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RESEARCH ARTICLE
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Abstract

Corynebacterium diphtheriae (Cd) is a Gram-positive human pathogen responsible for diph-

theria infection and once regarded for high mortalities worldwide. The fatality gradually

decreased with improved living standards and further alleviated when many immunization

programs were introduced. However, numerous drug-resistant strains emerged recently

that consequently decreased the efficacy of current therapeutics and vaccines, thereby

obliging the scientific community to start investigating new therapeutic targets in pathogenic

microorganisms. In this study, our contributions include the prediction of modelome of 13 C.

diphtheriae strains, using the MHOLline workflow. A set of 463 conserved proteins were

identified by combining the results of pangenomics based core-genome and core-mode-

lome analyses. Further, using subtractive proteomics and modelomics approaches for tar-

get identification, a set of 23 proteins was selected as essential for the bacteria. Considering

human as a host, eight of these proteins (glpX, nusB, rpsH, hisE, smpB, bioB, DIP1084, and

DIP0983) were considered as essential and non-host homologs, and have been subjected

to virtual screening using four different compound libraries (extracted from the ZINC data-

base, plant-derived natural compounds and Di-terpenoid Iso-steviol derivatives). The pro-

posed ligand molecules showed favorable interactions, lowered energy values and high

complementarity with the predicted targets. Our proposed approach expedites the selection

of C. diphtheriae putative proteins for broad-spectrum development of novel drugs and vac-

cines, owing to the fact that some of these targets have already been identified and validated

in other organisms.
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Introduction

Corynebacterium diphtheriae is responsible for causing diphtheria which remains a major

global cause of death (http://www.who.int/immunization_monitoring/diseases/diphteria/),

and has conventionally been divided into four subgroups of biovars i.e., gravis, intermedius,

mitis and belfanti based on biochemical characteristics according to Funke et al., 1997 [1] and

Whitman et al., 2012 [2]. It was once a major cause of infant mortality, which spread as an epi-

demic and resulted in thousands of deaths [3]. The death rates dropped over time specifically

in countries where living standards have improved, and the death rates rapidly declined after

the introduction of immunization programs [3]. Despite these measures, it remains a signifi-

cant pathogen around the globe, even today. A variety of mechanisms were responsible for

causing such death rates; for example the ‘strangling angel’ effect on children that ascended

from the wing shaped pseudo-membranes formed in the oropharynx. Disarticulation and

impaction of these pseudo-membranes triggers acute airway obstruction and can result in sud-

den death [3, 4]. Since there has been a plethora of reported cases on both non-lethal and lethal

diphtheria across various countries in the past few years, and that significant population dis-

placements in the form of immigration are happening, more such cases are bound to follow. A

passable handling requires quick inroads in discovering diphtheria antitoxin and antibiotic

treatment [5].

Computational methods and other approaches, like reverse vaccinology, have been estab-

lished for the rapid identification of novel targets in the post-genomic era [6, 7]. Approaches

like subtractive and comparative microbial genomics as well as differential genome analysis [8]

are being used for the identification of targets in a number of human pathogens like M. tuber-
culosis [9], Burkholderia pseudomalleii [10], Helicobacter pylori [11] Pseudomonas aeruginosa
[12], Neisseria gonorrhea [13] and Salmonella typhi [14].

The main principle is to find targeted genes/proteins that are essential for the pathogen

and possess no homology counterpart in the host [15], such that drugs targeting these

“pathogen-essential non-host homologs” can be applied with little (or no) off targets in the

host. Some pathogen-essential proteins, though, may possess a certain degree of homology

to host proteins. However, they might still be selected as potential molecular targets for

structure-based selective inhibitor development. Significant differences in the active sites or

in other druggable pockets might exist, such that the pathogenic protein could still be tar-

geted [16, 17].

Here, we exploit an integrative in silico approach for the predictive proteome of C.

diphtheriae species to associate the genomic information with the identification of putative

therapeutic targets based on their three dimensional structure. It can be utilized for the

identification of potent inhibitors, which might possibly lead to the discovery of com-

pounds that inhibit pathogenic growth. The predicted proteomes from the 13 genomes of

C. diphtheriae were modeled (pan-modelome) using the MHOLline workflow as proposed

by Hassan et al., 2014 [18]. Furthermore, intra-species conserved proteins with adequate

3D models (core-modelome) were filtered on the basis of predicted essentiality for the bac-

teria, which leads to the identification of eight essential bacterial proteins. They were found

non homologous to all host proteins and have been subjected to virtual screening using

multiple compound libraries.

We provided a list of putative targets in C. diphteriae, and possible mechanisms to design

peptide vaccines, and suggest novel lead, natural and drug-like compounds that could bind to

the proposed target proteins.

Therapeutic targets identification for Corynebacterium diphtheriae
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Materials and methods

Genomes selection

The thirteen C. diphtheriae strains, including three of the four biovars: gravis, mitis and bel-

fanti (Table 1) were included in this study. The gene and protein sequences of these thirteen

C. diphtheriae strains were retrieved from NCBI (ftp://ftp.ncbi.nih.gov/genomes/Bacteria).

The different steps involved in this computational approach for genome-scale modelome pre-

diction and for the prioritization of putative drug and vaccine targets are given in (Figs 1 & 2).

Prediction of core-modelome and identification of core genome

To construct the core-modelome of C. diphtheriae, we followed a slightly modified protocol

described by Hassan et al., 2014 [18]. High throughput structural modeling, MHOLline

(http://www.mholline.lncc.br), was used to predict the modelome (whole-proteome set of pro-

tein 3D models) for each strain. MHOLline uses comparative modeling approach for protein

3D structure prediction through MODELLER [19]. Our workflow also includes BLASTp

(Basic Local Alignment Search Tool for Protein) [20], HMMTOP (Prediction of transmem-

brane helices and topology of proteins), [21] BATS (Blast Automatic Targeting for Structures),

FILTERS, ECNGet (Get Enzyme Commission Number), MODELLER, and PROCHECK [22].

MHOLline work on the basis of available template. It is probable that MHOLline cannot

detect all the common conserved proteins due to the unavailability of the template. To over-

come this probability, we used EDGAR (an Efficient Database framework for comparative

Genome Analyses using BLAST score Ratios for pan-genomics analysis) to collect common

conserved genome as well of all Cd strains [23]. Later, the results from MHOLine and EDGAR

were compared and crosschecked to obtain the final dataset of common conserved proteins.

Identification of intra-species conserved proteins

Primarily, for the identification of highly conserved proteins with available 3D models in all

Cd strains (� 95% sequence identity), the standalone release of NCBI BLASTp+ (v2.2.26) was

adapted from the NCBI ftp. Site (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/blast+/LATEST/)

and installed on a local machine. Furthermore, a search was performed using NCTC13129 as a

random reference genome for all strains. Comparative genomics/proteomics approach was

Table 1. Strains of C. diphtheriae employed in the pan-modelome study with information on genomes statistics, disease prevalence and location

of isolation.

