerns regarding environmental and other risk factors associ-
ated with spatial variation in a variety of diseases, including 
cancers.2 According to a recent review for research related 
to geographical information system studies, cancers are the 
most common noninfectious diseases investigated for spatial 
variation in the literature.1 The studies usually focus on spatial 
distribution of cancer cases and underlying risk factors influ-
encing the spatial distribution. In our review, many previous 
studies have illustrated the applications of spatial analysis on 
cancer data such as female oral cancer mortality in the United 
States3; breast cancer mortality in Northeastern United States3; 
lung, colorectal, and breast cancers in upper Cape Cod, Mas-
sachusetts2,4; lung cancer incidence in Kentucky, the United 
States5; cervical cancer mortality in United States6; colorectal 

cancer survival in New Jersey, United States7; prostate can-
cer in relation to environmental carcinogens in Great Britain, 
United Kingdom8; childhood leukemia incidence in Ohio9; 
childhood acute leukemia incidence in France10; childhood 
acute lymphoblastic leukemia in Hungary11; non–Hodgkin 
lymphoma (NHL) incidence related to distances of benzene 
release sites in Georgia12; oncological mortality in a Munici-
pality of North-Western Italy Vercelli13; and spatial-temporal 
analysis of cancer risk such as female breast cancer mortality in 
Spain14; breast cancers in upper Cape Cod, Massachusetts15,16; 
NHL in National Cancer Institute (NCI) – Surveillance, Epi-
demiology, and End Results (SEER) case–control study17,18; 
and in a Danish case–control study.19

A number of different statistical approaches have been 
applied in the past decade to evaluate spatial clustering or 
detect geographic areas of elevated risk in cancer data.2 For 
example, Bonetti and Pagano’s M statistic is a nonparametric 
statistic that compares expected and observed values represent-
ing interpoint distances between cancer cases in the detection 
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of clustering.2,20–22 The Besag, York, and Molliè (BYM) 
model is a Bayesian area-level regression model with compo-
nents for spatial correlation and nonspatial heterogeneity that 
has been used for detection high-risk areas, where posterior 
distributions for the area-level parameters are used to identify 
elevated risk areas.23–25 Tango’s index, Moran’s I, and Oden’s 
I statistics are used in detecting clustering but are sensitive 
to outliers. Tango’s MEET and Oden’s I*

pop perform well in 
detecting global clustering.26 Kulldorff’s spatial scan statistic 
is a widely used method for detecting areas of elevated risk and 
is implemented in the freely available software SaTScan.2,21,27 
The local spatial scan statistic has been effective in epidemio-
logic studies at detecting areas of elevated disease risk, but it 
requires a stratified analysis to adjust for covariates.21

In addition to the previous statistical methods, gener-
alized additive models (GAMs) with bivariate smoothing 
functions have been applied to evaluate spatial variation of 
disease risk and identify areas of elevated risk in many types 
of cancers.2,4,15,17,18,28 The GAM framework is commonly 
used to determine areas of increased and decreased risk for 
a response variable while adjusting for covariates, includ-
ing spatial confounders.4,28 However, little is known in the 
literature regarding both absolute and relative performance of 
different smoothing functions applied in the spatial GAMs. 
The performance may differ due to different characteristics of 
elevated risk areas with respect to shape, size, location in a 
study area, and disease risk level or probability of disease. This 
study evaluates through a simulation study the performance 
of different smoothing functions applied in the GAM models 
for detecting overall spatial variation and elevated risk areas 
with different geographical characteristics that may realisti-
cally appear in spatial analysis studies of cancer.

statistical Methods
Generalized additive models. A GAM is a semi-

 parametric method extended from a generalized linear model 
and has a general formula

 
g f xj

j

p
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where g( )µ  is a link function, α  is a model intercept, and f j (.) 
are smoothing functions of covariates x j for j = 1,…,p. GAMs 
can include component functions with two or more dimen-
sions, categorical variable terms, or interaction terms with 
continuous variables. The model therefore allows nonlinear 
functions of covariates to be included in regression equations 
and avoid restrictions imposed by parametric assumptions.29,30 
Specifically, for case–control data, GAMs can model a binary 
disease outcome through the log-odds of disease as a linear 
function of covariates zi  and a spatial smoothing over loca-
tions xi i ix x= ( , )1 2  for i = 1,…,n, such as

 log ( ) /P( ) ( , ) ,P y y f x x zi i i i i= =  = + +1 0 1 2α β  (2)

where yi = 1 for cases and yi = 0 for controls, β  is a vector 
of linear regression coefficients representing the effects of zi , 
and f x xi i( , )1 2  is a bivariate smoothing function.29 The model 
specified in equation (2) is also known as a generalized addi-
tive logistic model.

