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Abstract

Biofilms are a key component in bacterial communities providing protection and contribut-

ing to infectious diseases. However, mechanisms involved in S. sanguinis biofilm forma-

tion have not been clearly elucidated. Here, we report the identification of a novel S.

sanguinis TetR repressor, brpT (Biofilm Regulatory Protein TetR), involved in biofilm for-

mation. Deletion of brpT resulted in a significant increase in biofilm formation. Interest-

ingly, the mutant accumulated more water soluble and water insoluble glucans in its

biofilm compared to the wild-type and the complemented mutant. The brpT mutation led to

an altered biofilm morphology and structure exhibiting a rougher appearance, uneven dis-

tribution with more filaments bound to the chains. RNA-sequencing revealed that gtfP, the

only glucosyltransferase present in S. sanguinis, was significantly up-regulated. In agree-

ment with these findings, we independently observed that deletion of gtfP in S. sanguinis

led to reduced biofilm and low levels of water soluble and insoluble glucans. These results

suggest that brpT is involved in the regulation of the gtfP-mediated exopolysaccharide

synthesis and controls S. sanguinis biofilm formation. The deletion of brpT may have a

potential therapeutic application in regulating S. sanguinis colonization in the oral cavity

and the prevention of dental caries.

Introduction

Biofilms represent a major health concern as they are ubiquitous in nature and frequently

attach to biotic and abiotic surfaces [1]. Bacteria within these communities create an extracel-

lular matrix composed of exopolysaccharides (EPS), proteins, lipids, DNA and ions [2, 3].

Attachment is first established through the adherence of bacteria to the surface through the

interaction of membrane associated proteins, followed by the accumulation of bacteria and the
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matrix to form multi-layered clusters. This provides the bacteria with protection from external

stresses, decreases susceptibility to antimicrobial therapy and immune clearance [4]. Not sur-

prisingly, biofilm-related diseases are a cause of persistent infections, are a significant risk fac-

tor in medical-device related infections [5, 6] and are estimated to account for 80% of all

bacteria-related infections [6]. Therefore, studies aimed at elucidating the mechanisms by

which bacteria regulate biofilm formation are essential.

Streptococcus sanguinis, a Gram-positive facultative anaerobe, is a commensal microbe

within the human oral cavity and is known to be a pioneering contributor to dental plaque

biofilm [7–9]. The formation of dental plaque biofilm is highly organized and composed of

multispecies microorganisms [10]. However, attachment of pioneering bacteria, such as S. san-
guinis, to the salivary glycoprotein-coated surface is essential for the initiation of the biofilm

development, as they can modify the environment to make it less harmful, aiding in the attach-

ment of succeeding organisms [11]. While several studies have been undertaken to identify

potential contributors to the biofilm-forming ability of S. sanguinis [12], the process is exceed-

ingly complex and more are needed to better understand its roles in dental plaque and oral

health.

TetR is a transcriptional regulator of the tet genes that encode proteins required for tetracy-

cline resistance [13] Yet, studies show that TetR family proteins also regulate genes whose prod-

ucts are involved in diverse biological processes, such as multidrug resistance, biogenesis of

antibiotics, osmotic stress, pathogenicity and biofilm formation [13, 14]. The TetR regulator

icaR, in Staphylococus aureus is a negative regulator of intracellular adhesion genes within the

ica operon, influencing the synthesis of polysaccharide poly-N-acetylglucosamine and biofilm

formation [15, 16]. In Streptococcus pneumoniae, the TetR family regulator, SczA, aids in resis-

tance against metal ions [17]. However, diverse regulation by TetR has not been observed in S.
sanguinis. By screening our comprehensive S. sanguinis mutant library for changes in biofilm

development [18], we identified a novel TetR repressor, brpT (Biofilm Regulatory Protein TetR;

SSA_0144) that was shown to be biofilm-related. An amino acid sequence alignment suggests

that brpT homologs are widely distributed amongst pathogenic or opportunistic oral strepto-

cocci (S1 Fig). However, understanding of this group of TetR family regulators in biofilm for-

mation and other biological processes is rarely mentioned, except in S.mutans SMU.1349,

which was characterized to modulate the transcription of itself and several other genes in the

genomic island, TnSmu2 [19]. In this study, we show that brpT influences biofilm formation in

S. sanguinis, deletion of brpT alters the spatial structure of the biofilm and increases the ability

of S. sanguinis to accumulate glucans. Additionally, we perform RNA-sequencing to examine

possible genes regulated by brpT, providing a gene expression profile for future studies.

Materials and Methods

Strains and growth conditions

The bacterial strains, plasmid and primers used in this study are listed in Table 1. S. sanguinis
strain SK36 [20] and its derivatives were cultured in brain heart infusion (BHI) broth, on BHI

agar or in biofilm medium (BM) [21]. For selective growth of S. sanguinis mutants, kanamycin

was used at a concentration of 500 μg/ml and for the selection of the S. sanguinis comple-

mented mutant; erythromycin was used at a concentration of 10 μg/ml. To test glucan synthe-

sis in S. sanguinis, BM was supplemented with 1% sucrose (w/v).