Strain GPID NCBI Accession Genome Size (Mb) Proteins GC% Location Biovar

31A PRJNA42399 NC_016799.1 2.53535 2258 53.60 Brazil —

241 PRJNA42407 NC_016782.1 2.42655 2245 53.40 Brazil —

BH8 PRJNA42423 NC_016800.1 2.48552 2223 53.60 Brazil —

C7 PRJNA42401 NC_016801.1 2.49919 2230 53.50 USA —

CDCE8392 PRJNA42405 NC_016785.1 2.43333 2135 53.60 USA Mitis

HC01 PRJNA42409 NC_016786.1 2.42715 2162 53.40 Brazil Mitis

HC02 PRJNA42411 NC_016802.1 2.46861 2179 53.70 Brazil Mitis

HC03 PRJNA42415 NC_016787.1 2.47836 2186 53.50 Brazil Mitis

HC04 PRJNA42417 NC_016788.1 2.48433 2190 53.50 Brazil Gravis

INCA402 PRJNA42419 NC_016783.1 2.44907 2163 53.70 Brazil Belfanti

PW8 PRJNA42403 NC_016789.1 2.53068 2200 53.70 USA —

VA01 PRJNA42421 NC_016790.1 2.39544 2100 53.40 Brazil Gravis

NCTC13129 PRJNA87 NC_002935.2 2.48863 2185 53.50 UK Gravis

https://doi.org/10.1371/journal.pone.0186401.t001
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next adopted for selecting the highly conserved proteins using an all-against-all BLASTp analy-

sis with a cut-off value of E = 0.0001, as in many other essentiality studies before [6, 13, 15, 18,

24].

Essential and non-host homologous (ENH) protein targets

A subtractive genomics approach was next followed for the selection of conserved targets,

which were essential to the bacteria [15]. Concisely, the set of proteins derived from the core-

modelome of C. diphtheriae was subjected to the Database of Essential Genes (DEG) for

homology analyses. The DEG encompasses experimentally validated data of currently available

essential genomic elements like protein-coding genes and non-coding RNAs, from bacteria,

archaea and eukaryotes. For a bacterium, essential genes form a minimal genome, i.e., a set of

functional modules that has key roles in the emerging field of synthetic biology [25]. The cutoff

values used for BLASTp were: E-value = 0.0001, bit score �100 and identity � 25% [15, 18].

The pool of essential genes was then subjected to NCBI-BLASTp (E-value = 0.0001, bit score
�100 and identity � 25%) against the human genome for filtering pathogen-essential host-

homologs [6]. The remaining set of pathogen-essential non-host homologs were additionally

crosschecked with NCBI-BLASTp PDB database using the default values to find any remote

structural similarity with the existing host homolog protein structures, keeping the cutoff level

to� 15% for query coverage. The biochemical pathways of these proteins have been checked

using KEGG (Kyoto Encyclopedia of Genes and Genomes) [26], functionality using UniProt

(Universal Protein Resource) [27], virulence using PAIDB (Pathogenicity island database)

[28], and cellular localization using CELLO (subCELlular LOcalization predictor) [29]. The

final list of targets was based on criteria described by Barh et al., 2011 & Hassan et al., 2014 [15,

18].

Essential and host homologous (EH) protein targets

We further extended our analyses to the set of protein targets that were essential to C. diphther-
iae but homologous to host proteins. The essential protein targets deviating from the cutoff

Fig 1. Overview of different computational steps employed for the identification of putative essential

targets (non-host homologous and host homologous) from the core-proteome of 13 C. diphtheriae

strains.

https://doi.org/10.1371/journal.pone.0186401.g001
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values for essential non-host homologous proteins were treated as host homologous proteins.

This set of targets was also checked for pathway involvement, functional annotation virulence,

and cellular localization as mentioned above.

Computational identification of druggable pockets

The information obtained from 3D structures and druggability analyses are important features

for prioritizing and authenticating putative pathogen targets [30, 31]. As mentioned above, for

druggability analyses, the final list of essential non-host and host homologous protein targets

were subjected to DoGSiteScorer in PDB format [32]. The DoGSiteScorer is an automated

pocket detection and analysis tool for calculating the druggability of protein cavities. For each

detected cavity the tool returns the pocket residues and a druggability score ranging from 0 to

1. Values closer to 1 indicate highly druggable protein cavity, i.e. the predicted cavities are

likely to bind ligands with high affinity [32]. The DoGSiteScorer also calculates volume, depth,

surface area, lipophilic surface, and further parameters for each predicted cavity.

Ligand libraries preparation, virtual screening and docking analyses

The ligand libraries were prepared from four different sources, compounds from ZINC data-

base (ZINC drug-like molecules, ZINC Natural Product), natural compounds from literature

survey [33] and the Di-terpenoid Iso-steviol derivatives (S1 Table). ZINC (drug-like mole-

cules) contains 11,193 drug-like molecules, with Tanimoto cutoff level of 60% [34] and ZINC

(Natural Product) contain 11,203 molecules. Whereas, the small library of natural compounds

Fig 2. Intra-species subtractive modelomics workflow for conserved target identification in C.

diphtheriae species. The table represents the total number of protein sequences as an input data fed to the

MHOLline workflow (upper red arrow). The blue arrow represents the core genes of thirteen Cd strains. The

rectangular boxes show how this workflow processes and filters a large quantity of genomic data for putative

drug and vaccine target identification of a pathogen.

https://doi.org/10.1371/journal.pone.0186401.g002
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contained 28 molecules and the library of Di-terpenoid Iso-steviol derivatives contained 31

molecules respectively. The structures of these molecules were constructed using MOE-Builder

tool. The 3D structures were modeled and partial charges were calculated using MOE (Molec-

ular Operating Environment). The energies of the modeled molecules were minimized using

the energy minimization algorithm of MOE tool (gradient: 0.05, Force Field: MMFF94X, Chi-

ral Constraint) [35]. The modeled molecules were saved in the.mol2 file format and subjected

to docking analysis.

The 3D structures of proteins were examined for structural errors such as missing atoms,

wrong bonds and protonation states in the MVD (Molegro Virtual Docker) [36]. The consen-

sus set of protein cavities and those predicted with DogSiteScorer (druggability� 0.80) were

compared with the MVD detected cavities, for all Cd targets. The maximum numbers of resi-

dues from DoGSiteScorer falling in the cavities detected by MVD were merged and final grid

was generated based on the consensus between the highest scoring pocket from DoGSiteScorer

and cavities detected by MVD for docking. The most druggable cavity was subjected to virtual

screening using MVD. The program comprises of three search algorithms for molecular dock-

ing analyses namely MolDock Simplex Evolution (SE), MolDock Optimizer [36] and Iterated

Simplex (IS). We employed the MolDock Optimizer search algorithm, which is based on a dif-

ferential evolutionary algorithm, using the default parameters that are a) population size = 50,

b) scaling factor = 0.5 and c) crossover rate = 0.9. The orientations of docked molecules from

the library of natural compounds and from the derivatives of Di-terpenoid Iso-steviol were

analyzed in Chimera [37]. The 200 top ranked compounds (ZINC drug-like molecules, ZINC

Natural Product) for each target protein were evaluated for shape complementarity and hydro-

gen bond interactions. This led to the selection of a final set of compounds with polypharma-

cology and polypharmacy characteristics for target proteins in C. diphtheriae.