smoothing functions. There are several options avail-
able for the functional form of the bivariate spatial smoother 
f i( )x .28 The locally weighted scatterplot smoothing (loess) 
smoother has been applied previously in GAMs to estimate 
spatial variation in disease risk.2,4,15,17,18,21,24,28,31 In loess 
regression, the outcome variable yi  at location xi is regressed 
on a function of the data values of the locations within a neigh-
borhood of xi, where the size of the neighborhood is controlled 
by the span parameter h, which is defined as the proportion of 
the total data points that are used to estimate yi . The function 
used in the regression uses weights for data points that are 
a function of distance between xi and the neighboring data 
points and the span. In general, the weight wij between two 
points i and j is calculated as
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where W (.)is a weighting function and dij is the Euclidean 
distance between the points.28,29,32 The weighting function 
implemented in loess in the R computing environment that 
we used is the tricube, which is defined as
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where dh corresponds to the maximum distance associated 
with the span. Increasing the span increases the number of 
data points that receive nonzero weight and generally increases 
the smoothness of the response surface.2,29

Several methods are available for choosing an opti-
mal span or degree of smoothing. An optimal smoothing 
parameter can be selected using weighted least squares cross-
validation (CV), where CV minimizes an average-squared 
prediction error.29,30,33 The smoothing parameter can also be 
chosen by the generalized cross-validation (GCV) method 
for fitting penalized generalized ridge regressions with 
unknown scale parameters.29,30,34 CV may be computation-
ally intensive, while GCV can lead to overfitting in models.34 
Similar to the GCV method, minimizing unbiased risk error 
(UBRE) derived from an expected mean square error can be 
used when the scale parameter is known.30 In GAMs with 
loess smoothers, the minimization of the Akaike Information 
Criterion (AIC), a measure of goodness of fit used to control 
the bias–variance tradeoff, has been used to select the opti-
mal span.28,35 The practice of minimizing the AIC to select 
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the span is recommended in a previous comparative study 
of methods.34 Because a local optimal span can possibly be 
detected instead of a global optimal value, it is good practice 
to evaluate a sequence of candidate span values in GAM 
models.29,30,34 GAM coefficients can be estimated by a local 
scoring algorithm, which is an iteratively weighted backfitting 
algorithm. The backfitting algorithm is a Gauss–Seidel algo-
rithm for fitting the additive models by iteratively smoothing 
partial residuals defined as R Y f fi i i= − − ∑0 ( )x . The esti-
mation consists of two loops. The local scoring algorithm is an 
outer loop and the weighted backfitting algorithm is an inner 
loop. The local scoring algorithm is performed by replacing the 
weighted linear regression for the adjusted dependent variable 
by the weighted backfitting algorithm. The algorithm starts 
with initial estimates of f fn0 ,..., . For each step, an adjusted 
dependent variable and a set weight are computed, and the 
smoothing components are fit to their partial residuals using 
the weighted backfitting algorithm. The algorithm stops when 
the deviance of estimates stops decreasing.29,36,37 The local 
scoring algorithm is used in the R package gam.37

In addition to the bivariate loess smoothers, some types 
of smoothing spline functions have been applied in GAM 
models, such as a thin plate regression spline (TPRS) for 
modeling spatial-temporal risk of NHL in the NCI-SEER 
case–control study18 and for estimating spatial variation in for-
est biomass and biomass change in lodgepole pine stands in 
Alberta, Canada.38 A two-dimensional penalized spline was 
used for modeling the spatial distribution of occupational acci-
dent risk in a labor market in Piracicaba, Southeast Brazil.39 
In general, a spline is a piece-wise polynomial determined by 
a sequence of knots, k s( ). A smoothing spline approach is fit-
ting a spline with knots on each data point k n<<  observations. 
Because fitting regression spline models typically depends on 
choosing knot locations, penalized regression splines include 
a “wiggliness” penalty term of predictors into the least square 
objective function to avoid the issue of knot placements.  
A thin plate spline (TPS) is a type of penalized regression spline 
and provides knot-free locations. It is available for any number 
of predictors and is flexible for derivative order selections and has 
relatively low execution cost.30 This smoothing spline has a wig-
gliness penalty term and smoothing parameter and can serve as a 
bivariate smoother of coordinate data in spatial analysis.30