Mutant construction and complementation

The single gene deletion of brpT and gtfP in S. sanguinis SK36 was previously constructed [18].

Briefly, three sets of primers were used to independently PCR amplify the 1-kb sequence
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upstream of the gene ORF, a promoterless kanamycin cassette (aphA-3) to replace the ORF

and the 1-kb sequence downstream of gene ORF. The three fragments were combined through

a second round of PCR. The final recombinant PCR product was transformed into S. sanguinis
SK36 then selected by kanamycin resistance and confirmed by PCR analysis.

For the construction of ΔbrpT/ΔgtfP, three sets of primers were used to independently PCR

amplify the 1-kb sequence upstream of gtfP, an erythromycin cassette isolated from plasmid

pVA838 [22] to replace the gtfPORF and the 1-kb sequence downstream of gtfP. The three

fragments were then combined through a second round of PCR. The final recombinant PCR

product was transformed into the ΔbrpTmutant, selected by kanamycin and erythromycin

resistance then confirmed by PCR analysis.

For complementation of the brpTmutant, a similar PCR-based method was employed [23].

Briefly, three DNA fragments were independently amplified using primer sets 0144F1/0144R1,

0144F2/0144R2 and 0144F3/0144R3, for the 1-kb sequence upstream plus the coding sequence

of brpT, the erythromycin resistance cassette (pVA838) [22] and the 1-kb sequence down-

stream of brpT, respectively. The final recombinant PCR product containing these three frag-

ments was generated by overlapping PCR. It was then introduced into the brpTmutant to

replace the kanamycin resistance cassette with the brpTORF and the erythromycin resistance

cassette. An erythromycin resistant and kanamycin sensitive transformant was selected and

confirmed by PCR analysis.

Table 1. Bacterial strains, plasmids, and primers used in this study.

Strain or primer Relevant characteristics Source

S. sanguinis

SK36 Human plaque isolate (20)

ΔbrpT KmR; ΔbrpT::aphA-3 (18)

ΔbrpT _C ErmR; brpT+::pSerm This work

ΔgtfP KmR; ΔgtfP::aphA-3 (18)

ΔbrpT/ ΔgtfP KmR ErmR; ΔbrpT::aphA-3,ΔgtfP::pSerm This work

Plasmid

pVA838 Shuttle vector contains erythromycin resistant cassette able to replicate in Escherichia coli and Streptococcus sanguinis (23)

Primers

0144C-F1 GGAGGAATGAATCTATGAAACAAAC, brpT upstream + ORF (18)

0144C-R1 AAATAATTCTAGGAGGGAATAATGTTCAACTCAAAATTATGAAGC, brpT upstream + ORF This work

0144C-F2 TGACTAACTAGGAGGATTACATGAACAAAAATATAAAATATTCT, erm resistance This work

0144C-R2 CATTATTCCCTCCTAGAATTATTTCCTCCCGTTAAATAATAG This work

0144C-F3 TCATGTAATCCTCCTAGTTAGTCATTATGATTCACTGTGAGGTGTT, brpT downstream This work

0144C-R3 GTCAAACCTCCCATAAATCTTTCAG, brpT downstream (18)

0613Erm-F1 GTTGAACCCTCCTGACTTTC, upstream of gtfP This work

0613Erm-R1 TTTTGTTCATAAAACCTCCTTCTG, upstream of gtfP This work

0613Erm-F2 GGAGGTTTTATGAACAAAA, erm resistance This work

0613Erm-R2 CTATTGCTATTTCCTCCCG, erm resistance This work

0613Erm-F3 CGGGAGGAAATAGCAATAG, downstream of gtfP This work

0613Erm-R3 CTGACAAGACCGTCCATAAAGC, downstream of gtfP This work

gtfP-F AGGCGGTGAATCTTGGCAATC, gtfP qRT-PCR This work

gtfP-R TGTACTTGAACCGGCTGTCC, gtfP qRT-PCR This work

gyrA-F CTCTGGAGATGCTTCGCGAT, gyrA qRT-PCR. This work

gyrA-R CCATCCCAACTGCAATCCCT. gyrA qRT-PCR. This work

doi:10.1371/journal.pone.0169301.t001
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Detection of biofilm by crystal violet (CV) staining

Overnight cultures of S. sanguinis grown in BHI broth were diluted 1:100 into fresh BM sup-

plemented with 1% (w/v) sucrose and 100 μl was transferred to 96-well flat bottom polystyrene

microtiter plates (BIOFIL, Guangzhou, China) and incubated anaerobically for 24 h at 37˚C.

Biofilms were quantified by crystal violet staining (CV, Sigma, St. Louis, MO) as previously

described [12]. Briefly, the plate wells were gently washed with deionized water (dH2O),

stained with 50 μl of 0.4% (w/v) crystal violet (Fisher scientific, Pittsburgh, PA) for 15 min at

room temperature and then washed 3 times with dH2O. The biofilm stain was dissolved in

200 μl of 33% (v/v) acetic acid and then 100 μl transferred for measuring absorbance at 600

nm. For high absorbance measurements, dissolved biofilm stains were diluted and biofilm for-

mation was calculated as the OD600 measurement times the dilution factor. All samples were

tested at least in triplicate. Unless stated otherwise, significance of P<0.05 or P<0.01 were

determined by the Student’s t-test.

