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ABSTRACT

Understanding the effects of soil intrinsic properties and extrinsic conditions on aggregate stability is essential for the development of effective soil
and water conservation practices. Our objective was to evaluate the combined role of soil texture, aggregate size and application of a stabilizing
agent on aggregate and structure stability indices (composite structure index [SI], the α and n parameters of the VG model and the S-index) by
employing the high energy (0–5·0 J kg�1) moisture characteristic (HEMC) method. We used aggregates of three sizes (0·25–0·5, 0·5–1·0 and
1·0–2·0mm) from four semi-arid soils treated with polyacrylamide (PAM). An increase in SI was associated with the increase in clay content, ag-
gregate size and PAM application. The value of α increased with the increase in aggregate size and with PAM application but was not affected by
soil texture. For each aggregate size, a unique exponential type relationship existed between SI and α. The value of n and the S-index tended, gen-
erally, to decrease with the increase in PAM application; however, an increase in aggregate size had an inconsistent effect on these two indices. The
relationship between SI and n or the S-index could not be generalized. Our results suggest that (i) the effects of PAM on aggregate stability are not
trivial, and its application as a soil conservation tool should consider field soil condition, and (ii) α, n and S-index cannot replace the SI as a solid
measure for aggregate stability and soil structure firmness when assessing soil conservation practices. Copyright © 2016 John Wiley & Sons, Ltd.
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INTRODUCTION

Problems associated with soil and water conservation in cul-
tivated and irrigated lands, e.g. enhanced spatio-temporal var-
iation of agricultural fields; intensified soil degradation;
increased runoff generation, sediment and pollutant transport
under irregular rain with high intensity, are all expected to
become more severe with climate change (e.g. Mohawesh
et al., 2015; Rodrigo Comino et al., 2015; Prosdocimi
et al., 2016). These aforementioned problems are expected
to severely harm crop growth and the production of food
and fiber resources (Anaya-Romero et al., 2015; Ochoa
et al., 2016). Thus, there is a growing need for implementing
soil and water conservation technologies to protect soil and
water quality in order to mitigate and adapt to climate change.
As a key element of soil health, soil aggregate stability studies
serve as primary indicators of recovery or degradation of soils
and are important for evaluating the effects of land use and
land management and the impacts of applied soil erosion con-
trol strategies (Cerda, 2000; Mamedov and Levy, 2013).
Use of soil amendments such as a non-toxic anionic poly-

acrylamide (PAM) has been shown to be beneficial for soil

and water conservation and water quality (e.g. reviews by
Sojka et al., 2006; Levy & Warrington, 2015 and cited refer-
ences). However, the potential benefits from using PAM
might be inconsistent because PAM effectiveness is influ-
enced by a complex set of relations among polymer properties
(concentration, molecular weight, charge type and density)
(Green et al., 2004; McLaughlin & Bartholomew, 2007), its
mode of application (e.g. dry, wet, emulsion) (Mamedov
et al., 2009; Shainberg et al., 2011; Liu et al., 2014) and soil
properties such as clay mineralogy, texture, organic matter
content, composition and concentration of the soil solution
and associated soil microbiological activity, (e.g. Miller
et al., 1998; Levy & Miller, 1999; Busscher et al., 2007;
Mamedov et al., 2010; Wu et al., 2010; Dou et al., 2012).
Miller et al. (1998) investigated aggregate (6·3–9·5mm) sta-

bility in three kaolinitic soils amended with an anionic PAM
with high molecular weight and concluded that (i) under
20mm of high kinetic energy rain, PAM addition significantly
increased the percentage of stable aggregates, and (ii) PAM
was more effective at stabilizing aggregates from light to me-
dium textured soils than those from a clayey soil. These results
suggest that PAM efficacy was greatly affected by soil texture.
Levy &Miller (1999) observed that stabilization efficacy of the
high molecular weight PAM in predominantly kaolinitic sandy
loam and sandy clay soils (0·5–1·0 to 6·0–9·5mm aggregates)
depended, in addition to soil texture, also on aggregate size,
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with this phenomenon being more pronounced in the sandy
loam. It was concluded that aggregate stability was higher for
PAM-treated aggregates compared with untreated aggregates
and increased with increase in aggregate size, as a result of pen-
etration of PAM molecules into the aggregates and its adsorp-
tion on internal surfaces (Levy & Miller, 1999).
A few recent studies highlighted the importance of clay