A TPRS, an extension of the TPS, truncates the space 
of wiggly components of the TPS and estimates parameters 
by minimizing the sum of square error and the penalty term. 
The TPRS therefore fits the model better than the TPS.30 The 
objective function for TPRS fitting is

min ,|| ||y k k k k
T

k k
T

k k− − + =U D T D T Uδδ αα δδ δδ δδ2 0  subject toλ  (5)

with respect to vectors of coefficients δδk and αα, where Uk
contains the first k columns of eigenvectors of the observed 
predictors, Dk is a k k×  submatrix of diagonal matrix of eigen-
values, T contains linearly independent polynomials, and λ is a 

smoothing parameter.30 Additionally, because the smoothing 
terms cannot be dropped from the model or completely zeroed 
out when they are not significantly associated with the fit, we 
can apply shrinkage to a TPRS (TPRS-S) by adding an extra 
parameter with associated smoothing parameter for more 
possibility of smoothness than wiggliness. The smoothing 
parameters that do not contribute to the model can be dropped 
in such a case.30 The smoothing parameter in a TPRS is esti-
mated by UBRE methods. The model coefficients for GAMs 
with TPRS smoothers can be estimated by maximizing the 
penalized likelihood function using a penalized iteratively 
reweighted least squares (P-IRLS) algorithm.30 More details 
can be found in Wood.30

evaluation of smoothing functions in GAMs. Various 
hypothesis testing procedures have been proposed for evaluat-
ing significant spatial variation in risk and detection of sig-
nificant areas of elevated or lowered risk. In a GAM model, 
an association between a smoothed predictor and a binary 
outcome can be determined using a likelihood ratio statistic 
and approximate Chi-square distribution by testing a differ-
ence in deviance statistics for the models with and without the 
smoothed term.28–30 As the approximate Chi-square test can 
lead to an inflated type I error, a permutation test based on 
an empirical distribution has been proposed.28,30,40,41 Monte 
Carlo and bootstrap sampling methods can also be used.40,42 
The performance of permutation testing for detecting signifi-
cant spatial variation in risk with GAMs has been investigated 
in simulation studies.21,31,41,43 Generally, the permutation pro-
cedure is based on Monte Carlo randomization of case labels 
and associated covariates, conditioning on the number and 
location of observed points.44 Randomization of labels is con-
sistent with the null hypothesis of constant risk throughout 
the study area. The permutation procedure randomly assigns 
subjects (outcome status and covariates together) to the 
observed geographical locations. Difference in model devi-
ance is calculated for models with and without the smooth-
ing term for the observed data and each permuted data set. 
The differences from the observed and permuted data are then 
ranked in ascending order and P-values for overall significant 
spatial variation in risk are calculated by comparing the rank 
of observed and permutated data and dividing by the total 
number of data sets. Significant risk areas are identified by the 
spatial points that have spatial log-odds that are outside the 
2.5% and 97.5% ranked values of the point-wise permutation 
distribution.28,41 Typically, a spatial grid is used for predicting 
and evaluating the spatial log-odds, but one could also con-
sider using the observed data points.

In a previous study of span selection for the proportion of 
data points to use to estimate yi  in a bivariate loess in a GAM, 
a fixed-span permutation test (FSPT) assuming one span or 
a multiple span permutation test (FMSPT) assuming mul-
tiple possible span sizes were used and compared to the span 
defined by observed data prior to conducting permutations.43 
A conditional permutation test (CPT) identifies an optimal 
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span from the observed data and holds the span constant for 
all permutations, while an unconditional permutation test 
(UPT) uses the optimal span size identified from the observed 
data and each of the permuted data sets. Hence, the band-
width estimate can change for each permuted data set with 
UPT. A previous study suggested that the FMSPT had lower 
power than the FSPT, whereas the FSPT power depended on 
the spans previously determined.43 Also, the CPT showed an 
inflated type I error rate, and an adjustment to the nominal 
P-value was necessary. The nominal P-value was reduced to 
0.025 to have an effective significance level of 0.05 with the 
CPT. The UPT had the correct type I error rate, but required 
a considerable computational effort.31,43

