Design of a Drug Delivery System through the Gastrointestinal Tract

Kaixin Chen
Virginia Commonwealth University

Adel Husayni
Virginia Commonwealth University

Kayvon Mobarakeh
Virginia Commonwealth University

Ankit Soni
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone

Part of the [Biomedical Engineering and Bioengineering Commons](https://scholarscompass.vcu.edu/capstone)

© The Author(s)

Downloaded from
https://scholarscompass.vcu.edu/capstone/136
Alzheimer’s disease (AD) drugs are commonly administered orally, requiring passage through the gastrointestinal (GI) tract before entering the bloodstream. While in the GI tract, much of the drug is broken down by catalytic enzymes before being reabsorbed by the small intestines or denatured due to the varying levels of pH. Orally ingested drugs are predominantly excreted from the body, making the design of a high efficacy delivery system a priority.

OBJECTIVE

Enhance the delivery of Memantine through the GI tract to increase drug bioavailability

A PEGDA (polyethylene glycol diacrylate) hydrogel coating containing PMMA-co-MA (poly(methyl methacrylate-co-methacrylic acid)) will be used for the delivery of Memantine. This drug delivery system will be used to enhance pH reactivity and to prolong digestion. pH sensitivity will prevent the drug from releasing within the stomach where minimal absorption occurs.

Once entering the duodenum of the small intestine, the rise in pH will cause the hydrogel to swell and release the drug. This will lead to subsequent digestion and absorption in the small intestine.

FITC, a fluorescent dye, was used to mimic Memantine in the PEGDA hydrogels and were placed in separate vials containing different pH levels found in the GI Tract. NanoDrop Spectrophotometry was used to determine the amount of fluorescence in each vial after varying time points.

Fluorescent release was found to be maximum at a pH of 7.4 followed by a pH of 6, 5, 4, and 3 respectively.

In all of the trials testing the PEGDA/PMMA-co-MA hydrogel, the drug delivery system demonstrated the desired decrease in swelling with decrease in solution pH, assessed using fluorescent FITC as the model for the drug. The design allows for the desired drug, memantine, to be carried through the acidic environment of the stomach to be released ultimately in the small intestine where the pH increases. This expected change in swelling due to changes in pH is due to PMMA-co-MA's anionic nature that carries a charge in less acidic environments to allow swelling and release of its contents.

Although the desired correlation was observed between swelling and pH, the design can be improved by adjusting the polymer ratios to minimize swelling at more acidic pHs. Further experimentation could also include replacing the FITC in the design with the actual drug of choice.

We thank Dr. Hu Yang, VCU School of Engineering, and the Department of Biomedical Engineering.