Results and discussion

Modelome prediction and conserved targets identification in C.

diphtheriae

Among 13 strains of C. diphtheriae species, our employed methodology produced high-confi-

dence 3D structural models from orthologous proteins in C. diphtheriae species through the

efficient MHOLline workflow (Fig 3). A comparative structural genomics approach was

Fig 3. Efficiency of the MHOLline biological workflow for genome-scale modelome (3D models)

prediction. Predicted proteomes from the genomes of 13 C. diphtheriae strains were fed to the MHOLline

workflow in FASTA format. The grey bars represent the number of input data. The remaining bars (MHOLline

output data) show the number of not aligned sequences (G0, green bars), sequences for which there is a

template structure available at RCSB PDB (blue bars), and sequences with acceptable template structures

that were modeled in the MHOLline workflow (G2, red bars).

https://doi.org/10.1371/journal.pone.0186401.g003
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followed where all the G2 sequences classified as “Very High”, “High”, “Good” and “Medium

to Good quality” by MHOLline, from the 12 Cd strains, were aligned to the Cd NCTC13129

strain as a reference genome. First, we identified a set of common conserved proteins with a

pre-defined sequence similarity of 95–100%. This resulted in a set of 463 protein sequences,

being conserved in all Cd strains (S3 Table).

Protein targets as putative drug and vaccine candidates

The identification of essential proteins in C. diphtheriae was carried out where the core-mode-

lome was compared to DEG (Database of Essential Genes). This filter drastically reduced the

number of selected targets to 23 final targets. Further comparison of the corresponding protein

sequences to the human host proteome resulted in a set of 8 targets as essential non-host

homologous (ENH, Table 2) and a set of 15 targets as essential host homologous proteins (EH,

Table 3).

Prioritization parameters for drug targets and vaccine candidates

There are several factors that can aid in determining potential therapeutic targets [30]. For vac-

cine candidates, the information about subcellular localization is important: Proteins that con-

tain transmembrane motifs are favored [24, 30, 38, 39]. The 23 essential proteins have a low

molecular weight and all are localized in the cytoplasmic compartment of C. diphtheriae
(Tables 2 & 3). After the druggability evaluation using DoGSiteScorer [32] for both essential

non-host and host homologous conserved targets from C. diphtheriae, we could predict at least

one druggable cavity for each Cd target. The host homologous proteins as therapeutic targets

could adversely affect the host. Therefore, the first step in numerous in silico drug target identi-

fication approaches are filtering proteins homologous to host proteome. Thus, we only con-

sider the eight pathogen-essential non host homologs for the docking studies [13, 15, 40]. For

the eight pathogen-essential non host homologs (S2 Table) glpX, nusB, rpsH, hisE, DIP1084,

DIP0983, smpB, and bioB 3, 0, 1, 0, 2, 0, 1 and 3 cavities with score > 0.80 were predicted. The

cavity of each protein exhibiting the highest druggability score was subjected to docking analy-

ses. The numbers of predicted cavities with their respective druggability scores are given in

Tables 2 & 3.

The identified eight non-host homologous and essential Cd proteins could be novel thera-

peutic targets for Corynebacterium diphtheriae.
As per our knowledge, glpX, hisE and bioB proteins have been reported as potential drug

target in Mtb. Protein nusB is a member of Nus-transcription Factor family that help bacteria

in the process of elongation, transcription: translation coupling and termination. Some mem-

bers of this family (nusG) has already been reported as drug target. Furthermore, rpsH and

smpB are also reported as potential drug target by Folador et al., 2016 in their in silico study

[41]. Protein DIP1084 is Putative iron transport membrane protein (FecCD-family) and

DIP0983 is uncharacterized Hypothetical Protein that need to be characterized experimentally.

Hence, these protein could be a good therapeutic target against Cd.

Virtual screening and molecular docking

For each target protein (glpX, nusB, rpsH, hisE, DIP1084, DIP0983, smpB, and bioB) four dif-

ferent libraries were separately screened. A total of 28 molecules from natural compounds

library and 31 compounds from the derivatives of Di-terpenoid Iso-steviol library were

docked. Furthermore, top 200 drug-like molecules from virtual screening analyses of two large

libraries (ZINC drug-like molecules, ZINC Natural Product) were examined one-by-one for

the selection of the final set of promising molecules that showed favorable interactions with

Therapeutic targets identification for Corynebacterium diphtheriae
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Table 2. Drug and/or vaccine target prioritization parameters and functional annotation of the eight essential non-host homologous putative

targets.

Gene and

protein codes

Official full name Cavities

with DSa

> 0.80

Cavities

with DSa,g >
0.60

and < 0.80

Mol.

Wtb

(KDa)

Functionsc Cellular

componentd
Pathwayse Virulencef

NP_939692.1,

nusB

Transcription

antitermination protein

NusB/ N utilization

substance protein B

homolog

0 2 20.382 MF: RNA binding.

BP: DNA-templated

transcription,

termination, regulation

of transcription, DNA-

templated.

Cytoplasm

unknown No

NP_939612.1,

hisE

Phosphoribosyl-ATP

pyrophosphatase

0 1 9.877 MF: RNA binding,

phosphoribosyl-ATP

diphosphatase activity

BP: histidine

biosynthetic process

Cytoplasm Biosynthesis of

amino acids

Yes

NP_939445.1,

DIP1084

Iron ABC transporter

membrane protein/

Putative iron transport

membrane protein,

FecCD-family

2 3 35.470 MF: Transporter

activity

BP: Transport

Membrane The ATP-binding

cassette (ABC)

transporters form

one of the largest

known protein

families

Yes

NP_939345.1,

DIP0983

Hypothetical protein

DIP0983/

Uncharacterized protein

0 4 28.193 MF: possible lysine

decarboxylases

(Pfam)/52% sequence

identity with PDB

Template 1WEK.

BP: A pyridoxal-

phosphate protein. Also

acts on 5-hydroxy-L-

lysine (IUBMB

Comments)

Cytoplasm unknown Yes

NP_939302.1,

glpX

Fructose

1,6-bisphosphatase II

3 2 35.589 MF: fructose

1,6-bisphosphate

1-phosphatase activity,

metal ion binding.