When detecting local areas of elevated risk, a circular area 
of elevated risk is the most common shape identified in spa-
tial statistics, although actual true shapes may not always be 
circular. True areas of elevated risk may align with unusually 
shaped geographical regions such as streets, rivers, mountain 
ranges, or cape regions. The performance of spatial statistical 
tests may differ according to the true shape of an elevated risk 
area in a particular location. A prior simulation study evalu-
ated the performance of GAMs with a loess, a local spatial 
scan statistic, and a Bayesian disease mapping model (BYM) 
in detecting local areas with different risk levels in real geo-
graphical surfaces.24 The GAM method provided the high-
est sensitivity, but had low specificity. All the methods had 
difficulty in detecting areas with low risk levels and irregular 
shapes.24 Another study found that the elliptical local spatial 
scan statistic was robust in performance to the shape of the 
true risk area (elliptical or circular), but that the circular local 
spatial scan statistic had greater power to detect a circular area 
of risk.3 Recently, a simulation study comparing statistical 
power and sensitivity between GAM permutation methods 
and Kulldorff’s local spatial scan statistic43 found that the 
GAM methods outperformed the scan statistic in sensitivity 
in all simulation study scenarios: a single point source located 

in a circular cluster, a line source centered on a horizontal axis 
of a square region, and a single circular cluster centered on 
a circular region. The GAM permutation methods also had 
greater power in the first two scenarios and had similar power 
for the last scenario.43

simulation study
study design. We created five scenarios with different 

true risk areas in a square study region to evaluate the per-
formance of GAMs with different types of smoothing func-
tions (Table 1). We created three scenarios with one area of 
elevated risk that was circular, linear, or triangular and two 
scenarios with two circular areas of elevated risk in the first 
and third quadrants. The single circular and single linear risk 
areas were centered in the study region, and the triangular risk 
area was located in a corner of the study region. The elevated 
risk areas covered 15% of the study region for the single ele-
vated area, 5% and 10% for the two elevated risk areas with 
different sizes, and 10% for the two with the same size. We 
uniformly simulated data where the true parameters were the 
odds ratios (ORs) of the specified risk areas (OR: 0.5, 1.0, 
1.5, 2.0, 2.5, 3.0, and 3.5) and the probability of disease out-
side the risk areas (P: 0.05 and 0.20). We randomly generated 
the geographical coordinates based on uniform distribution in 
the study areas. We generated 1,000 data sets each containing 
1,000 observations for each set of parameters for each scenario 
(code available upon request). In total, 70,000 data sets were 
generated based on the given parameters in the five scenarios 
for all model implementations.

evaluation of methods. We evaluated the performance 
of four smoothing functions in GAMs: loess with UPT, loess 
with CPT, TPRS, and TPRS-S to detect overall spatial varia-
tion and areas of elevated risk. The model parameters of the 
GAM models with loess smoothers were fitted using the local 
score algorithm, whereas the P-IRLS estimation method 
was used for GAMs with TPRS and TPRS-S smoothers. 

table 1. scenarios and parameters for the simulation study.

SCEnARIo FIGuRE RISk AREA ShAPE RISk AREA SIzE PRoBABIlItY oF DISEASE oDDS RAtIo (oR)

1 Circular 15% 0.05, 0.2 or1

2 Linear 15% 0.05, 0.2 or1

3 triangle 15% 0.05, 0.2 or1

4 Circular 5%, 10% 0.05, 0.2 or1 = or2

5 Circular 10%, 10% 0.05, 0.2 or1 vs or2
*

notes: Blue squares represent study regions. red shapes represent areas of true elevated or decreased risk. or1: Odds ratio in the first risk area, OR2: odds ratio 
in the second risk area (in the third quadrant). scenarios 1, 2, and 3 consist of or1: 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, and 3.5. scenario 4 consists of or1 = or2: 0.5, 1.0, 
1.5, 2.0, 2.5, 3.0, and 3.5. *scenario 5: or1 vs or2 were defined as [3.5 vs 1.75, 3.0 vs 1.5, 2.5 vs 1.25, 2.0 vs 1.0, 1.5 vs 1.0, 1.0 vs 1.0, and 0.5 vs 0.75].
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For the loess smoothers, the optimal span was selected for 
the observed and permuted data for UPT, and for CPT, the 
observed data alone was selected. Smoothing parameters were 
estimated based on minimizing AIC with span sizes rang-
ing from 0.05 to 1.00 for the two loess smoothers and using 
the GCV method for the two TPRS smoothers. The four 
methods were applied to the same simulated data sets. The 
two loess and two TPRS smoothing functions in the GAM 
models were analyzed using gam37 and mgcv packages30,45–49 in 
the R programming environment, respectively.