mineralogy in determining the efficacy of an anionic high
molecular weight PAM as a stabilizing agent. Mamedov
et al. (2010) observed that (i) PAM efficacy in improving
aggregate and structural stability followed in the order of
kaolinitic< illitic< smectitic soils, and (ii) addition of PAM
had only a limited effect on kaolinitic soils, but increased the
structure stability and moisture content near saturation (up to
0·15kgkg�1) and thus total porosity for the smectitic soil sam-
ples mostly with low clay content (Mamedov et al., 2010).
Green et al. (2004) who studied stability of aggregates
(<2·0mm) from three soils differing in texture and mineralogy
(a smectitic clay, a kaolinitic sandy loam and a mixed mineral-
ogy silt loam), treated with anionic PAM of different molecular
formulation (e.g. 6–18Mgmol�1 molecular weight and
20–40% charge densities) concluded that PAM was more
effective in enhancing the stability of dry aggregates compared
with its effects on controlling the slaking of fast wetted
aggregates. McLaughlin & Bartholomew (2007), who exam-
ined the effects of PAM concentration, molecular weight
(14–28Mgmol�1) and charge density (from neutral to 50%
anionic molar charge) on the flocculation of suspensions from
13 subsoils (ranging from sand to clay) sampled from the US
Coastal Plain, noted that increase in smectite and vermiculite
content (>20%) in these subsoils reduced the effectiveness
of anionic PAM as a flocculent. It was further noted that differ-
ences in the reduction in water turbidity between control and
PAM-treated samples were highly correlated with soil texture,
mineralogy, and extractable Fe reductions, with most of the
differences in flocculation occurring in subsoils with >20%
smectite or vermiculite (McLaughlin & Bartholomew, 2007).
Melo et al. (2014) studied the contribution of different rates

of PAM (0–100mgkg�1) on aggregates’ mean weight diame-
ter and geometric mean diameter and structural quality of
cohesive and non-cohesive soils from five to six horizons of
two Brazilian soils. The authors stressed that, although PAM
contribution was soil dependent, PAM was effective in stabi-
lizing aggregates in the two larger-size classes (0·25–2·0,
>2·0mm) in both soils (Melo et al., 2014). Caesar-Tonthat
et al. (2008) who studied addition of three PAM rates to
three aggregate sizes (0·25–0·5, 0·5–1·0 and 1·0–2·0mm) of
a Norfolk loamy sand soil reported that adding PAM
(120mgkg�1), with and or without wheat residue, to aggre-
gates (0·5–1·0 and 1·0–2·0mm) favored the growth and sur-
vival of specific fungi and bacterial species functioning as
soil aggregators in vitro, and consequently considerably
enhanced aggregation, pore continuity and soil physical condi-
tion (Busscher et al., 2007; Caesar-Tonthat et al., 2008).
Many different aggregate stability and structure firmness

tests (e.g. wet sieving, drop test technique, application of ultra-
sonic energy, etc.), employing diverse primary breakdown

mechanisms have been used for establishing an index of soil
structure stability. The aggregate breakdown mechanisms and
the size distribution of the disrupted products depend on the
type of energy involved in aggregate disruption, but could also
be affected by the initial size of studied aggregates (Le
Bissonnais, 1996; Amezketa, 1999; Pulido Moncada et al.,
2015). Aggregate size distribution, which is affected by soil
properties and management, and climatic conditions, is closely
related to soil pore size distribution. The latter can be derived
from the water retention characteristics and is considered as a
basic index for soil physical quality (Dexter & Czyz, 2007;
Saha & Kukal, 2015.). Changes in the water retention charac-
teristics curve (e.g. the location of the inflection point and the
steepness of its slope) are commonly quantified by the van
Genuchten model parameters (van Genuchten, 1980; Guber
et al., 2003; Dexter, 2004a; Porebska et al., 2006; Lipiec
et al., 2007; Mamedov & Levy, 2013). Furthermore, Dexter
(2004a) proposed the use of the angular coefficient of the water
retention curve at the inflection point, termed S-index, as a
proxy for soil physical quality because it is indicative of the ex-
tent to which the soil porosity is concentrated into a narrow
range of pore sizes. In many soils, S-index values>0·035 were
found to be indicative of soils with good physical conditions
(Dexter, 2004a,2004b,2004c; Tormena et al., 2008; Calonego
& Rosolem, 2011), although Andrade & Stone (2009) pro-
posed the threshold of S-index=0·045 to be appropriate to sep-
arate soils with good structural conditions from degraded soils.
It was, therefore, deemed suitable to use, in the current study,
the high energy moisture characteristic (HEMC) method, in
which water retention curves at near saturation, characterized
by a modified version of the van Genuchten model (Pierson
& Mulla, 1989; Levy & Mamedov, 2002; Mamedov & Levy,
2013), are employed for evaluating soil aggregate stability.
We hypothesized that, among others (e.g. clay mineral-

ogy), the efficacy of PAM as a soil conservation measure
for improving aggregate and structure stability depends on
both soil texture and aggregate size. Thus, the prime objec-
tive of the study was to evaluate the role of soil texture
(intrinsic property), and aggregate size, and application of
a stabilizing agent (extrinsic conditions) on aggregate stabil-
ity. A secondary objective was to test the suitability of the α
and/or n parameters of the aforementioned modified van
Genuchten model and the S-index (Dexter 2004a) to serve
as indices for aggregate stability and thus in turn as indices
for assessing soil conservation practices efficacy.