BP: gluconeogenesis,

glycerol metabolic

process

Carbohydrate

Metabolism

No

NP_939123.1,

smpB

SsrA-binding protein 1 2 18.784 MF: RNA binding Cytoplasm unknown Yes

NP_938900.1,

rpsH

30S ribosomal protein S8 1 1 14.292 MF: rRNA binding,

structural constituent of

ribosome

BP: Translation

Extracellula/

Cytoplasm

unknown No

NP_938502.1,

bioB

Biotin synthase 3 1 38.224 MF: 2 iron, 2 sulfur

cluster binding, 4 iron 4

sulfur cluster binding,

biotin synthase activity,

iron ion binding

BP: biotin biosynthetic

process

Cytoplasm Biotin metabolism Yes

aDruggability predicted with DoGSiteScorer software. A druggability score above 0.60 is considered to be good, but a score above 0.80 is favored [32].
bMolecular weight was determined using ProtParam tool (http://web.expasy.org/protparam/).
cMolecular function (MF) and biological process (BP) for each target protein was determined using UniProt.
dCellular localization of pathogen targets was performed using CELLO.
eKEGG was used to find the role of these targets in different cellular pathways.
fPAIDB was used to check if the putative targets are involved in the pathogen’s virulence.
gDS = Drug Score

https://doi.org/10.1371/journal.pone.0186401.t002
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Table 3. Drug and/or vaccine target prioritization parameters and functional annotation of the fifteen essential host homologous putative targets.

Gene and

protein

codes

Official full name Cavities

with DSa

> 0.80

Cavities

with DSa,g

> 0.60

and < 0.80

Mol.

Wtb.

(KDa)

Functionsc Cellulard

component

Pathwayse Virulencef

NP_938651.1

RecR

Recombination protein

RecR

0 2 23.901 MF: DNA binding, metal ion

binding

BP: DNA recombination,

DNA repair

Cytoplasm Homologous

recombination

Yes

NP_938792.1

DIP0411

Putative electron

transport related protein

0 2 19.950 MF: Antioxidant activity,

oxidoreductase activity

Cytoplasm/

Membrane

— Yes

NP_938922.1

rpsM

30S ribosomal protein

S13

0 1 13.777 MF: rRNA binding, structural

constituent of ribosome, RNA

binding

BP: Translation

Cytoplasm Ribosome No

NP_939046.1

DIP0672

Putative uptake

hydrogenase small

subunit

2 0 43.949 MF: 3 iron, 4 sulfur cluster

binding, 4 iron, 4 sulfur

cluster binding, ferredoxin

hydrogenase activity, metal

ion binding

Cytoplasm Microbial

metabolism in

diverse

environments

Yes

NP_939341.1

dapD,

DIP0979

Tetrahydropicolinate

succinylase

EC 2.3.1.117

1 1 33.780 MF:

2,3,4,5-tetrahydropyridine-

2,6-dicarboxylate N-

succinyltransferase activity,

magnesium ion binding

BP: diaminopimelate

biosynthetic process, lysine

biosynthetic process via

diaminopimelate

Cytoplasm Biosynthesis of

amino acids

Yes

NP_939343.1

DIP0981

Putative

succinyltransferase

EC 2.3.1.117

1 1 33.039 MF:

2,3,4,5-tetrahydropyridine-

2,6-dicarboxylate N-

succinyltransferase activity

Cytoplasm Biosynthesis of

amino acids

Yes

NP_939460.1

ilvH, DIP1099

Acetolactate synthase

small subunit

EC 2.2.1.6

1 3 19.063 MF: acetolactate synthase

activity, amino acid binding

BP: branched-chain amino

acid biosynthetic process

Cytoplasm/

Membrane

2-Oxocarboxylic

acid metabolism

Yes

NP_939590.1

cobM

Precorrin-4

C11-methyltransferase

EC 2.1.1.133

1 2 27.181 MF: precorrin-2

dehydrogenase activity,

precorrin-4

C11-methyltransferase

activity

BP: cobalamin biosynthetic

process, porphyrin-containing

compound biosynthetic

process

Cytoplasm Porphyrin and

chlorophyll

metabolism

Yes

NP_939786.1

DIP1438

Putative transport

membrane protein

4 3 44.215 MF: Transporter activity

BP: transmembrane

transport

Membrane The ATP-binding

cassette (ABC)

transporters

Yes

NP_939832.1

DIP1484

Putative

uroporphyrinogen III

methyltransferase

3 2 28.296 MF: Methyltransferase

activity

BP: oxidation-reduction

process

Cytoplasm Porphyrin and

chlorophyll

metabolism

Yes

NP_939958.1

aroH,

DIP1616

Phospho-2-dehydro-

3-deoxyheptonate

aldolase

EC 2.5.1.54

2 3 50.805 MF: 3-deoxy-

7-phosphoheptulonate

synthase activity

BP: aromatic amino acid

family biosynthetic process

Cytoplasm Biosynthesis of

amino acids

Yes

(Continued )
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the ENH targets. The biological importance and an analysis of the predicted protein-ligand

interaction/s for each target are described here. The molecule names, ZINC codes and Mol-

Dock scores for the selected ligands, as well as the number of predicted hydrogen bonds with

the protein cavity residues involved in these interactions, are shown below (Tables 4–11) for

each target protein. The predicted binding modes of selected ligands are also shown for each

pathogen target in Figs 5–12.

Validation of docking protocol

To validate the accuracy of MolDock program (MVD), the co-crystallized ligand of Biotin

synthase, bioB (PDB ID; 1R30) was extracted and then re-docked into the binding pocket of

receptor protein. The RMSD between docked and co-crystallized ligand was found to be 1.81

A˚, which shows that the adopted docking protocol is valid and can be used to correctly predict

the binding pose of the ligands [35, 42]. The superposition of co-crystallized ligands and

docked is shown in Fig 4.

NP_939302.1 (glpX, Fructose 1, 6-bisphosphatase II) is a key enzyme of gluconeogenesis

and catalyzes the hydrolysis of fructose 1, 6-bisphosphate to form fructose 6-phosphate and

orthophosphate. A reverse reaction catalyzed by phosphofructokinase in glycolysis, and the

Table 3. (Continued)

Gene and

protein

codes

Official full name Cavities

with DSa

> 0.80

Cavities

with DSa,g

> 0.60

and < 0.80

Mol.

Wtb.

(KDa)

Functionsc Cellulard

component

Pathwayse Virulencef

NP_940018.1

DIP1680

Putative GTP

cyclohydrolase 1 type 2

EC 3.5.4.16

2 1 40.657 MF: GTP binding, GTP

cyclohydrolase I activity,

metal ion binding

BP: 7,8-dihydroneopterin 3’-

triphosphate biosynthetic

process

Cytoplasm — Yes

NP_940228.1

cysE,

DIP1891

Serine

acetyltransferase EC

2.3.1.30

1 0 20.208 MF: serine O-

acetyltransferase activity

BP: cysteine biosynthetic

process from serine

Cytoplasm Carbon

metabolism

Yes

NP_940284.1

DIP1952

Putative pyruvate

dehydrogenase

3 1 62.497 MF: Catalytic activity,

magnesium ion binding,

thiamine pyrophosphate

binding

Cytoplasm (PYRUVATE

METABOLISM)

Nicotinate and

nicotinamide

metabolism

Yes

NP_940605.1

DIP2303

Putative DNA

protection during

starvation protein

0 1 18.223 MF: Ferric iron binding,

oxidoreductase activity,

oxidizing metal ions

BP: cellular iron ion

homeostasis, response to

stress

Cytoplasm — Yes

aDruggability predicted with DoGSiteScorer software. A druggability score above 0.60 is usually considered, but a score above 0.80 is favored [32].
b Molecular weight was determined using ProtParam tool (http://web.expasy.org/protparam/).
c Molecular function (MF) and biological process (BP) for each target protein was determined using UniProt.
dCellular localization of pathogen targets was performed using CELLO.
eKEGG was used to find the role of these targets in different cellular pathways.
fPAIDB was used to check if the putative targets are involved in the pathogen’s virulence.
gDS = Drug Score.

https://doi.org/10.1371/journal.pone.0186401.t003
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product, fructose 6-phosphate, is an important precursor in various biosynthetic pathways [43].