Quantification of glucans in biofilm

Wild-type S. sanguinis and mutants were grown in BM supplemented with 1% sucrose for 24 h

in 24-well plates. The following day, the supernatant was removed and biofilms were re-sus-

pended with an equal volume (500 μl) of distilled water, transferred into 2 ml tubes and centri-

fuged. The precipitate was re-suspended again with 500 μl of distilled water and centrifuged.

Supernatants from these two washes were mixed and used for extraction of water soluble glu-

cans (WSG). The sediment was dissolved in the same volume of 1 N NaOH for 3 h, and centri-

fuged. The supernatant of this extraction was used for the quantification of alkali-soluble

glucans (water insoluble glucan, WIG). These two fractions containing WSG and WIG were

precipitated separately by 3 volumes of isopropanol overnight. The precipitates obtained by

centrifugation were then air dried, and dissolved in 100 μl of sterile dH2O (WSG) or 1 N

NaOH (WIG). The amount of glucans in each fraction was quantified by the phenol-sulfuric

acid method as previously described [24]. Briefly, 50 μl of each sample was pipetted into

96-well plates, and 25 μl of 5% phenol was added, then 125 μl of concentrated sulfuric acid was

added rapidly and mixed by pipette. The plates were allowed to stand 30 min at room tempera-

ture. The absorbance was then measured at 490 nm. H2O and 1 N NaOH were used as solvents

for detection of WSG and WIG, respectively, as well as standard curves, which were generated

by using glucose as a reference carbohydrate. The amounts of WSG and WIG were expressed

as glucose equivalent in each well. To determine the efficiency of glucan accumulation, the

concentration of glucans was normalized to the concentration of genomic DNA extracted

using a QIAamp DNA Mini kit (Qiagen, Hilden, Germany) and quantified by a Nanodrop

2000 spectrophotometer (Thomas Scientific).

Confocal laser scanning microscopy (CLSM) analysis of biofilm

Wild-type S. sanguinis and mutants were grown in BM supplemented with 1% sucrose in

24-well plates as described above. The following day, the wells were gently washed three times

with phosphate buffer saline (PBS, pH7.4), followed by staining with 1.5 μM SYTO 9 (Invitro-

gen, Grand Island, NY) for 25 min. After removing the stain, the wells were gently washed by

PBS. Biofilm images were visualized and collected by CLSM using a LSM 710 confocal laser

scanning system (Zeiss, Thornwood, NY). SYTO 9 fluorescence was detected by excitation 488

nm, and collected with a 493- to 559-nm bandpass filter. All z-sections were collected at 5.8-

μm intervals by using a Plan-Neofluar ×10/0.3 objective lens. ImageJ software was used for

image processing.

brpT Modulates Biofilm in Streptococcus sanguinis
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Scanning electronic microscopy (SEM) analysis of biofilm

Wild-type S. sanguinis and mutants were cultured overnight. The following day, cells were

diluted 1:100 in BM supplemented with 1% sucrose. Biofilms were grown on small sterile poly-

styrene coverslips within 24-well flat-bottom plates for 24 h at 37˚C under anaerobic condi-

tions. Biofilms on the coverslips were washed once with PBS, fixed by 2% glutaraldehyde in 0.1

M sodium cacodylate buffer for 1 h. Following dehydration through a graded series of ethanol,

the coverslips were air dried and sputter coated with gold. Samples were then scoped by a SEM

machine (Zeiss EVO 50 XVP, Jena, Germany).

RNA-sequencing preparation

Wild-type S. sanguinis SK36 and the brpTmutant were grown in BHI medium to OD600 ~ 0.9.

Cells were collected and treated with RNAprotect bacteria reagent (Qiagen, Valencia, CA) to

stabilize RNA then broken by mechanical disruption using FastPrep lysing matrix B (Qbio-

gene, Irvine, CA). Total RNA was treated with DNase I (Qiagen) and prepared by using RNA

easy mini kits (Qiagen) according to the manufacturer’s instructions. Ribo-Zero Magnetic Kit

for Bacteria (Illumina) was used to deplete ribosomal RNA from 2 μg of total RNA. NEBNext

Ultra Directional RNA Library Prep Kit for Illumina (New England BioLabs) was used for the

following RNA-seq library preparation according to the manufacturer’s protocol. Briefly, ribo-

somal-depleted RNA was fragmented followed by first-strand cDNA synthesis from random

primers using ProtoScript II Reverse Transcriptase (New England BioLabs). Second strand

cDNA was synthesized and purified. End repair was performed on the double-stranded cDNA

and primed with the addition of 5’-phosphorylated dA-tailed ends using T4 DNA polymerase,

Klenow DNA polymerase and T4 polynucleotide kinase (New England BioLabs). This was

immediately followed by adaptor ligation (New England BioLabs) and purified. Samples were

PCR-amplified for 12 cycles with Phusion HiFi polymerase (New England Biolabs) with

paired-end primers and a randomly chosen unique barcode (Illumina). Agencourt AMPure

XP Beads (Beckman Coulter) were used for all purification steps. Library sequencing was per-

formed by the Nucleic Acids Research Facilities at Virginia Commonwealth University using

Illumina HiSeq2000. The raw RNA-seq data are available in the NCBI Gene Expression Omni-

bus (GEO) (www.ncbi.nlm.gov/geo/query) under the accession number: GSE89964.