MATERIALS AND METHODS

Soils

Four smectitic, calcareous soils representing the main arable
soils in Israel, were chosen for this study. The soils were a
loam (Calcic Haploxeralf) from the northern Negev, a sandy
clay (Chromic Haploxerert) from Hafetz Haim in the Pleshet
Plains, and two clays (Chromic Haploxerert) from Yagur in
the Zevulun Valley (Clay Y) and Eilon in the Western Galilee
(Clay E). Samples from the cultivated layer (0–250mm) of
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each soil type were brought to the laboratory. Selected physical
and chemical properties of the soils, determined by standard
analytical methods (Klute, 1986; Page et al., 1986), are pre-
sented in Table I.

Polymer

An anionic PAM of high-molecular-weight (~18×106Da)
and 30% hydrolysis with a trade name of Magnafloc 156
(Ciba Specialty Chemicals, Suffolk, VA, USA) was used.
A polymer solution of 100mgL�1 was prepared with tap
water (electrical conductivity [EC] of 0.5 dSm�1, sodium
adsorption ratio of 2.0 [mmolc L

�1]0·5, and pH of 6·5) under
constant stirring and slow addition of polymer granules over
4 h. Polymer solutions were prepared with tap water rather
than deionized water to improve the dissolution of the poly-
mer and minimize the impact of the dissolved polymer on
the viscosity of the solution (Barvenik, 1994). We expected
that use of a less viscous solution would reduce the unde-
sired effect of solution viscosity on the degree of PAM pen-
etration into intra-aggregate porosity.

Preparation of Aggregates

The soil samples were air-dried, gently crushed and sieved
to 0·25 to 0·5; 0·5 to 1·0; 1·0 to 2·0mm aggregates. To
ensure that (i) aggregates will not slake during wetting with
the polymer solution, and (ii) each individual aggregate will
come in contact with the polymer solution, the following
procedure was employed. Plastic boxes (30× 60 cm) were
filled with a very coarse sand to form a 5-mm thick layer that
was then covered with a high porosity (>60-μm pore size)
filter paper allowing polymer molecules to diffuse to the
aggregates (Mamedov et al., 2010). Aggregates from a
given soil were gently spread on the filter paper to form a
monolayer of aggregates. The aggregates were saturated
from below with tap water or the 100mgL�1 PAM solution
during 1 h, at a rate of 4mmh�1 using a peristaltic pump,
and were then kept in their respective solution for 24 h to
reach equilibrium. The boxes were covered with plastic lids
to eliminate possible evaporation. Thereafter, the solutions
from the boxes were drained and the aggregates were placed
in an oven to dry at 60 °C for 24 h. The aggregates were
sieved again after drying to eliminate broken aggregates out-
side of the described size range. Finally, the polymer con-
centration in the solution before and after saturating the
aggregates was determined. The analysis, using a total C
analyzer, showed that polymer concentration decreased by

<3%, indicting no deficiency in polymer for adsorption by
the aggregates.

Aggregate Stability Determination

Stability of aggregates in the size range of 0·25–0·5, 0·5–1·0
and 1·0–2·0mm was studied using a modified version of the
HEMC method (Levy & Mamedov, 2002). Briefly, 15 g of
aggregates from a given size range was placed in a 60-mm
I.D. funnel with a fritted disc to form a bed ~5·0mm thick
with a bulk density of ~1·05 g cm�3. The fritted disk had a
nominal maximum pore size of 20 to 40μm. Saturation of
the fritted disc was ensured prior to placing aggregates in
the funnel. The aggregates were wetted from the bottom in
a controlled manner with a peristaltic pump at a fast rate
(100mmh�1). Wetting lasted until full saturation (the soil
surface became shiny); thereafter, a small positive difference
of <0·5mm between the soil surface level in the funnel and
water level in the pipette was maintained. Deionized water
(EC ~ 0·004 dSm�1) was used for wetting of the untreated
and PAM-treated aggregates.
After completion of the wetting, a soil water retention

curve at high energies of matric potential from 0 to
�5·0 J kg�1 (0 to �50 cm H2O), corresponding to drainable
pores of 50 to 2000μm, using small steps of 0·1–0·2 J kg�1