We performed hypothesis testing under the null hypoth-
esis of constant risk with the alternative hypotheses specified 
in the five scenarios. We applied the likelihood ratio statistic 
approximate Chi-square and Monte Carlo permutation tests. 
One thousand Monte Carlo randomizations were performed 
for all the statistical models on the data sets to test the null 
hypothesis of constant risk and identify any areas of signifi-
cantly lowered or elevated risk. We calculated type I error rate 
of the two tests and power based on the Monte Carlo permuta-
tion test as suggested in previous studies.31,41,43 The type I error 
rate was defined as the probability of false positives under the 
null hypothesis.41 We also calculated approximate Chi-square 
P-values and Monte Carlo P-values for the overall null hypoth-
eses. P-values less than 0.05 were defined as statistically signifi-
cant for the loess UPT, TPRS, and TPRS shrinkage models. 
Based on the previously described evidence of an inflated type 
I error rate in the CPT method, P-values less than 0.025 were 
defined as statistically significant when using CPT. In addition 
to the nominal type I error, we calculated average P-values of 
the approximate Chi-square and Monte Carlo permutation tests 
on different true risk areas based on our simulated data.

We measured performance of the four smoothing func-
tions in the GAM models in detecting local significant risk 
areas of elevated and decreased risk. We determined whether 
the methods could detect centroids of the true risk areas based 
on grid cells (called grid detection) and based on observed 
point locations (called point detection). We defined observed 
spatial log-odds greater and lower than 97.5% and 2.5% of per-
muted log-odds ranked as significantly elevated and decreased 
risk areas, respectively. The detection of two centroids simul-
taneously was defined as detection in the scenarios with two 
circular elevated risk areas.

Typically, one would consider the local significance of 
areas only if the overall null hypothesis of constant risk has 
been rejected.4,33 To explore this approach, we evaluated three 
different ways of measuring detection with a GAM. The first 
approach calculated power for rejecting the null hypothesis 
of overall constant risk using Monte Carlo permutation tests. 
A centroid-grid detection approach defined detection as iden-
tifying the centroid of the true risk area based on a grid spatial 
reference. The third approach defined detection as rejecting 
the null hypothesis of constant risk and identifying the cen-
troid of the true risk area using the centroid-grid detection. 
We calculated the detection rate using these approaches.

The ability of the smoothing functions was also quantified 
using four performance measures: sensitivity, false-positive 
rate, accuracy rate, and precision rate. The sensitivity was 
defined as the proportion of observations inside the true risk 
area that were identified as being in a significant risk area, 
whereas the false-positive rate was defined as the proportion 
of observations outside the true risk area that were identified 
as being inside a significant risk area.50 The accuracy rate was 
defined as the proportion of observations that were correctly 
identified as being inside or outside a true risk area,51 and the 
precision rate was defined as the proportion of observations 
correctly identified as being in a risk area among those cor-
rectly identified as being inside or outside a risk area.51 All 
statistical analyses were implemented in the R computing 
environment.

results
overall spatial variation of risk. The overall P-value is 

used to reject the null hypothesis of constant risk. When the 
true OR = 1 in the designated risk area, the null hypothesis 
should only be rejected on average 5 out of 100 times. The 
approximate Chi-square test applied at the defined nominal 
significance levels had inflated type I error rates 2.3, 3.4, and 
3.6 times higher than the nominal levels in the CPT, TPRS, 
and UPT methods for all scenarios and had a rate 12.4 times 
higher in the TPRS-S smoothers (Table 2). On the contrary, 
the type I error rates using the Monte Carlo permutation 
test at nominal significance levels were more reasonable and 
appropriate. The CPT smoother with the redefined signifi-
cance rejection level had the type I error rate closest to the 
value of 0.05 in the study area with probability of disease of 
0.2. Likewise, the TPRS smoother had the most correct type 
I error rate in the study area when the probability of disease 
was 0.05.