Mapping and analysis of RNA-sequencing data

Reads obtained from RNA-sequencing were aligned against the S. sanguinis SK36 genome

using Rockhopper v. 2.03 [25]. Analyses were run on default parameter settings to obtain

expression data of brpTmutant compared to wild-type SK36. Significance was determined by

a q-value� 0.01 adjusted for a false discovery rate of 1%. Transcriptome profiles were analyzed

for enriched pathways and functionally related genes using DAVID v. 6.8 Beta [26].

Quantitative RT-PCR (qRT-PCR) analysis

qRT-PCR was performed as described previously [23]. Wild-type S. sanguinis SK36 and

mutants were grown in BHI medium with or without sucrose to OD600 0.9–1.0. Cells were col-

lected and broken by mechanical disruption using FastPrep lysing matrix B (Qbiogene, Irvine,

CA). Total RNA was treated with DNase I (Qiagen) and prepared by using RNA easy mini kits

(Qiagen, Valencia, CA) according to the manufacturer’s instructions. First-strand cDNA syn-

thesis was performed in a 20 μl system containing 100 ng Total RNA, 0.2 μl Random Primer

(3.0 μg/μl), 1.0 μl dNTP (10 mM each dNTP), 1.0 μl 100 mM DTT, 1.0 μl RNase OUT (40 U,

Invitrogen) and 1.0 μl SuperScript III reverse transcriptase (200 U, Invitrogen), 4.0 μl first-

brpT Modulates Biofilm in Streptococcus sanguinis
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strand buffer and RNase free water to a 20 μl volume. Reactions lacking reverse transcriptase

were performed in parallel as control for possible DNA contamination. First-strand cDNA

from each reaction was subjected to 10-fold dilution and used in subsequent qRT-PCR. The

qRT-PCR was prepared in reactions containing 5 μl 2X SYBR Green PCR Master Mix

(Applied Biosystems, Foster City, CA), 0.1 μl each PCR primer (20 μM), 0.5 μl diluted first-

strand cDNA and distilled water to a 10 μl volume. The reaction was performed on an ABI

7500 fast real-time PCR system. The housekeeping gene gyrAwas used as a normalization con-

trol. The 2-ΔΔCt method was employed for calculation of relative expression levels of target

genes. The data were collected and statistically analyzed from triplicates.

Results

S. sanguinis brpT affects biofilm formation

Through the continued study of our S. sanguinis genome-wide gene mutant library [18], we

identified a new biofilm-related gene, brpT, a TetR family transcriptional regulator. The pre-

liminary screening indicated that the brpT deletion mutant displayed an increased biofilm

phenotype compared to the wild-type SK36, when grown in either BM or trypticase soy broth

(data not shown).

To confirm that the increase in biofilm was a result of the brpTmutation, a complemented

mutant was constructed. The growth rates of the wild-type, the brpTmutant and the comple-

mented mutant were first examined and we found no significant change in the bacterial over-

night growth of brpTmutant (S2 Fig). Biofilms for the brpTmutant, the wild-type and the

complemented mutant were then quantified by CV staining. The brpTmutant showed a signif-

icant increase in biofilm formation compared to the wild-type and the complemented mutant

(P<0.01), while no significant difference between the biofilms of the wild-type and the com-

plemented mutant was observed (Fig 1).

BrpT is a small 22 kDa protein that contains a helix-turn-helix domain in the N-terminal

region, typical of the XRE-family transcriptional regulators (Xenobiotic Response Element,

Fig 1. Deletion of brpT increases biofilm formation. S. sanguinis was cultured in BM supplemented with

1% sucrose, and biofilm biomass was determined by CV staining. Data from three biological replicates were

averaged and the statistical significance between the brpT mutant, ΔbrpT and the wild-type, SK36 or the

complemented mutant, ΔbrpT_C was determined by Student’s t-test. **, indicates significance with P <0.01.

doi:10.1371/journal.pone.0169301.g001
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a prokaryotic transcriptional DNA binding regulator family), and a tetracycline repressor

domain in the C-terminal region. Previous studies indicate that the brpT homolog, SMU.1349,

in S.mutans, is involved in the transcriptional regulation of itself and adjacent sequences [19].

To examine whether any neighboring genes were potential effector(s) responsible for the

observed biofilm increase, eight mutants with deletions either upstream or downstream of

brpTwere selected from our S. sanguinis mutant library [18] and screened. We found that

mutations in these neighboring genes did not significantly alter biofilm formation compared

to the wild-type (S3 Fig), indicating that the observed biofilm increase was not caused by a

polar effect and only the deletion of brpTwas responsible for the observed increase in biofilm

production.