(1·0–2·0 cm), was performed (Figure 1a). The volume of
water that drained from the aggregates at each matric poten-
tial was recorded after a 2-min equilibrium period and corre-
sponding water content of the aggregates was calculated.
Preliminary studies (Levy & Mamedov, 2002) showed that
under our experimental conditions (0·25- to 2·0-mm macro
aggregate size, and matric potential range at near saturation,
e.g. from 0 to �5·0 J kg�1), generally no additional change
in volume of drainage is noted at equilibrium time >2min.
Each treatment was duplicated. The coefficient of variation
between replicates of water content (θ, kg kg�1) was <6%.
Aggregate stability was then inferred from differences

among the water retention curves (i.e. differences in pore
size distribution) of the treatments tested by characterizing
the retention curves with a modified version (Pierson &
Mulla, 1989) of the van Genuchten model (van Genuchten,
1980). This analysis yields the following indices: (i) α
(cm�1), and n (dimensionless) that represent the location
of the inflection point and the steepness of the S-shaped wa-
ter retention curve (Figure 1a); (ii) the volume of drainable
pores (VDP, g g�1), defined as the integral of the area under
the specific water capacity curve (dθ/dψ) and above its

Table I. Selected properties of the four soils studied: sand, silt and clay contents, cation exchange capacity (CEC), exchangeable sodium per-
centage (ESP), CaCO3 content and organic matter (OM) content

Soil site Particle-size distribution CEC ESP CaCO3 OM
type Sand Silt Clay

g kg�1 cmolc kg
�1 g kg�1 g kg�1

Loam Nevatim 413 362 225 17·7 2·10 182·4 12·2
Sandy clay Hafetz Haim 465 154 381 34·8 1·63 96·2 11·0
Clay-Y Yagur 145 342 513 57·4 1·64 202·0 17·6
Clay-E Eilon 137 213 650 64·9 1·12 4·6 18·2
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baseline (Figure 1b); and (iii) the modal suction (MS, cm),
which is the matric potential at the peak of the specific water
capacity curve (Figure 1b) and corresponds to the most fre-
quent pore size; the higher the value of the MS, the smaller
the size of the most frequent pore. A composite index
termed “structural index” (SI, cm�1), which is defined as
the ratio of the VDP to the MS (SI =VDP/MS), is then used
to characterize the stability of the aggregates. Use of addi-
tional indices to describe the stability of aggregates, such
as the ratio of the SI obtained from Treatment A to the SI ob-
tained from Treatment B (for instance control vs. PAM) at a
similar wetting rate, when employing the HEMC method is
also possible (Mamedov & Levy, 2013; Hosseini et al.,
2015).
In addition, because, as was mentioned above, the water re-

tention curves in the range of full saturation to wilting point,
and the water retention curve used in the HEMCmethod have
a similar shape, we also calculated the S-index proposed by
Dexter (2004a):

S ¼ –n · θs – θrð Þ· 2n� 1ð Þ= n–1ð Þ½ � 1=nð Þ:�2Þð (1)

where S= angular coefficient of the water retention curve at
the inflection point [S-index]; θr = soil gravimetric moisture
at the matric potential of 50 cm H2O (g g�1); θs = saturated
soil gravimetric moisture (g g�1); n= coefficient of the water
retention curve obtained from the modified version (Pierson
& Mulla, 1989; Mamedov & Levy, 2013) of the van
Genuchten model.

Statistical Analysis

The aggregate stability study tested three main treatments:
soil type (represented by clay content), PAM addition (un-
treated and PAM-treated) and aggregate size (Table II). A
balanced full factorial design was used for this study
containing 24 treatments (4 soil clay contents × 2 PAM
treatments × 3 aggregate size), each in two replicates. An
ANOVA test was conducted using the SAS Proc GLM
procedure (SAS Institute, 1995) according to a completely
randomized design to assess the effects of the treatments

and/or their interactions on (i) water retention curve param-
eters (α, n and S-index), and (ii) aggregate stability index
(SI). Treatment mean comparisons were made by employing
the Tukey–Kramer HSD test (SAS Institute, 1995) using a
significance level of 0·05. In the case of the relative SR in-
dex (RSR=SI [PAM]/SI [Soil] determined for the same ag-
gregate size), because a ratio is considered, standard
deviation of the ratios was used rather than the Tukey test,
as no normal distribution of these variables could be
assumed.