The average Chi-square and Monte Carlo P-values 
are intended to indicate how well a method can detect sig-
nificant variation in risk in the data. With the approximate 
Chi-square test, each method had an average P-value below 
0.05 when the elevated areas had OR $2.5 in scenarios 1 
and 3 and OR $3.0 in scenarios 2, 4, and 5 (Supplementary 
Table 1). The TPRS-S smoother was able to detect significant 
elevated risk with OR $2.0 and probability of disease was 
0.2, but this is at least partially attributable to the inflated 
type I error rate of the approximate Chi-square test. With the 
Monte Carlo permutation test, each smoothing function had 
an average P-value below 0.05 when OR $3.0 in scenarios 
1 and 3 and probability of disease was 0.2. Only UPT had 
an average P-value .0.05 for OR $3.0 and probability of 
disease =0.2 in scenario 4. Overall, all methods with the two 
types of tests were able on average to detect overall spatial 
variation when OR $3.5 with the 0.2 probability of disease 
for all scenarios, while they did not on average detect sig-
nificant variation in risk with a probability of disease of 0.05 
outside the true risk area.
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As anticipated, the power estimates were increased with 
increased disease risk. With probability of disease of 0.2, all 
the methods had remarkable power to detect the overall spa-
tial variation in scenarios 1, 3, and 4, and satisfactory power 
in scenarios 2 and 5 when risk was highest (Fig. 1). The two 
TPRS methods had similar power in all scenarios. CPT with 
a significance level of 0.025 had the highest power to detect 
the overall spatial variation in scenarios 1 and 3. The two 
TPRS methods also had higher power than the UPT in these 
scenarios. Power estimates were decreased when the disease 
probability outside the true risk area was 0.05 for all risk lev-
els in all scenarios (Supplementary Fig. 1). Nevertheless, the 
trends in power among methods were similar across the two 
levels of disease probability.

detection of risk areas. We describe here the results of 
the detection of true risk areas based on a grid spatial refer-
ence when the probability of disease was 0.2. Similar to power 

estimates, the detection rate of true risk areas was increased 
with increased risk for all methods and all scenarios. All 
methods performed best in scenario 1 and scenario 3, where 
the detection rate was over 90% in the elevated risk areas with 
OR $2.5. The two TRPS methods and UPT were able to 
identify the true risk areas better than the CPT in scenarios 
4 and 5 (two circular risk areas). In addition, the two TPRS 
methods and UPT performed better when the elevated risk 
areas had the same risk instead of different risk. However, the 
CPT outperformed the other methods in detecting the linear 
elevated risk area (scenario 2), which all methods had diffi-
culty in detecting (Fig. 1 and Supplementary Fig. 1).

When considering the different approaches to detection, 
the CPT with a significance level of 0.025 had better per-
formance than the other methods in the individual risk areas 
(scenarios 1, 2, and 3), whereas the two TPRS smoothers had 
detection rates better than the two loess smoothers in the 

table 2. type I error rate for Gam methods in the simulation study.

PRoBABIlItY oF  
DISEASE

APPRoxIMAtE Chi-square P-VAluES MontE CARlo P-VAluES

uPt CPt tPRS tPRS-S uPt CPt tPRS tPRS-S

0.05 0.178 0.115 0.168 0.620 0.055 0.059 0.047 0.050

0.20 0.173 0.111 0.153 0.588 0.061 0.047 0.057 0.058

note: four smoothing functions in Gams: loess with UPt, loess with CPt, tPrs, and tPrs-s.
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Figure 1. Power and centroid-grid detection of four smoothing functions in GAMs at different true ORs in risk areas. The power for rejecting the null 
hypothesis of overall constant risk was calculated based on Monte Carlo permutation tests. Centroid-grid detection for true risk areas was defined as 
detecting the centroid of the true risk area based on a grid spatial reference. the proportion of the detection by the power and centroid-grid detection 
together are shown in the third row. The detection of two centroids simultaneously was defined for the detection in the two circular elevated risk areas. 
Four smoothing functions in GAMs: loess with UPT, loess CPT, and TPRS and TPRS-S. Probability of disease unexposed risk was 0.2. Average values 
over 1,000 data sets are presented. Results of true risk areas in the first quadrant were evaluated for scenarios 4 and 5. The grid detection was not 
meaningful under the null hypothesis (or = 1.0).
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double true risk areas (scenarios 4 and 5). The detection rates 
in the scenarios 2, 4, and 5 were slightly lower when insisting 
on rejecting the null hypothesis (Fig. 1 and Supplementary 
Fig. 1).