In all organisms, gluconeogenesis is an important metabolic pathway that allows the cells to syn-

thesize glucose from non-carbohydrate precursors, such as organic acids, amino acids and glyc-

erol. FBPases are members of the large superfamily of lithium sensitive phosphatases, which

includes three families of inositol phosphatases and FBPases (the phosphoesterase clan CL0171,

3167 sequences, Pfam data base). The FBPases are already reported as targets for the develop-

ment of drugs for the treatment of noninsulin dependent diabetes [44, 45]. Based on a compari-

son with a crystallographic structure of the glpX template (PDB ID: 1NI9, GlpX from Escherichia
coli), none of the active site residues were identified. The docking analysis was performed utiliz-

ing the highest scoring pocket obtained from DoGSiteScorer. Table 4 shows a set of 10 promis-

ing ligands according to their minimum energy values and the maximum number of hydrogen

bond interactions from the four aforementioned libraries. Compounds ZINC67912153,

ZINC13142972, Jacarandic Acid and 16-hydrazonisosteviol are shown in Fig 5.

NP_939692.1 (nusB, Transcription antitermination protein NusB) is a prokaryotic tran-

scription factor involved in antitermination processes, during which it interacts with the

mRNA nut site at boxA portion. The crystal structure of M. tuberculosis and E. coli NusB pro-

teins suggest that the basic N-terminal region of the molecule associates with the rRNA BoxA.

Hypothetically, this is indicative of the so-called arginine rich RNA binding motif (ARM) in

Table 5. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_939692.1 (nusB,

Transcription antitermination protein NusB).

Compounds MolDock Score H-Bond/Residues

Plant derived natural compounds Rhein -78.0652 1/ Asp36

Jacarandic Acid -68.1913 3/ Asp36, Glu91, Arg98

Derivative of diterpenoid isosteviol 16-hydrazonisosteviol -92.7911 2/ Glu31, Leu73

ZINC Compounds ZINC00053531 -99.4716 3/ Asp34, Asp36, Ala69

ZINC19899354 -114.966 3/ Asp36, Ala69, Asp77

ZINC NP Compounds ZINC67911826 -131.288 7/Ala30, Glu31, Asp34, Ile35, Arg102

ZINC15043210 -124.580 7/ Glu31, Ile35, Leu73 Glu91, Arg102

ZINC31168395 -131.442 6/ Glu31, Asp34, Ala69, Leu73, Asp77, Arg102

https://doi.org/10.1371/journal.pone.0186401.t005

Table 4. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected best-ranked molecules against

NP_939302.1 (glpX, Fructose 1,6-bisphosphatase II).

Compounds MolDock Score H-Bond/Residues

Plant derived natural

compounds

Rhein -64.1265 3/ Val95, Asp197

Jacarandic Acid -62.0658 4/ Asp96, Thr98, Asp197, Pro221

Derivative of diterpenoid

isosteviol

16-hydrazonisosteviol -64.2107 5/ Asp93, Val95, Asp96, Val198

16-oxime,

17-hydroxyisosteviol

-69.6824 4/ Asp93, Asp96, Thr98

Benzyl ester isosteviol lactone -69.8464 3/ Asp93, Asp197, Glu222

ZINC Compounds ZINC00042420 -106.97 3/ Arg175, Arg197, Val198

ZINC13142972 -109.648 3/ Asp93, Asp197, Glu222

ZINC *NP Compounds ZINC67912153 -135.111 13/Gly64, Glu65, Asp93, Val95, Gly97, Thr98, Phe127, Arg175,

Glu222

ZINC67902753 -121.762 8/Glu65, Val95, Thr98, Glu222

ZINC38143633 -123.150 11/Lys37, Asp93, Val95, Asp96, Gly97, Thr98

*NP = Natural Product (http://zinc.docking.org/catalogs/acdiscnp)

https://doi.org/10.1371/journal.pone.0186401.t004
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Table 7. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_938502.1 (bioB, Bio-

tin synthase).

Compounds MolDock

Score

H-Bond/Residues

Plant derived natural

compounds

Rhein -72.2918 3/ Tyr183, Asn184, His185

Jacarandic Acid -98.0169 2/ Ala132, Glu188

Derivative of diterpenoid

isosteviol

16-hydrazonisosteviol -107.55 4/ Gly165, Tyr183, Asn184, Glu188

17-hydroxyisosteviol -92.2141 4/ Cys93, Ala132, Val134, Tyr183

16-oxime,

17-hydroxyisosteviol

-98.9592 5/ Glu95, Val134, Glu188, Arg206, Thr323

Benzyl ester isosteviol

lactone

-89.8881 5/ Ala132, Val134, Gly165, Asn184

ZINC Compounds ZINC16952914 -119.354 5/ Val134, Ile164, Gly165, Asn184, Asn186

ZINC NP Compounds ZINC77269615 -164.853 17/Cys86, Phe92, Cys93, Ser94, Gln95, Ala132, Val134, Ser163,

Asn184, Asn186, Arg206

ZINC04098512 -162.050 14/ Cys86, Cys90, Cys93, Ala132, Val134, Asn184, Asn186, His201,

Arg206, Asp256, Thr323

ZINC15112225 -142.080 10/ Phe92, Cys93, Ser94, Gln95, Asn186, Arg206, Asn253

https://doi.org/10.1371/journal.pone.0186401.t007

Table 6. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_938900.1 (rpsH, 30S

ribosomal protein S8).

Compounds MolDock Score H-Bond/Residues

Plant derived natural compounds Rhein -48.8803 3/ Asp5, Arg15

Jacarandic Acid -49.3506 4/ Ser12, Val77

Derivative of diterpenoid isosteviol 16-hydrazonisosteviol -68.2446 3/ Asp5, Arg13, Arg79

17-hydroxyisosteviol -64.5855 5/ Asp5, Arg79

16–17 dihydroxyisosteviol -56.3868 4/ Asp5, Arg79

16-oxime, 17-hydroxyisosteviol -65.1995 4/ Ser26, Ser29, Ser30

ZINC Compounds ZINC15221730 -103.636 5/ Ala8, Arg15, Arg79

ZINC71913776 -87.1474 5/ Arg15, Arg79

ZINC72333100 -104.807 3/ Arg15, Arg79, Val80

ZINC NP Compounds ZINC35457686 -107.091 10/Ala8, Ser12, Arg15, Val77, Arg78, Arg79, Lys82

ZINC67903079 -131.210 10/ Asp5, Ser12, Arg15, Arg78, Arg79, Lys82

ZINC31163223 -100.684 7/ Ala8, Asp9, Arg78, Arg79, Lys82

https://doi.org/10.1371/journal.pone.0186401.t006

Table 8. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_939612.1 (hisE,

Phosphoribosyl-ATP pyrophosphatase).