RESULTS AND DISCUSSION

Characteristics of the Water Retention Curves

The water retention curves for untreated and PAM-treated
aggregates of three sizes for the four soils are presented in
Figure 2. Clear differences were noted, especially with re-
spect to the location of the inflection point (α) and the steep-
ness (n) of the curves, between the water retention curves of
the small aggregates (0·25–0·5mm) and those of the other

Figure 1. Water retention (a) and specific water capacity (b) curves of the sandy clay (Chromic Haploxerert) soil aggregates (0·25–0·50 mm and 0·5–1·0 mm)
subjected to fast and slow wetting. The dashed baseline in the specific water capacity curve represents soil shrinkage line. [Colour figure can be viewed at

wileyonlinelibrary.com]

Table II. Significance levels for treatment (soil texture, polyacryl-
amide [PAM], and aggregate size [AS, 0·25 to 0.5mm, 0·5 to
1·0mm and 1·0 to 2·0mm]) effects on the stability indices (SI,
structural index; RSR, relative stability ratio; ɑ and n, model
parameters which represent the location of the inflection point
and the steepness of the water retention curve respectively, and
S-index angular coefficient of the water retention curve at the
inflection point). NS, not significant; * Significant at the 0·05 level;
** Significant at the 0·01 level; *** Significant at the 0·001 level

Source df α n SI S-index RSR

Soil 3 *** NS *** *** *
PAM 1 *** *** *** *** ***
Soil × PAM 3 * NS *** NS ***
Aggregate size (AS) 2 *** *** *** ***
Soil ×AS 6 *** *** *** ***
PAM×AS 2 *** *** *** ***
Soil × PAM×AS 6 *** *** ** ***
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two larger-size groups. Some considerable differences in the
curves were also noted between untreated and PAM-treated
aggregates in each soil (Figure 2). The observed differences
among the treatments were ascribed to the impact of the
treatments on the sensitivity of the aggregates to slaking,
that in itself is associated with entrapped air, hydration of
the exchangeable cations and clay surfaces of the soil parti-
cles, and differential swelling (Amezketa, 1999; Mamedov
& Levy, 2013).
The aforementioned effects of the aggregate size on the

retention curves were also notable in each soil in conjunc-
tion with the PAM-treated aggregates, where for the larger
aggregates (0·5–1·0 and 1·0–2·0mm) the curves were
located close to each other and separated from that of the
PAM-treated small aggregates (0·25–0·5mm) (Figure 2).
Moreover, the water retention curves for the PAM-treated
larger aggregates were mostly located on the left side (e.g.
at ψ < �1·2 J kg�1) of the untreated aggregates, whereas
for the small aggregates (0·25–0·50mm) the opposite was
observed (Figure 2).

Effect of Aggregate Size and PAM Application on the
Structure Stability Indices

Results of a multifactor ANOVA (SAS Institute, 1995)
(Table II) showed that the effects of the three main factors
(soil type, aggregate size and PAM application), as well as
their interactions on (i) the aggregate-structure index (SI),

(ii) PAM application on the RSR, and (iii) the model param-
eters (α, n and S-index), were significant (with exception of
Soil and Soil × PAM treatments for n and S-index). The re-
sults of the statistical analyses (Table II) suggest that, similar
to the aforementioned qualitative analysis of the water reten-
tion curves, the impact of PAM on soil physical properties is
intricate and depends on both intrinsic (clay content) and ex-
trinsic (aggregate size) soil properties.
The effects of the treatments on soil SI were complex, i.e. the

SI increased with the increase in soil clay content and PAM
application; yet the effects of aggregate size on the SI values
were PAM dependent (Figure 3, Table III). In the case of the
PAM-treated aggregates the SI increased with the increase in
aggregate size. However, for the untreated aggregates, mostly
similar SI values were noted in the two groups of the smaller-
size aggregates which were also significantly lower than the
SI values noted in the largest-size aggregates (Figure 3,
Table III).
A direct evaluation of the impact of the PAM treatment,

as obtained from the RSR parameter, indicated that the ef-
fects of PAM on aggregate stability were aggregate size de-
pendent (Figure 4). In the smallest size group (0·25–0·5mm)
PAM did not improve aggregate stability beyond that of the
untreated aggregates. In the 0·5–1·0mm aggregates PAM
had the largest effect on aggregate stability; moreover, a
trend was noted whereby the effect of PAM was inversely
related to soil clay content. In the largest aggregate size

