2016

Catheter Attachment Device for Prevention of Urinary Tract Infection

Ashleigh McCormick
Virginia Commonwealth University

Brittany Allen
Virginia Commonwealth University

Karolina Stumbraite
Virginia Commonwealth University

Kevin Ball
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone

Part of the Biomedical Engineering and Bioengineering Commons

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/capstone/138
CATHETER ATTACHMENT DEVICE 
FOR PREVENTION OF URINARY TRACT INFECTION

Clinical Significance
Catheter-associated urinary tract infection (CAUTI) is the leading hospital-acquired infection (HAI) in the U.S. Hospitals are often liable for these infections, so they can be very costly not only to the patient, but also to the hospital and care providers themselves. The Center for Disease Control and Prevention estimated the number of HAIs per year to be around 1.7 million, which contributes to 99,000 deaths each year. UTIs cause over 40% of HAIs, and over 80% of those UTIs are caused by urinary catheterization. With such a high percentage of inpatients (25%) being catheterized at some point during their hospital stay, it is essential to reduce the risk of infection by improving beyond the current standard of care.

The initial incident of infection typically occurs when a contaminant enters the urethral opening of the patient and allows a biofilm to form along the catheter tubing toward the patient's bladder. The risk of infection increases dramatically under several conditions: if the patient is female, incontinent, and catheterized for a long period of time, which all contribute to ease of fecal contaminants entering the urethral opening.

Preliminary Design
Fig. 1 – Concept drawing of the cone-shaped plug in place on a catheterized patient. [H. Huddle]
Fig. 2 – CAD model of the initial prototype, designed to fit onto a 14-French catheter.
Fig. 3 – 3D printed hard plastic prototype on a 14-French catheter.

Testing Methods
Two testing methods were created to validate the design of the device. First was a gross blockage of fecal matter migration using the 3D printed hard plastic device, a female anatomy model, and fecal simulant. Next, a device (box) was created for bacterial culture testing (figure 6) by 3D using PLA.

Final Design
Fig. 4- Soft plug created using 1:13 blend of PDMS
Fig. 5- Soft plug created using 1:13 blend of PDMS with silver coating using plasma deposition

Testing Results
Fig. 7- Blocking testing of the plug. After removal of the catheter no fecal simulant was detected
Fig. 8- Control for blockage testing. Showed significant amount of fecal simulant upon removal of catheter.
Fig. 9- experimental set up for bacterial culture (100 µL of 8 × 105 CFU/ml, E Coli)
Fig. 10- Bacterial culture results were inconclusive.

Future Concerns
There are two main challenges to overcome in the future testing of this device
1) Create a smoother mold that will prevent tool mark striations in the soft polymer (figure 11).
2) Create a more reliable set up for bacterial culture that will not warp/distort after sterilization.

Fig. 11- SEM image at 100x showing striations in the PDMS plug due to machining of the mold.