Compounds MolDock Score H-Bond/Residues

Plant derived natural compounds Rhein -54.9556 1/ Tyr84

Jacarandic Acid -61.0241 3/ Leu87

Derivative of diterpenoid isosteviol 16–17 dihydroxyisosteviol -70.8496 3/ Leu65, Tyr84

ZINC Compounds ZINC05809437 -89.6781 1/ Asp5

ZINC NP Compounds ZINC38143703 -99.499 4/ Thr79, Ile83, Leu87

ZINC67913372 -97.997 5/ Gly36, Ile62, Ile83, Tyr84

https://doi.org/10.1371/journal.pone.0186401.t008
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Table 9. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_939123.1 (smpB,

SsrA-binding protein).

Compounds MolDock Score H-Bond/Residues

Plant derived natural compounds Rhein -67.698 3/ Ser16, Ser114, Leu115

Jacarandic Acid -52.3689 1/ Asn69

Derivative of diterpenoid isosteviol 16-hydroxyisosteviol -53.2141 4/ Ser50, Thr52, Asn69

16-hydrazonisosteviol -64.6203 3/ Thr52, Asn67

16–17 dihydroxyisosteviol -59.7364 3/ Ser16, Lys19, Val49

ZINC Compounds ZINC01414475 -86.7944 3/ Thr52, Asn67, Asn69

ZINC17128469 -74.5349 3/ Ser16, Leu51, Thr52

ZINC NP Compounds ZINC31168211 -158.056 12/ Asn9, Ser16, Val49, Ser50, Thr52, Asp53, Ser54, Thr109

ZINC33832449 -134.974 10/ Asn9, Ser16, Asn17, Val49, Ser50, Thr52, Asp53

ZINC04096316 -137.613 9/ Asn9, Ser10, Ser16, Asn17, Lys19, Val49, Ser50, Thr52

Table 10. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_939445.1 (DIP1084,

Putative iron transport membrane protein, FecCD-family).

Compounds MolDock Score H-Bond/Residues

Plant derived natural compounds Rhein -66.4406 1/ Ser164

Jacarandic Acid -77.5981 1/ Gly265

Derivative of diterpenoid isosteviol 16-hydrazonisosteviol -96.3945 4/ Tyr97, Ser164, Ile266

17-hydroxyisosteviol -90.1488 4/ Tyr97, Ser164, Ile266

Benzyl ester isosteviol lactone -71.4733 4/ Tyr97, Ser164

ZINC Compounds ZINC01645563 -95.7116 5/ Tyr97, Ser102, Ser164, Ile266

ZINC13142972 -111.185 5/ Ser103, Ser106, Thr110, Ser164, Ser168

ZINC62023045 -103.542 4/ Tyr97, Ser102, Ser106, Ser164

ZINC NP Compounds ZINC70454922 -155.667 10/ Tyr97, Ser102, Ser106, Ser168, Ser172, Met191, Gly319

ZINC31167925 -135.535 10/ Tyr97, Ser164, Ser168, Met191, Gly265, Ile266, Thr322

ZINC04963990 -127.671 8/ Asp95, Tyr97, Ser106, Met191, Ile266, Phe268

https://doi.org/10.1371/journal.pone.0186401.t010

Table 11. Compounds/Libraries name, MolDock scores and predicted hydrogen bonds for the selected molecules against NP_939345.1 (DIP0983,

hypothetical protein DIP0983).

Compounds MolDock Score H-Bond/Residues

Plant derived natural compounds Rhein -55.7819 3/ Cys13, Leu17, Asp177

Jacarandic Acid -80.8294 3/ Cys13, Gly14

Derivative of diterpenoid

isosteviol

17-hydroxyisosteviol -95.9025 2/ His11, Cys13

16–17

dihydroxyisosteviol

-83.7226 2/ His11, Cys13

ZINC Compounds ZINC00114311 -125.423 6/ Arg10, Arg155, Gly172

ZINC00211173 -98.6064 7/ Arg10, Gly106, Arg155, Gly174, Asp177

ZINC01427915 -112.22 6/ Arg10, Ala77, Arg78, Gly172, Gly174

ZINC04836994 -136.847 5/ Arg10, Gly106, Ile131, Glu132

ZINC32004947 -146.72 5/ Arg10, Gly106, Ile131, Glu132

ZINC NP Compounds ZINC67911471 -176.091 13/ Asn8, Cys13, Ser76, Ala77, Arg78 Arg150, Arg155, Gly174,

Thr175

ZINC31163223 -162.908 12/ Asn8, Arg10, His11, Arg150, Arg155, Gly172, Thr175

ZINC04096393 -148.423 10/ Glu9, Arg10, Ala77, Arg78, Arg155, Lys156, Thr175

https://doi.org/10.1371/journal.pone.0186401.t011
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the bacteriophage N protein, HIV tat and HIV rev. This suggestion is supported by the pres-

ence of a phosphate-binding site at the N-terminal end of α-A in each NusB protomer that

includes a pair of conserved arginines, Arg10 and Arg14 [46]. The bismuth-dithiol solutions

have been shown to selectively inhibit Escherichia coli rho transcription termination factor

[47]. A comparison between the crystallographic structures of the NusB template (PDB ID:

1EYV, NusB from M. tuberculosis) and our modeled structure reveals that the conserved argi-

nines were located at position 12 and 16 (Arg12 and Arg16) and are likely to contribute in the

interactions. Although none of these residues are predicted to form hydrogen bonds with

selected docked ligands, these molecules were predicted to interact with other residues in the

pocket. Table 5 shows the 8 selected ligands from all the four libraries according to their

Fig 4. Superposition of co-crystallized and Docked ligand; Dark Khaki represents the co crystallized

ligand and Dark Cyan the re-docked conformation of the ligand.

https://doi.org/10.1371/journal.pone.0186401.g004

Fig 5. A-I: 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_939302.1 (glpX, Fructose 1,6-bisphosphatase II) with Jacarandic Acid (CID 73645). A-II: 3D surface

representation of the docking analyses for the structures of Jacarandic Acid with glpX protein. Figs B-I, II, C-I,

II & D-I, II represent same information for compounds 16-hydrazonisosteviol, ZINC13142972 and

ZINC67912153 respectively, for the same protein cavity.

https://doi.org/10.1371/journal.pone.0186401.g005
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minimum energy values and the number of hydrogen bond interactions. The compounds

ZINC15043210, ZINC00053531 Jacarandic Acid and 16-hydrazonisosteviol are shown in

(Fig 6). A decent binding mode and good shape complementarity was observed in these

complexes.