Figure 2. Water retention curves of untreated (control) and polyacrylamide treated (PAM) aggregates from a) loam (Calcic Haploxeralf), b) sandy clay
(Chromic Haploxerert), c) clay-Y (Chromic Haploxerert) and d) clay-E (Chromic Haploxerert) soils as affected by aggregate size. [Colour figure can be viewed

at wileyonlinelibrary.com]
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(1·0–2·0mm), PAM improved aggregate stability relative to
the untreated aggregates, but its effects were independent of
soil texture (Figure 4). It had been proposed in former studies
that the pores in large aggregates are big enough to enable some
of the PAMmolecules to penetrate into the aggregate and to ad-
sorb on internal surfaces (Levy & Miller, 1999; Mamedov
et al., 2007; Ashgari et al., 2009; Melo et al., 2014), and thus
to enhance aggregate resistance against slaking during wetting.
This mechanism could explain the observed beneficial effect of
PAM in our 0·5–1·0mm aggregate size. The lesser effective-
ness of PAM in stabilizing the aggregates in the largest size
ones (1·0–2·0mm), compared with the mid-size group (0·5–
1·0mm), could be explained by the fact that the inherent

stability of the untreated aggregates in the 1·0–2·0mm group
was already fairly high (Figure 3), thereby limiting the ability
of PAM to further stabilize the aggregates (Figure 4). Con-
versely, in small aggregates the pores are probably too small
to enable PAMmolecules to fully penetrate into the aggregates
(Levy & Miller, 1999); thus, PAM efficacy in stabilizing the
small aggregates had probably been limited. The latter explains
the observed lack of efficacy of PAM in improving the
resistance to slaking of our smallest aggregate size group
(0·25–0·50mm), which was, generally, in agreement with other
studies (Busscher et al., 2007; Caesar-Tonthat et al., 2008;
Melo et al., 2014).

Effects of Aggregate Size and PAM Application on the
Model Parameters

The contribution of agricultural management and treatments
on soil water retention could also be quantitatively character-
ized by the α and n parameters from the modified van
Genuchten model and by the S-index (Dexter, 2004a),
because changes in α, n and the S-index are considered to be
closely related to pore size distribution and therefore to aggre-
gate and particle size distribution (e.g. Guber et al., 2003;
Dexter, 2004a,2004b,2004c; Porebska et al., 2006; Lipiec
et al., 2007). In the case of smectitic soils, model parameters
α and nwere also noted to depend on aggregate size along with
soil texture (Mamedov & Levy, 2013). These authors also pro-
posed that under conditions of near saturation (ψ between 0
and �5·0 Jkg�1), the α and n parameters can also be used to
characterize the contribution of both large aggregate size

Figure 3. Structural index (SI) as affected by treatments (soil, aggregate
size, PAM treatments). For each soil, columns labeled with same letter are
not significantly different at P< 0·05 level. [Colour figure can be viewed

at wileyonlinelibrary.com]

Table III. Linear regression between soil structure indices (SI, ɑ, n and S-index) and soil clay content (SI, soil structural index; ɑ and nmodel
parameters which represent the location of the inflection point and the steepness of the S-shaped water retention curve, respectively; S-index,
angular coefficient of the water retention curve at the inflection point)

Parameters Treatments Aggregate size, mm Equation R2 (P< 0·05)

SI, cm�1 Control 0·25–0·5 y = 0·00009x + 0·003 0·99
0·5–1·0 y = 0·0002x + 0·002 0·96
1·0–2·0 y = 0·0004x + 0·004 0·98

PAM 0·25–0·5 y = 0·0001x� 0·00001 0·93
0·5–1·0 y = 0·0004x + 0·013 0·89
1·0–2·0 y = 0·0006x + 0·026 0·77

ɑ, cm�1 Control 0·25–0·5 y = 0·0002x + 0·029 0·81
0·5–1·0 y = 0·0004x + 0·044 0·99
1·0–2·0 y = 0·0002x + 0·096 0·23

PAM 0·25–0·5 y = 0·0003x + 0·019 0·91
0·5–1·0 y = 0·0002x + 0·072 0·99
1·0–2·0 y = 0·0001x + 0·120 0·26

n Control 0·25–0·5 y = 0·1546x + 2·239 0·92
0·5–1·0 y =�0·1433x + 19·768 0·97
1·0–2·0 y = 0·0266x + 4·191 0·53

PAM 0·25–0·5 y = 0·0203x + 7·585 0·51
0·5–1·0 y =�0·003x + 7·446 0·45
1·0–2·0 y = 0·0187x + 4·317 0·61

S-index Control 0·25–0·5 y = 0·018x + 0·064 0·93
0·5–1·0 y = 0·0087x + 0·376 0·75
1·0–2·0 y =�0·0052x + 1·433 0·44