Deletion of brpT alters S. sanguinis biofilm properties

During our screening, we noticed that deletion of brpT resulted in biofilms with an uneven

appearance compared to the wild-type SK36 and the complemented mutant. To better under-

stand these morphological differences, biofilms for the wild-type, the brpTmutant and the

complemented mutant were grown under anaerobic conditions in flat-bottom polystyrene

microtiter plates and examined by confocal laser scanning microscopy (CLSM). The biofilm of

the wild-type and the complemented mutant showed uniform green fluorescence intensity

whereas bright fluorescence clusters surrounded by dark (blank) areas were observed for the

brpT deletion mutant (Fig 2A). A quantitative analysis conferred with what was visually

observed. The average thickness of the mutant biofilm (119.9±3.3 μm) was approximately

1.5-fold more than that of the wild-type (81.2±5.8 μm) and the complemented mutant (79.3

±3.3 μm) (Fig 2B) and there was a large increase in the biofilm roughness corresponding to the

uneven structural morphology (Fig 2C).

SEM analysis was employed to further assess the changes in biofilm morphology. As shown

in Fig 3A, when scanned under a low magnification (1000×), the brpTmutant biofilm showed

a noticeably different morphology from that of the wild type. There were many peaks and

dents (like a corrugated surface) compared to the relative uniform distribution of the wild-

type and complemented mutant. Interestingly, the streptococcal chains of the brpTmutant

were surrounded by numerous fine filamentous substances when scanned under a higher mag-

nification (20,000×) (Fig 3B). These filamentous substances were also observed in SK36 and

the complemented mutant, but were less abundant than that seen in the ΔbrpT biofilms.

Though further investigations should be taken towards the nature of these filaments, we

hypothesize they may be water insoluble polysaccharides or glucans. These data suggest that

brpT is involved in the regulation of the biofilm composition and structure.

Deletion of brpT increases the quantity of glucans in S. sanguinis biofilm

We noticed that the brpTmutant easily formed large clusters in tubes with broth supplemented

with sucrose and these clusters were difficult to dissolve in water by vigorous vortex. Studies

performed in other oral streptococci have demonstrated that glucans are important contribu-

tors to the bulk physical integrity and stability of biofilms and act as a key component in the

matrix of oral cariogenic biofilms [27–29]. Corresponding to the increase in filamentous struc-

tures we noticed in the SEM analysis, we hypothesized that the mutant biofilm accumulated

more exopolysaccharides (glucans). To examine this, static biofilms for the wild-type, brpT
mutant and complemented mutant were scraped from polystyrene wells. Glucans were

detected using a phenol-sulfuric acid method. The resulting solutions from the biofilms con-

sisted of a water-soluble fraction for the water-soluble (WSG) glucans and an alkali-soluble

fraction for the water-insoluble glucans (WIG). As shown in Table 2, S. sanguinis formed a
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more robust biofilm when supplied with higher sucrose concentrations and the concentration

of WIG was at least 10-times more than the WSG for all of the biofilms examined. More

importantly, the brpTmutant formed significantly more biofilm than the wild-type or the

complemented with a higher accumulation of both WIG and WSG regardless of the sucrose

concentration (S4 Fig). To compare the efficiency of glucan accumulation, the amount of glu-

cans in each biofilm was normalized to the genomic DNA. As shown in Fig 4, the brpTmutant

was more efficient at accumulating both WSG and WIG than either the wild type or the com-

plemented mutant. These results suggest that S. sanguinis glucan synthesis is sucrose-depen-

dent and biofilm development is influenced by brpT regulated glucan accumulation.

Transcriptome analysis of brpT regulated genes

To further investigate genes that may be influenced or regulated by brpT, RNA-seq was per-

formed for a genome-wide transcriptome analysis. The brpTmutant and the wild-type SK36

were grown in BHI and cells were harvested at mid-log growth phase. RNA-seq data revealed

Fig 2. Deletion of brpT alters the biofilm structure. (A) Wild-type S. sanguinis, SK36, the brpT mutant, ΔbrpT, and the complemented mutant,

ΔbrpT_C were grown in BM as described in Materials and Methods. After 24-h growth, the biofilms were washed and stained with SYTO 9, and z-

stacks of each were acquired by CLSM with a Plan-Neofluar ×10/0.3 objective lens. Representative orthogonal views from three independent

experiments are displayed. (B) Quantification of biofilm thickness by CLSM for the wild-type, ΔbrpT and ΔbrpT_C. (C) Quantification of biofilm

roughness for the wild-type, ΔbrpT and ΔbrpT_C. **, indicates significance with P <0.01.

doi:10.1371/journal.pone.0169301.g002
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1074 genes with a significant change in expression compared to the wild-type; 594 genes were

down-regulated and 480 genes up-regulated (S1 Table). Approximately 27% of the down-regu-

lated and 29% of the up-regulated genes encoded hypothetical proteins, with a majority of

those processing transmembrane domains and therefore membrane related. This was some-

what expected as membrane proteins are thought to play a crucial role in biofilm formation

through cell-cell interaction, surface attachment, protein binding, nutrient transport and enzy-

matic activity [30]. A pathway analysis through DAVID showed a statistically significant

enrichment for ribosomal proteins, translation initiation factors, tRNA synthetases and

