

Virginia Commonwealth University VCU Scholars Compass

Auctus: The Journal of Undergraduate Research and Creative Scholarship

2019

ErbB3 Signaling and its Effect on Spheroid Formation in Ovarian Cancer

Muskan Bansal Virginia Commonwealth University, bansalm@vcu.edu

Danielle Burke University of New Mexico, DaBurke@salud.unm.edu

Mara P. Steinkamp University of New Mexico, MSteinkamp@salud.unm.edu

Follow this and additional works at: https://scholarscompass.vcu.edu/auctus

Part of the Cancer Biology Commons, Medical Molecular Biology Commons, and the Reproductive and Urinary Physiology Commons

© The Author(s)

Downloaded from

https://scholarscompass.vcu.edu/auctus/75

This STEM is brought to you for free and open access by VCU Scholars Compass. It has been accepted for inclusion in Auctus: The Journal of Undergraduate Research and Creative Scholarship by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.

ErbB3 Signaling and its Effect on Spheroid Formation in Ovarian Cancer Muskan Bansal^{1,3}, Danielle L. Burke¹, Mara P. Steinkamp Ph.D^{1,2}

Introduction

Figure 1: Diagram of ErbB3 Hotspot Mutations that have been identified in many types of cancers.

Figure 2: ErbB3/ErbB2 Heterodimerization ErbB3 can adopt an active conformation when bound to a ligand, heregulin. ErbB3 can form homo- and hetero-dimers which activates different pathways.

The ErbB family of receptor tyrosine kinases are often mutated or overexpressed in cancer making them important targets for cancer therapy.

The ErbB family activates signaling pathways leading to proliferation, growth and drug resistance.

ErbB3, one member of the ErbB family, has limited kinase activity and is thought to favor heterodimerization with ErbB2.

Mutations in ErbB3 that fall within specific hotspots have been identified in a variety of cancers (Figure 1)

Why Ovarian Cancer?

- \succ 5th leading cause of cancer deaths in women in the U.S.
- \succ Relapse rate is 75%.
- \succ Multiple ErbB receptors as well as the interacting receptor, Met, are expressed in ovarian cancer making it a good model to study ErbB interactions
- Ovarian cancer is thought to disseminate through the peritoneal cavity as free-floating cancer spheroids.

By understanding how ErbB3 is activated in ovarian cancer and how the activation affects cell adhesion, therapies can be developed to reduce ovarian cancer relapse.

Hypothesis

ErbB3 gain of function mutations may alter interactions with ErbB2 and affect spheroid formation and spreading.

¹Department of Pathology, University of New Mexico, Albuquerque, NM, ²UNM Comprehensive Cancer Center, Albuquerque, NM ³Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA

Figure 4: Proliferation of OVCAR8 cell lines as monolayers. Cells were plated for 24 hours in media with 10% Fetal Bovine Serum (FBS) to allow them to attach to the plate. Proliferation was assessed using an XTT colorimetric assay at 0, 24 and 48 hours incubation in complete media containing 10% FBS or Serum Free Media (SFM) to measure the effect of ErbB3 mutations on growth rate with or without serum.

Figure 5: Both OVCAR 8 ErbB3 KO and Mutant ErbB3 V104L and V855A form looser spheroids than parental OVCAR 8, whereas ErbB2 KO make tighter, compact spheroids. 10,000 cells were plated into cell-repellent plates and imaged every two hours to view spheroid formation. All cell lines express GFP (green). YoY3 dye (red) was used to visualize cell death. Using ImageJ, the area and circumference of spheroids was measured. Circularity, a ratio measurement $(4\pi^*[Area]/[Perimeter]^2)$ was calculated at 24 and 48 hours to compare spheroid compactness..

The more compact the spheroid formation, the greater the invasive behavior of the cancer cell line.

Spheroid Spreading on Fibronectin

Figure 6:Spheroids on Fibronectin Spheroids are placed on fibronectin to mimic how spheroids may interact and spread on epithelial membranes on tissues and organs in the body.

Cell Type

Figure 7: Protein Analysis of OVCAR 8 cell lines. Cells were plated as a monolayer +/- stimulation with 12 nM HRG for 2 minutes. Fluorescent westerns show the expression level of ErbB2, MET, ErbB3 and Akt (downstream signaling protein) in OVCAR 8 Parental (Par), ErbB3 V104L, V855A and ErbB3 KO.

OVCAR8 ErbB3 V104L exhibits serum-independent growth as a monolayer suggesting that this mutant may activate proliferation pathways in the absence of ligand. This is also supported by the phosphorylation of MET in the absence of ligand. Surprisingly, ErbB3 KO's rate of growth is faster than the parental in 10% FBS between 24 to 48 hours.

ErbB3 KO and V104L and V855A mutations result in less compact spheroids compared to parental and ErbB2 KO spheroids.

with MET.

Targeted therapies have focused on ErbB2/ErbB3 interactions as key oncogenic partners. However, the importance of ErbB3/MET interactions should not be ignored when designing future therapies.

Perform (Co-IP) whether n ErbB3/Me absence of

Examine receptor knockout OVCAR 8 on spher dominant

Oncotarget, 5(21), 10222–10236. 2060-2070.

Thanks to Erica Pascetti who developed the initial protocol for spheroid spreading on fibronectin. Cedric Cleyrat and Eunice Choi developed the CRISPR/Cas9 knockout lines. Imaging for this work used the University of New Mexico Cancer Center Fluorescence Microscopy Shared Resource, funded by NCI 2P30 CA118100 (PI Willman, C.) "UNM Cancer Center Support Grant". Thanks to The Hathaway Lab and the UNM Department of Cell Biology for use of the Incucyte imaging system. Other support was provided by the UNM SpatioTemporal Modeling Center (NIGMS P50GM085273) and the Phi Beta Psi Charity Trust Fund.

Receptor Signaling in ErbB3 KO and ErbB3 Mutant OVCAR8 Cell Lines

Conclusion

Certain oncogenic mutations in ErbB3 may improve ErbB3 interactions

Future Directions				
co-immunoprecipitation assays to determine nutant ErbB3 increases at interactions in the	Parental 0 Hours	ErbB2 KO	ErbB3 KO 0 Hours	ErbB2/ErbB3 KO 0 Hours
fligand.	Parental	ErbB2 KO	ErbB3 KO	ErbB2/ErbB3
spheroid formation and interactions of double (ErbB2 and ErbB3)	48 Hours	48 Hours	48 Hours	KO 48 Hours
roid morphology is	Figure 8: L cells further	oss of ErbB3 loosens sphe	3 and ErbB2 roids even aft	in OVCAR8 er 48 hours.

References

Jaiswal Bijay S, Kljavin Noelyn M, Stawiski Eric W, Chan E, Parikh C, Durinck S, et al. Oncogenic ERBB3 Mutations in Human Cancers. Cancer Cell. 2013;23:603-17.

Mara P. Steinkamp, Shalini T. Low-Nam, Shujie Yang, Keith A. Lidke, Diane S. Lidke, Bridget S. Wilson Molecular and Cellular Biology Feb 2014, 34 (6) 965977 Mujoo, K., Choi, B. K., Huang.Z., Zhang, N.; An, Z. (). Regulation of ERBB3/HER3 signaling in cancer.

Sodek, K. L., Ringuette, M. J., & Brown, T. J. (2009). Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. International Journal of Cancer, 124(9),

Acknowledgements