PAM 0·25–0·5 y = 0·0052x + 0·649 0·63
0·5–1·0 y = 0·008x + 0·155 0·86
1·0–2·0 y = 0·0086x + 0·216 0·98
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(>0·25–0·5mm, ψ ~ 0 to �1·2 Jkg�1) and small (<0·25–
0·5mm, ψ ~ �1·2 to �5·0 Jkg�1) aggregates/particles, respec-
tively, to soil structure condition.
For each soil, α increased significantly with (i) the

increase in aggregate size and (ii) PAM application for the
0·5–1·0 and 1·0–2·0mm aggregates. In the small-sized
(0·25–0·5mm) aggregates, addition of PAM had no signifi-
cant effect on α. Furthermore, for all aggregate sizes and
irrespective of PAM addition, α was not affected by soil clay
content (Figure 5, Table III). Bearing in mind that 1/α (~MS)
represents the most frequent pore size (the smaller the value
of 1/α or the larger the value of α, the larger the size of the
most frequent pore), then an increase in α implies an
increase in the size of the most frequent pore. Larger pores
are associated with larger aggregates (Hamamoto et al.,
2011; Mamedov & Levy, 2013). Hence, the observed trends
in the increase in α following the increase in the size of the
aggregates or addition of PAM, implies an increase in the
stability of the aggregates and their resistance to slaking by
wetting. The above analysis might suggest that α could serve
as a good proxy for evaluating changes in aggregate stability
following changes in soil extrinsic conditions such as
changes in size of aggregates (e.g. following different tillage
practices) and/or application of soil amendments (e.g. PAM)
(Porebska et al., 2006; Lipiec et al., 2007; Mamedov et al.,

2010). Under our experimental conditions, α was affected by
aggregate size, but not by soil texture, while aggregate sta-
bility in our study (expressed by the SI index) as well as sta-
bility indices in former studies (e.g. Kemper & Koch, 1966)
were strongly associated with soil texture (Table III).
Attempts to associate the SI with α indicated that a strong
(R2> 0.83) exponential type relation existed between the
two parameters (Figure 6). The fact that the relations
between the SI and α were unique for every aggregate size
may suggest that soil texture plays a secondary role to aggre-
gate size in determining soil structure stability in untreated
and PAM-treated aggregates.
Unlike α, the effects of the treatments on the parameter n

were inconsistent (Figure 7, Table III). In the loam, sandy clay
and clay-Y soils (22, 38 and 51% clay, respectively), n values
for the 0·5–1·0mm aggregates were the highest, with values
for the untreated aggregates being significantly higher than
those for the PAM-treated aggregates (Figure 7). The n values
for the 1.0–2.0mm aggregates were similar to or lower than
those for the 0.25–0.5mm aggregates; PAM had no effect on

Figure 4. Relative stability ratio (RSR= SI[PAM]/SI[Soil]) as affected by
treatments. The error bar represents one standard deviation. [Colour figure

can be viewed at wileyonlinelibrary.com]

Figure 5. Model parameter α as affected by treatments (soil, aggregate size,
PAM treatments). For each soil, columns labeled with same letter are not
significantly different at P< 0·05 level. [Colour figure can be viewed at

wileyonlinelibrary.com]

Figure 6. Structural index (SI) as a function of ɑ, the location of the inflec-
tion point of the S-shaped water retention curve. [Colour figure can be

viewed at wileyonlinelibrary.com]

Figure 7. Model parameter n as affected by treatments (soil, aggregate size,
PAM treatments). For each soil, columns labeled with same letter are not
significantly different at P< 0·05 level. [Colour figure can be viewed at

wileyonlinelibrary.com]
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the n values in these two aggregate sizes. Conversely, in the
soil with 65% clay, n decreased with the increase in aggregate
size, with PAM addition leading to lower n values compared
with the untreated aggregates only in the two smaller aggregate
sizes (Figure 7). The parameter n represents the steepness of
the water retention curve which is related to the spread of the
pore-size distribution in the tested sample (Mamedov and
Levy, 2013). There was a strong relationship (R2> 0·9)
between parameter n and clay content for the untreated small
(0·25–0·5mm, positive) and medium size aggregates (0·5–
1·0mm, negative), whereas for large and PAM-treated aggre-
gates this relationship was significantly weaker (R2< 0·6;
Table III). Our results suggest, therefore, that n cannot serve
as a direct indicator for changes in aggregate stability follow-
ing changes in the conditions prevailing in the soil.
The relationship between SI and n could not be generalized

as it was strongly aggregate size dependent (Figure 8). For the
small (0·25–0·5mm) and the large (1·0–2·0mm) aggregates
no relations between SI and n were identified. In the case of
the small aggregates, the SI was hardly affected by changes
in n, while for the large aggregates a big increase in SI was