Fig 3. SEM analysis further reveals altered biofilm morphology and an increase in filamentous structures. Biofilms formed by the wild-type

SK36, the brpT mutant, ΔbrpT, and the complemented mutant, ΔbrpT_C, scanned under (A) 1000x magnification and (B) 20,000x magnification

revealed an altered morphology and an increase in filamentous structures for ΔbrpT compared to the wild-type and complemented mutant. White

arrows indicate filamentous substances.

doi:10.1371/journal.pone.0169301.g003

Table 2. Determination of glucans accumulated in S. sanguinis biofilm.

Strain Water soluble glucans (μg/well a) Water insoluble glucans (μg/well)

0.25% 0.5% 1.0% 0.25% 0.5% 1.0%

SK36 0.36±0.10 0.52±0.03 1.79±0.64 4.69±0.95 14.81±2.18 77.32±21.53

ΔbrpT 0.55±0.03 b, c 5.70±1.41 d 17.70±4.94 d 23.18±7.00 b, c 72.92±14.08 d 620.83±157.22 d

ΔbrpT_ C 0.30±0.06 0.54±0.13 1.72±0.82 4.21±1.23 17.06±4.78 84.64±17.56

a: 5 μl of overnight S. sanguinis cultures were added to 495 μl fresh BM in 24-well flat bottom polystyrene microtiter plates, which contained either 0.25%,

0.5% or 1% (w/v) sucrose and incubated anaerobically for 24h at 37˚C. The supernatants were removed and biofilm associated glucans were determined.

All samples were tested at least in triplicate. Results represented mean ± SD.
b: P <0.05 compared with SK36 of same culture conditions.
c: P <0.01 compared with ΔbrpT_C of same culture conditions.
d: Significance relative to SK36 or ΔbrpT_C of same culture conditions (P <0.01).

doi:10.1371/journal.pone.0169301.t002

brpT Modulates Biofilm in Streptococcus sanguinis

PLOS ONE | DOI:10.1371/journal.pone.0169301 January 3, 2017 9 / 17



elongation factors [31]. This was followed by a significant enrichment of genes involved in

fatty acid and lipid metabolism. Of the up-regulated genes there were a number of membrane

associated proteins such as lipoproteins, penicillin-binding proteins, histidine transport per-

meases and genes for ethanolamine metabolism. We noted several multidrug ABC transport

systems within the down-regulated genes. The transcriptome analysis suggested many genes

are regulated by brpT.

Notably, RNA-sequencing for the brpTmutant showed more than a 9-fold increase in gtfP
expression compared to the wild-type. This was verified by qRT-PCR where an 8-fold increase

was observed. When BHI was supplemented with 1% sucrose and gtfP expression was re-ana-

lyzed by qRT-PCR, we observed a 15-fold increase in expression (Fig 5). This indicated the

expression level of gtfP in the brpTmutant was significantly stimulated by sucrose (1.9-fold,

Fig 4. Efficiency of glucan accumulation in S. sanguinis biofilms. S. sanguinis wild-type SK36, the brpT mutant ΔbrpT and the

complemented mutant ΔbrpT_C were grown anaerobically for 24 h in BM medium containing 1% sucrose at 37˚C. The amounts of (A)

water soluble glucans and (B) water insoluble glucans in the biofilms were quantified using the phenol-sulfuric acid method and normalized

to the concentration of genomic DNA.

doi:10.1371/journal.pone.0169301.g004
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P<0.01), whereas neither the wild-type nor the complemented mutant showed a significant

increase in gtfP levels after sucrose stimulation. These results suggest that brpT has a role in

repressing the expression of gtfP and de-repressed gtfP expression in the brpTmutant is stimu-

lated by sucrose.

To further link the expression of glucosyltransferase to our increased biofilm phenotype

in ΔbrpT, we next examined the single deletion mutant, ΔgtfP [18] and the double mutant

ΔbrpTΔgtfP. While both mutants could form pellicles on the bottom of the well similar to the

wild type, the pellicles were loosely attached to the polystyrene surface and were easily washed

away (Fig 6A). In addition, the biofilm biomass (Fig 6B) and the ability to synthesize glucans

(Fig 6C and 6D) were significantly less than the wild type.

As ΔgtfP and ΔbrpT/ΔgtfP still had the ability to form biofilm pellicles but showed reduced

biomass and a significantly lost in attachment, we hypothesize that brpT influences the ability

of the S. sanguinis biofilm to strongly adhere to surfaces through the regulation of WSG and

WIG accumulation within the biofilm.