NP_938900.1 (rpsH, 30S ribosomal protein S8) is an important RNA-binding protein that

inhabits a central position within the small ribosomal subunit. It widely interacts with 16S

rRNA and is vital for the correct folding of the central domain of the rRNA. The protein rpsH

S8 also controls the synthesis of numerous ribosomal proteins by binding to mRNA. It binds

exactly to very similar sites in the two RNA molecules. It is a ribosomal protein that has

medium-size, and its role as a significant primary RNA-binding protein in the 30S subunit is

discovered recently. The S8 mutations within the protein have been shown to result in defec-

tive ribosome assembly. In Escherichia coli, the S8-binding site within 16S rRNA has been

investigated independently by a number of techniques including nuclease protection, RNA–

protein crosslinking, RNA modification, hydroxyl-radical footprinting and chemical probing.

The rpsH S8 protein is also one of the principal regulatory elements that control ribosomal

protein synthesis by the translational feedback inhibition mechanism discovered by Nomura

and colleagues [48]. It regulates the expression of the spc operon that encodes, in order, the

ten ribosomal proteins L14, L24, L5, S14, S8, L6, L18, S5, L30 and L15 [49]. The active site resi-

dues of rpsH, based on a comparison with its template structure were Arg86, Tyr88, Ser107,

Ser109, Gly124, Gly125 and Glu126. However, none of the molecules interacts with these resi-

dues (Table 6); nonetheless they are predicted to interact with other residues of the binding

Fig 6. A-I: 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_939692.1 (nusB, Transcription antitermination protein NusB) with Jacarandic Acid (CID 73645). A-II: 3D

surface representation of the docking analyses for the structures of Jacarandic Acid with nusB protein. Figs

B-I, II, C-I, II and D-I, II represent same information for compounds 16-hydrazonisosteviol, ZINC00053531

and ZINC15043210 respectively, for the same protein cavity.

https://doi.org/10.1371/journal.pone.0186401.g006
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cavity predicted by DoGSiteScorer. The predicted binding mode of best scoring compounds

each library ZINC35457686, ZINC15221730, Jacarandic Acid and 17-hydroxyisosteviol are

shown in Fig 7.

NP_938502.1 (bioB, Biotin synthase) catalyzes the final step in the biotin biosynthetic

pathway by converting dethiobiotin (DTB) to biotin. This reaction uses organic radical chem-

istry for inserting sulfur atom between non activated carbons C6 and C9 of DTB. BioB is a

member of the “radical SAM” or “AdoMet radical” superfamily, which is categorized by the

presence of a conserved CxxxCxxC sequence motif (C, Cys; x, any amino acid) that synchro-

nizes an essential Fe4S4 cluster, as well as by the use of S-adenosyl-Lmethionine (SAM or Ado-

Met) for radical generation. AdoMet radical enzymes act on a wide variety of biomolecules.

For example, BioB and lipoyl-acyl carrier protein synthase (LipA) are involved in vitamin bio-

synthesis; lysine 2,3-aminomutase (LAM) facilitates the fermentation of lysine; class III ribo-

nucleotide reductase (RNR) and pyruvate formate lyase (PFL) catalyze the formation of glycyl

radicals in their respective target proteins; and spore photoproduct lyase repairs ultraviolet

light-induced DNA damage [50]. The protein bioB was reported as putative drug target in C.

diphtheriae by Barh et al., 2011 in their in silico study [15]. A comparison between our mod-

eled protein and template structures suggest Cys86, Cys90, Cys93 and Arg291 as the active res-

idues. Although, only Cys86, Cys90 and Cys93 were found to interact with the compounds

from our prepared libraries, the molecules were predicted to interact with other residues in the

pocket. The binding mode of compounds with active site residues and low scores suggest a set

of 10 molecules (Table 7) as promising leads from our four libraries. The predicted binding

Fig 7. A-I 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_938900.1 (rpsH, 30S ribosomal protein S8) with Jacarandic Acid (CID 73645). A-II: 3D surface

representation of the docking analyses for the structures of Jacarandic Acid with rpsH protein. Figs B-I, II, C-I,

II and D-I, II represent same information for compounds 17-hydroxyisosteviol ZINC15221730 and

ZINC35457686 respectively, for the same cavity.

https://doi.org/10.1371/journal.pone.0186401.g007
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modes of Jacarandic Acid, 16-oxime, 17-hydroxyisosteviol, ZINC16952914 and

ZINC77269615 are shown in Fig 8.

NP_939612.1 (hisE, Phosphoribosyl-ATP pyrophosphatase) is the second enzyme in the

histidine-biosynthetic pathway, hydrolyzing irreversibly phosphoribosyl-ATP to phosphor-

ibosyl-AMP and pyrophosphate. It is encoded by the hisE gene, which is present as a sepa-

rate gene in many bacteria and archaea but is fused to hisI in other bacteria, fungi and

plants. As it is essential for growth as seen in in vitro experiments, HisE is a potential drug

target for tuberculosis [51]. A comparison of template and target protein structures here

showed that there was no reported information about ligand-residue/s association in the

active site cavity. Hence, the cavity chosen for virtual screening was simply the one that pre-

sented the highest DogSiteScorer druggability score (>80). A list of best dock molecules is

shown below (Table 8). The binding patterns of Jacarandic Acid, 16–17 dihydroxyisoste-

viol, ZINC05809437 and ZINC67913372 are shown in Fig 9.

NP_939123.1 (smpB, SsrA-binding protein) is a small protein B (SmpB), which is very use-

ful for biological functions of tmRNA. In bacteria, a hybrid RNA molecule that combines the

functions of both messenger and transfer RNAs rescues stalled ribosomes, and targets aber-

rant, partially synthesized proteins for proteolytic degradation. The flexible RNA molecule

adopts an open L-shaped conformation and SmpB binds to its elbow region, stabilizing the

single-stranded D-loop in an extended conformation. The most prominent feature of the

structure of tmRNAΔ is a 90o rotation of the TѰC-arm around the helical axis. Because of this

important conformation, the SmpB–tmRNA D-complex positioned into the A-site of the

Fig 8. A-I 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_938502.1 (bioB, Biotin synthase) with Rhein (CID 10168). A-II: 3D surface representation of the docking

analyses for the structure of Rhein with bioB protein. Figs B-I, II, C-I, II & D-I, II represent same information for

compounds 16-oxime, 17-hydroxyisosteviol, ZINC16952914 and ZINC77269615 respectively, for the same

protein cavity.

https://doi.org/10.1371/journal.pone.0186401.g008
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Fig 9. A-1 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_939612.1 (hisE, Phosphoribosyl-ATP pyrophosphatase) with Jacarandic Acid (CID 73645). A-II: 3D

surface representation of the docking analyses for the structure of Jacarandic Acid with hisE protein. Figs B-I,

II, C-I, II & D-I, II represent same information for compounds 16–17 dihydroxyisosteviol, ZINC05809437 and

ZINC67913372 respectively, for the same protein cavity.