noted over a small change in n (Figure 8). Only for the
intermediate size aggregates (0·5–1·0mm), the SI decreased
linearly (R2 =0·81) with the increase in n (Figure 8).
The effects of the treatments on the S-index values are pre-

sented in Figure 9. In the loam, sandy clay and clay-Y soils
(22, 38 and 51% clay, respectively), the S-index values for
the 0·5–1·0mm aggregates were the highest, with values
for the untreated aggregates being significantly higher than
those for the PAM-treated aggregates (Figure 9). In the other
two aggregate sizes a trend was noted whereby the S-index
values for the PAM-treated aggregates were similar to, or
higher, than those for the untreated aggregates. In the
Clay-E (65% clay) the S-index decreased significantly with
the increase in aggregate size for the untreated aggregates. For
the PAM treated aggregates in this soil, the S-index values were
comparable for the different aggregate size classes (Figure 9);
consequently, the S-index for the PAM-treated 1·0–2·0mm
aggregates was higher than that in the untreated ones.
Similar to the case with the parameter n, the relationship be-

tween SI and the S-index could not be generalized as it was
strongly aggregate size dependent (Figure 10). For the small
(0·25–0·5mm) and the large (1·0–2·0mm) aggregates a
positive linear relation between SI and the S-index was identi-
fied. Conversely, for the intermediate size aggregates
(0·5–1·0mm), the SI decreased linearly with the increase in
the S-index (Figure 10). Some resemblance in the SI versus
S-index and SI versus the n relationships could be noted, espe-
cially for the small- and mid-size aggregates (Figures 8 and
10). This resemblance may arise from the linear association
between the S-index values and the n values (S-index=0·096n
[R2 =0·75]), which could be expected from Equation 1.
It should be pointed out that the S-index values in our

study were very high (>0.4), being almost one order of
magnitude higher than those reported in the literature for
soils having good physical (0.035–0.059) condition (Dexter,
2004b). Similarly, our n values that were in the range of
5–16 (Figures 7 and 10) are substantially higher than n

Figure 8. Structural index (SI) as a function of n, the steepness of the
S-shaped water retention curve. [Colour figure can be viewed at

wileyonlinelibrary.com]

Figure 9. S-index as affected by treatments (soil, aggregate size, PAM
treatments). Within each soil texture the column labeled with same letter
is not significantly different at P< 0·05 level. [Colour figure can be viewed

at wileyonlinelibrary.com]

Figure 10. Structural index (SI) as a function of S-index, the slope of the
water retention curve in its inflection point. [Colour figure can be viewed

at wileyonlinelibrary.com]
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values reported by Dexter (2004a) for 12 FAO/USDA soil
texture classes (n in the range of 1 to 1.6), or n values re-
ported by Calonego & Rosolem (2011) for tropical soils
from Brazil (n in the range of 1 to 6). It is postulated that
our uncharacteristically high S-index and n values stem from
the fact that we studied water retention curves at near satura-
tion, which affects water emptying of meso- and macropores
only (50–70 and >70-μm pores, respectively). When devel-
oped, the S-index was intended to reflect changes in micro-
structural porosity (Dexter, 2004a). Our results suggest,
therefore, that the S-index seems to be an incompatible
index for assessing changes in meso- and macroporosity
and subsequently for evaluating aggregate and structure sta-
bility as determined by the HEMC method.

CONCLUSIONS

Both intrinsic soil properties (soil texture) and extrinsic condi-
tions (aggregate size and addition of PAM) were found to
have significant effects on aggregate stability. However,
PAM cannot be considered as a universal stabilizing agent in
cultivated fields and thus as a general tool for soil and water
conservation management practice. PAM application should,
therefore, be decided upon based on soil type and conditions
prevailing in the field.
The composite index used for characterizing aggregate sta-

bility (SI) and thus reflecting on soil structure firmness, can be
directly associated with the size of the most frequent pore
(expressed by α) of the soil system studied. However, the rela-
tionship between SI and α was not unique, but depended on
the conditions prevailing in the soil (e.g. aggregate size in
our study). Moreover, the contribution of the steepness of
the retention curve (expressed by n) or the angular coefficient
of the water retention curve at the inflection point (i.e. S-
index) to aggregate stability was found to be indirect and/or
partially obscured by additional factors. It is, therefore, finally
concluded that the parameters used for the fitting of the com-
monly used van Genuchten model to the water retention curve
at low matric potential cannot replace the composite SI, as an
index for aggregate stability, and thus in turn as an index for
assessing soil conservation practices efficacy.
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