Discussion

S. sanguinis is a pioneering colonizer within the oral cavity, initiating the establishment of dis-

ease-contributing plaque biofilm. Therefore, identifying and understanding genes that are

involved in biofilm formation are critical to develop novel therapeutic strategies against oral

diseases. Here, we present the first TetR family transcriptional regulator shown to influence

biofilm formation in S. sanguinis. These transcriptional regulators are particularly interesting

as they not only function as a repressor in controlling tetracycline resistance, but are shown to

play key roles in regulating genes involved in a diverse range of adaptive responses [13, 14].

From our continued studies with the S. sanguinis genome-wide mutant library [18], we noted

that deletion of the TetR gene SSA_0144, which we named brpT, increased biofilm formation

and altered the biofilm structure. We also observed an increase in the quantity of water soluble

and insoluble glucans in the biofilms. This led us to examine the glucan synthesizing enzyme,

glucosyltransferase (gtfP). Interestingly, RNA-seq analysis showed the expression of gtfPwas

significantly up-regulated in the brpTmutant and deletion of gtfP in S. sanguinis significantly

Fig 5. Increased gene expression of gtfP in the brpT mutant. qRT-PCR was used to determine the relative expression of glucosyltransferase, gtfP,

in the brpT mutant using gyrA as an internal control. Data shown are mean±SD from three biological replicates. “–S” on the x-axis represents samples

cultured in BHI supplemented with 1% sucrose. **, indicates significance with P <0.01.

doi:10.1371/journal.pone.0169301.g005
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decreased glucan biosynthesis and biofilm adhesion. This suggested that brpTmay influence

the biofilm of S. sanguinis through gtfP.

Bacterial exopolysaccharides are a primary component of extracellular polymeric sub-

stances (EPS) or matrices in biofilms, and their role in the development and stabilization of

biofilms have been extensively studied [2, 32–34]. Sucrose obtained from the diet and utilized

by oral streptococci is considered a major factor in dental caries as it is fermentable and can

serve as a substrate for extracellular and intracellular polysaccharides [35, 36]. It has been

noted that S.mutans, a key contributor to dental caries, utilizes three glucosyltransferases for

the conversion of sucrose into polysaccharides. The glucosyltransferases, GtfB and GtfC, cata-

lyze the synthesis of water-insoluble glucans, and GtfD, is responsible for water-soluble glucan

synthesis [37, 38]. GtfP, the sole S.mutans Gtf homolog in S. sanguinis, exhibits 59%, 49% and

49% protein sequence similarity to S.mutans GtfD, GtfB and GtfC, respectively, and has been

revealed to play a role in the synthesis of WSG for S. sanguinis [39]. Our RNA-seq and subse-

quent qRT-PCR analyses for the brpTmutant showed a significant increase in expression of

Fig 6. Deletion of gtfP in S. sanguinis decreases biofilm attachment and glucan synthesis. Wild-type, the gtfP mutant, ΔgtfP, and the double mutant,

ΔbrpT/ΔgtfP, were cultured in BM with 1% sucrose for 24 h anaerobically and analyzed. (A) Weak attachment of the ΔgtfP and the ΔbrpT/ΔgtfP biofilm

(pellicle) to the polystyrene surface and reduced biofilm biomass determined by CV staining. (B) Quantification of biofilm formation (OD600). Quantification of

(C) water soluble glucans, WSG and (D) water insoluble glucans, WIG accumulated within the biofilm. **, indicates significance with P <0.01.

doi:10.1371/journal.pone.0169301.g006
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gtfP, indicating a possible relationship between brpT and gtfP in exopolysaccharide production

and biofilm formation. When gtfPwas knocked out from either the wild-type or the ΔbrpT
strain it formed a weak biofilm that could only form pellicles loosely attached to a polystyrene

surface (Fig 6A). While the brpTmutant accumulated significantly more WSG and WIG than

the wild type or the complemented mutant (Table 2), deletion of gtfP reduced the ability of S.

sanguinis to synthesize both WSG and WIG by about 2-fold and 20-fold, respectively (Fig 6C

and 6D). The sole glucosyltransferase in S. sanguinis not only promotes WSG synthesis, but

more importantly, determines the biogenesis of WIG in the biofilm, which may be the pre-

dominant contributor to biofilm adhesion on abiotic surfaces. This correlates with previous

findings that formation of S.mutans microcolonies on saliva-coated hydroxyapatite surfaces

was determined largely by the gtfB (associated with WIG) or gtfC (associated with WIG and

WSG) and gtfB [40]. While these results indicate that brpT influences biofilm formation in a

glucan dependent manner, mediated through the expression of gtfP, it is not clear whether

BrpT directly or indirectly regulates gtfP. A bioinformatic prediction presented few known TF

binding sites at 77 bp- (argR2), 75 bp- (ihf), and 36 bp- (rpoD16) upstream of the GtfP coding

sequence but it is unclear as to whether BrpT recognizes these sites.