As expected, all GAMs had a higher sensitivity in detect-
ing elevated risk areas when the true risk was higher. Focus-
ing on the results when the probability of disease was 0.2, all 
methods had higher sensitivity in scenarios 1 and 3, lower 
sensitivity in scenario 5, and similar sensitivity in scenarios 
2 and 4. The two TPRS methods were able to detect the true 
risk area with more than 90% sensitivity when the OR $2.5 in 
scenario 3 and OR $3 in scenario 1. The two TPRS smoothers 
also had higher sensitivity than the two loess smoothers for 
OR $2 in scenarios 1 and 5 and OR $1.5 in scenarios 2 and 
4 (Fig. 2). The two TPRS methods had a higher sensitivity 
than the CPT method in the areas with the highest risk. The 
UPT and two TPRS methods had very similar sensitivity in 
scenario 3 (Fig. 3).

The false-positive rate of detection for the methods was 
generally low (Fig. 2). It was typically below 10% for OR 
#2.0 and below 20% for OR .2.0. The false-positive rate 
tended to increase with increasing true risk, which was also 
when the sensitivity was higher. Hence, the two TPRS mod-
els had higher false-positive rates than the two loess models 
across the scenarios. The one exception was scenario 3, where 

the methods had nearly identical false-positive rates, likely a 
consequence of them having nearly equal sensitivity.

As with sensitivity, the four types of GAMs had the 
highest accuracy when the true risk area had OR $2 in sce-
narios 1 and 3 and OR $3 in scenario 4 (Fig. 2). All meth-
ods in scenario 3 had similarly high accuracy with OR = 3.5 
(Fig. 3) and also had a sufficiently high accuracy rate with OR 
$1.5 or 2 in the other scenarios. All the smoothers had a con-
sistently moderate-to-high accuracy rate when the true risk 
was higher (OR $1.5). Similar results were found across the 
true risk areas with the probability of disease being either 0.05 
or 0.2 (Supplementary Fig. 2).

Regarding precision, most methods had a higher rate of 
precision when true risk was higher (Fig. 2). However, in sce-
nario 3, the methods had a decrease in precision when the OR 
of true risk area was $2. This also occurred for the UPT and 
two TPRS methods in scenario 1. Comparing methods, the 
CPT method generally had a higher precision rate than the 
other methods in all scenarios. This method was also able to 
attain an acceptably high precision rate when the true risk area 
had OR $3 for all scenarios, except for scenario 2, where it was 
difficult to detect the elevated risk area with a sufficient sen-
sitivity (Figs. 2 and 3). The accuracy and precision rate overall 
were similar across the probabilities of disease. In other words, 
the accuracy and precision were not influenced by the disease 
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Figure 2. sensitivity rate, false-positive rate, accuracy rate, and precision rate for detection of true risk areas with varying ors based on a grid spatial 
reference. four smoothing functions in Gams: loess with UPt, loess CPt, and tPrs and tPrs-s. Probability of disease outside the true risk was 0.2. 
Averages over 1,000 data sets are shown in the figures. Results of true risk areas in the first quadrant were evaluated for scenarios 4 and 5. Performance 
rates were not meaningful under the null hypothesis (or = 1.0).
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prevalence according to our results. In contrast, the sensitivity 
and false-positive rate were generally lower when probability 
of disease outside the true risk was lower. More details can be 
seen in Supplementary Figure 2.

In addition to the previous grid-based detection results, we 
calculated results using the observed points as the spatial refer-
ence. Focusing on the results when the probability of disease 
was 0.2, the detection rate based on point references was lower 
than the rate based on grid references for all the methods in all 

scenarios. In particular, in scenarios 3, 4, and 5, the detection 
rate of elevated risk areas was much lower using point refer-
ences compared with using grid references. Differences between 
the results from the grid and point-based approaches were less 
noticeable in scenarios 1 and 2 (Supplementary Fig. 3).

discussion and conclusion
Our large simulation study revealed several findings about 
the absolute and relative performance of four different types 
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Figure 3. Boxplots of sensitivity, false-positive rate, accuracy rate, and precision rate for detection of elevated risk areas with an OR of 3.5 and probability 
of diseases outside the true risk (P) of 0.2 based on a grid spatial reference and 1,000 simulated data sets. four smoothing functions in Gams: loess with 
UPT, loess CPT, and TPRS and TPRS-S. Results of true risk areas in the first quadrant were evaluated for Scenario 4 and 5. Red dots represent mean 
values.
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of smoothing methods used in GAMs for evaluating overall 
spatial variation in risk and detection of true risk areas. Over-
all, all smoothing methods applied in the GAM models had 
appropriate type I error rates in all scenarios across the proba-
bilities of disease after adjusting the nominal significance level 
of the CPT method. All methods performed well in detecting 
overall spatial variation and elevated risk in a single circular 
area centered in the middle of the study area (scenario 1) and 
in a triangular area in a corner of the study area (scenario 3). 
The methods displayed higher power, detection rates, and sen-
sitivity in these scenarios compared with the other scenarios. 
Scenario 1 could represent an environmental exposure area 
with a point source located at the center, a, while scenario 3 
could represent a large landfill or industrial waste site located 
on the periphery of a community. On the other hand, a lin-
ear area of elevated risk (scenario 2), which could represent 
elevated risk along a river or roadway, was more challenging 
to detect for all methods. Also, two elevated risk areas with 
equal size but different risks (scenario 4) were more difficult 
to detect than two circular areas with equal risk but different 
sizes (scenario 5). These scenarios could represent environ-
mental exposures from multiple sources at a particular time or 
two different time periods.