https://doi.org/10.1371/journal.pone.0186401.g009

Fig 10. A-I 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_939123.1 (smpB, SsrA-binding protein) with Rhein (CID 10168). A-II: 3D surface representation of the

docking analyses for the structure of Rhein with smpB protein. Figs B-I, II, C-I, II & D-I, II represent same

information for compounds 16-hydroxyisosteviol ZINC01414475 & ZINC31168211 respectively, for the same

protein cavity.

https://doi.org/10.1371/journal.pone.0186401.g010
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ribosome orients SmpB towards the small ribosomal subunit, and directs tmRNA towards the

elongation-factor binding region of the ribosome. The tmRNA–SmpB rescue system is ubiqui-

tous in bacteria, and is also found in some chloroplasts and mitochondria [52]. In this case the

template structure (PDB ID: 1P6V) did not contain any ligand, and no reported information

was found about the ligand-residue interaction in their cavities. Therefore, amongst the cavi-

ties identified by MVD, the best cavity for docking analysis was chosen in consensus with high-

est druggability score from the DogSiteScorer. ZINC31168211 was found to form the network

of 12 hydrogen bonds with Asn9, Ser16, Val49, Ser50, Thr52, Asp53, Ser54, Thr109. Table 9

lists top compounds from respective libraries selected for this target while the binding modes

of Rhein, 16-hydroxyisosteviol, ZINC01414475 and ZINC31168211 are also shown (Fig 10).

NP_939445.1 (DIP1084, Putative iron transport membrane protein, FecCD-family) The

Pfam search for the protein showed that it has two main components, FecCD and ABC_trans.

The FecCD is a subfamily of bacterial binding-protein-dependent transport systems family

constituting transport system permease proteins involved in the transport of numerous com-

pounds through the membrane. These transporters tend to catalyze the thermodynamically

unfavorable translocation of substrates against a transmembrane concentration gradient

through the coupling to a second, energetically favorable process. ABC systems can be catego-

rized in three functional groups, as follows. Importers mediate the uptake of nutrients in pro-

karyotes. The nature of the substrates that are transported is very wide, including mono- and

oligosaccharides, organic and inorganic ions, amino acids, peptides, iron-siderophores, metals,

polyamine cations, opines, and vitamins [53]. Exporters are involved in the secretion of vari-

ous molecules, such as peptides, lipids, hydrophobic drugs, polysaccharides, and proteins,

including toxins such as hemolysin. The third category of systems is apparently not involved

Fig 11. A-I 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_939445.1 (DIP1084, Putative iron transport membrane protein, FecCD-family) with Jacarandic Acid (CID

73645). A-II: 3D surface representation of the docking analyses for the structure of Jacarandic Acid with

DIP1084, Putative iron transport membrane protein. Figs B-I, II, C-I, II & D-1, II D represent same information

for compounds 16-hydrazonisosteviol ZINC13142972 and ZINC70454922 respectively, for the same protein

cavity.

https://doi.org/10.1371/journal.pone.0186401.g011
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in transport, with some members being involved in translation of mRNA and in DNA repair.

Table 10 shows a set of 11 high scoring compounds against the proposed target. Compound

ZINC70454922 from ZINC NP library was predicted to form ten hydrogen bonds with rela-

tively low docking score (Fig 11).

NP_939345.1 (DIP0983, Hypothetical protein DIP0983) is a conserved hypothetical pro-

tein. It is annotated as a possible lysine decarboxylase (LDC) in the Pfam database (PF03641)

[54] due to the presence of the highly conserved PGGxGTxxE motif. Some enzymes i:e “Lonely

Guy” LOG are often mis-annotated as lysine decarboxylases enzymes; it is apparently responsi-

ble for catalyzing L-lysine decarboxylation to produce the polyamine metabolite cadaverine

[55]. Conversely, this annotation is not supported by any biochemical or functional data in

any of the PGGxGTxxE motif containing LDC identified so far. This motif is highly conserved

among a vast number of proteins with unknown function, predicted from bacterial, yeast, and

plant; in Arabidopsis thaliana, all the genome-annotated LOG proteins are identified as LDC

like proteins by protein family. Based on sequence BLAST against the PDB, LOG from Clavi-
ceps purpurea shares more than 30% identical residues with crystal structures of LDC-like pro-

teins of unknown function, whose structures are already determined. Recently, lysine

decarboxylase has been reported as a therapeutic target by Lohinai et al., 2015 for Periodontal

Inflammation [56]. Here we listed 12 compounds showing good potency against our target

tabulated in Table 11. Four of the compounds with promising docking results are shown in

Fig 12.

Among the drug-like molecule ZINC13142972 (1-[(2S, 3S, 4S, 5R)-3,4-dihydroxy-5-

(hydroxymethyl) oxolan-2-yl]imidazo[1,2-b]pyrazole-7-carbonitrile) was predicted to show

good results against two of our targets NP_939302.1 (glpX, Fructose 1,6-bisphosphatase II)

and NP_939445.1 (DIP1084, Putative iron transport membrane protein, FecCD-family). It

Fig 12. A-1: 3D cartoon representation of the docking analyses for the most druggable protein cavity of

NP_939345.1 (DIP0983, Hypothetical protein DIP0983) with Jacarandic Acid (CID 73645). A-II: 3D surface

representation of the docking analyses for the structure of Jacarandic Acid with Hypothetical protein DIP0983.

Figs B-I, II, C-I, II & D-I, II represent same information for compounds 17-hydroxyisosteviol, ZINC00211173

and ZINC67911471 respectively, for the same protein cavity.

https://doi.org/10.1371/journal.pone.0186401.g012
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has been reported that at present 50% of drug molecules are either from natural source or their

derivatives [57]. Interestingly, the compounds from second library of ZINC (Natural Product)

showed better energy scores among all the libraries. Furthermore, from the library of natural

compounds (28 molecules), Jacarandic Acid and Rhein were identified as the top ranked mole-

cules and in silico analysis of the library (derivatives of diterpenoid isosteviol) suggest that

compounds 16-hydroxyisosteviol, 16-hydrazonisosteviol, 17-hydroxyisosteviol, 16–17 dihy-

droxyisosteviol and 16-oxime, 17-hydroxyisosteviol were top ranked molecules, however, with

much higher energy scores (less negative) than the top compounds from the ZINC libraries

(ZINC drug-like molecules, ZINC Natural Product).

Conclusion

We utilized a bioinformatics pipeline for determining the conserved proteome of 13 strains of

C. diphtheriae, and subsequently exploit 3D structural information, resulting in a small set of

prioritized putative drug/vaccine targets, of which eight proteins are pathogen-essential, non-

host homologous and 15 are pathogen-essential, host-homologs. After a detailed structural

comparison between host and pathogen proteins, we suggest that eight of the non -host homo-

logs could be considered for antimicrobial chemotherapy in future studies on anti-diphtheriae

drugs and vaccines. Moreover, the strategy described herein is of general nature and can also

be employed to other pathogenic microorganisms.
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