The contribution of exopolysaccharides to the biofilm three-dimensional architecture and

modulation of inter-biofilm interactions has been documented in S.mutans [41, 42]. Here we

also observed that alteration in exopolysaccharide content led to changes in the S. sanguinis
biofilm structure. The brpTmutant produced high levels of glucans and exhibited a rough and

uneven biofilm surface. As shown by the CLSM analysis, an increase in glucan synthesis led to

an increase in biofilm thickness, indicating the importance of glucans in the maintenance of S.

sanguinis biofilm spatial structure. Furthermore, SEM analysis gave us possible explanations

for these structural changes. The bacterial chains of the brpTmutant biofilm were bound by

numerous filaments. Since the biofilm was washed by PBS prior to fixation, we hypothesized

that these filamentous substances were composed mainly of water insoluble glucans. And the

wild-type S. sanguinis biofilm with normal quantities of filaments showed a relatively flat and

thin biofilm. Collectively, these observations implicate brpT as a novel regulator of S. sanguinis
biofilm structure through glucan biosynthesis.

Although many factors have been characterized to modulate the expression of Gtf and

biofilm formation, the mechanisms involved in these processes still need further illustra-

tions. In S.mutans, the expression of gtf depends on quorum sensing [43], carbohydrate

sources, pH [44], vicRK [45], frp [46], vicX [47] as well as chemical agents [48–50]. Unlike S.

mutans, S. sanguinis biofilm formation was independent of AI-2 quorum sensing [51], and

vicRK exhibited a negative regulation of gtfP transcription at certain growth stages [52],

making the regulation S. sanguinis gtfPmore complicated. Here, our data suggest that gtfP
in S. sanguinis is negatively regulated by the novel TetR family repressor, brpT. Considering

that exopolysaccharides can bind to the bacterial chain and maintain the spatial structure,

which is essential for the biofilm integrity, the right expression levels of exopolysaccharides

might be critical for biofilm development and maturation. If exopolysaccharides on the cell

surface are low, like the gtfPmutant, the ability to attach to an abiotic surface would be lost

and biofilm development impaired. However, bacteria that produce too much exopolysac-

charides might have a negative influence. This would hamper bacteria movement and bio-

film diffusion, as with the brpTmutant biofilm, where many empty areas were observed

surrounding bright green clusters (Fig 2). Were bacteria bound tightly by large amounts of

sticky glucans on the cell surface, restricting biofilm diffusion? Interestingly, a similar con-

cern was raised previously. A P. aeruginosa mutant, ΔsadC, produced less Pel polysaccha-

rides and exhibited increased swarming ability, even in high-viscosity medium [53]. In

light of the findings described here, the possibility should be considered that brpT and gtfP
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cooperate, modulating S. sanguinis biofilm formation and dispersion. Further studies may

obtain more evidence to elucidate this theory.

One of the primary findings of the present study is that the GtfP-catalyzed glucan synthesis

in S. sanguinis biofilm is controlled by the TetR repressor BrpT. As the BrpT homologs are

widely spread in oral Streptococci (S1 Fig), it is possible that the role of TetR in exopolysacchar-

ides production and biofilm formation is conserved. Given that exopolysaccharides can

facilitate the expression of virulence factors in mixed-species oral biofilms [42], further investi-

gations into the relationship between brpT and gtfPmay generate new insight into oral biofilm

development and provide new targets for the design of effective anti-caries therapeutics. For

example, methods for increasing the expression or activity of brpT homologs in oral pathogens

may aid in inhibiting biofilm formation and accelerate pathogen clearance.

Supporting Information

S1 Fig. Amino acid sequence alignment of BrpT and oral streptococci homologs. Amino

acid residues with similarity >50% were shaded in black and>33% were shaded in gray.

The Genbank aceession numbers: S. sanguinis BrpT, YP_001034156.1; S. intermedius TetR,

GAD41027.1; S. constellatus TetR, WP_006270368.1; S. anginosus TetR, YP_008508598.1; S.

oralis TetR, EFE56457.1; S. tigurinus TetR, EMG31875.1; S.mitis TetR, EFM31136.1; S. salivar-
ius TetR, KEO45415.1; S. sobrinus TetR, EMP71536.1; S.mutans TetR, NP_721716.1.

(TIF)

S2 Fig. Growth curves of S. sanguinis strains. Bacteria cultured overnight were diluted 1:100

into 96-well flat-bottom microplates. The OD450 was recorded with a microplate reader (Bio-

Tek, Thorold, Canada) every 30 min for 20 h at 37˚C under aerobic conditions. The growth

curves were obtained from the average of at least three repeats.

(TIF)

S3 Fig. Influence of deletion in genes adjacent to brpT on S. sanguinis biofilm formation.

Biofilm formed by wild-type S. sanguinis SK36 and single-gene deletion mutants Ssx_0140 to

Ssx_0149 were tested and only the brpTmutant (Ssx_0144) showed a significant difference

(P<0.01, Student’s t-test) relative to SK36.

(TIF)

S4 Fig. S. sanguinis sucrose-dependent biofilm formation. Biofilm formed by wild-type S.

sanguinis SK36, the brpTmutant, ΔbrpT and the complemented mutant, ΔbrpT_C grown in

BM supplemented with either 0.25%, 0.50 or 1% sucrose. ��, indicates significant difference

with P<0.01.

(TIF)

S1 Table. RNA-seq analysis of gene expressions significantly changed in the brpT mutant

compared to the wild-type.
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