Some of our findings agreed with those reported in pre-
vious studies. The ability of the two loess and TPRS smooth-
ing functions in the GAMs were different depending on true 
risk area shapes, sizes, and locations. In our study, all meth-
ods easily detected a triangular area positioned in a corner 
of the study region. This indicates that in this scenario there 
were no significant edge effects impacting the performance 
of the GAM, which is similar to previous findings reported 
elsewhere.28 To compare our results with previously published 
results, we designed scenario 1 to be similar to a scenario in 
a previous study.43 Given the same risk and probability of 
disease outside the true risk area, we verified that our results 
regarding type I error, power, and sensitivity agreed with the 
previous findings.21,43

Our study also supports that the CPT method with a 
loess smoother had an inflated type I error rate as suggested in 
previous studies.21,31,43 We found the inflated rates at all risks 
in all scenarios, except scenario 4 at OR $2 and scenario 5 at 
OR $3. The type I error rates in these cases were similar to 
those from the other methods. We retained the significance 
level of 0.025 for CPT in these cases because this threshold 
had no effect on power estimates and other evaluations. The 
0.025 significance threshold was chosen in our study also to be 
comparable to the previous results.

In addition to significance thresholds, a recent study 
pointed out that the inflated type I error with the CPT 
method tended to occur when a small span was selected for the 
observed data. In this case, the difference in the model devi-
ances with and without the spatial smooth was more inflated 
for the observed data compared with the distribution of the 
difference in model deviances based on permuted data that 

reflect the null hypothesis of constant risk.31 In our study, as 
anticipated, small span sizes tended to be selected when the 
true risk was higher (results not shown).

Furthermore, the UPT was recognized as the most unbi-
ased and appropriate smoothing method in a GAM.31 Our 
findings support that the UPT was an unbiased approach and 
had no inflated type I error. However, the UPT generally had 
lower power than the CPT method and required very large 
computation efforts. Using a Beowulf computer cluster, the 
computations for the UPT models for all our scenarios took 
almost a year to complete, whereas the two TPRS methods 
required lower execution time. The CPT method had the low-
est execution time. Our results suggest that CPT with a sig-
nificance level of 0.025 can be used as an alternative to UPT 
with a much lower computation cost. Our findings show that 
two TPRS methods performed similarly to the loess UPT. 
It was possible that the two TPRS methods and the loess 
UPT could give a similar result because they both controlled 
the bias–variance tradeoff using the smoothing parameters 
derived from the observed and permuted data, while the CPT 
controlled the tradeoff using the optimal parameter derived 
from the only observed data.

A strength of our study is that it is the largest and most 
comprehensive study comparing the performance of the loess 
and TPRS smoothing functions in GAMs in the context of 
spatial analysis. We considered a realistic set of scenarios 
for elevated risk with many levels of risk in a case–control 
study. An obvious limitation of our study is that we could 
not consider all possible exposure scenarios. The density of 
point locations can have a strong impact on performance of 
smoothing terms in GAMs.15 As we simulated point loca-
tions based on a uniform distribution, our results may not 
reflect those from other distributions. Our study was also 
limited to assessing the performance of smoothing functions 
in GAMs for spatial data at one time point. An assessment 
of GAMs for modeling risk in spatial-temporal data can be 
found in another study.50

While not exhaustive in scope, our study confirms that 
the performance of smoothing functions in the GAM per-
mutation methods in detecting overall spatial variation and 
elevated risk areas varies by different geographical areas of 
elevated risk and disease risk levels. Though some true risk 
area shapes are more difficult than others to detect, the perfor-
mance of the GAMs overall was encouraging and we recom-
mend their use in future studies.
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