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SUMMARY

Helminth infection is known for generating large
amounts of poly-specific IgE. Here we demonstrate
that innate-like B1 cells are responsible for this IgE
production during infection with the nematode para-
sites Nippostrongylus brasiliensis and Heligmoso-
moides polygyrus bakeri. In vitro analysis of B1 cell
immunoglobulin class switch recombination to IgE
demonstrated a requirement for anti-CD40 and IL-4
that was further enhanced when IL-5 was added or
when the B1 source was helminth infected mice. An
IL-25-induced upregulation of IgE in B1 cells was
also demonstrated. In T cell-reconstituted RAG1�/�

mice, N. brasiliensis clearance was enhanced with
the addition of B2 cells in an IgE-dependent manner.
This enhanced clearance was impeded by reconsti-
tution with IgE sufficient B1 cells. Mucosal mast cells
mediated the B2 cell enhancement of clearance in
the absence of B1 cells. The data support B1 cell
IgE secretion as a regulatory response exploited by
the helminth.

INTRODUCTION

Immunoglobulin E (IgE) is an evolutionarily conserved immuno-

globulin that is well known for causing the symptoms of atopic

disease. This antibody class, despite having a half-life of less

than a day in plasma, can persist for weeks to months when

bound to cell surface FcεRI, making it a long-lasting ‘‘gate-

keeper’’ particularly with respect to triggering mast cells (MCs)

or basophils (Oettgen, 2016). Specific IgE responses directed

against innocuous particles, such as pollen, cat dander, or pea-

nut proteins, can result in allergic disease. IgE-mediated re-

sponses range from mild to severe. They can be either site

directed, such as allergic rhinitis, atopic dermatitis, urticaria,

and asthma, or systemic, as in anaphylactic shock. IgE+ plasma

cells generated in the germinal centers (GCs) that produce high-

affinity IgE to antigens are purported to come from bone marrow

(BM)-derived B cells or B2 cells through immunoglobulin class

switch recombination (CSR) and somatic hyper mutation

(SHM). In contrast, memory IgE responses are generated from

IgG1+ memory B cells (Oettgen, 2016).

B1 cells develop early in ontogeny, prior to the first hemato-

poietic stem cell (HSC), and are derived initially from the fetal

yolk sac and then from the fetal liver (Savage and Baumgarth,

2015). They are delineated from B2 cells by the expression of

CD11b and absence of CD23. They reside primarily in the

pleural and peritoneal body cavities of mice and traffic to the

draining lymph nodes (LNs), spleen, and mucosal sites upon

activation (Yenson and Baumgarth, 2014; Savage and Baum-

garth, 2015; Waffarn et al., 2015). B1 cells are important im-

mune effectors and regulators of adaptive immunity that bridge

the innate and adaptive immune systems. The B cell receptor

(BCR) repertoire in these cells is enriched for poly-specific re-

ceptors encoded in the germline with low affinities to a broad

range of antigens (Baumgarth et al., 2005). B1 cells are essen-

tial Immunoglobulin M (IgM) secretors and have additionally

been shown to be the definitive source of ‘‘natural’’ IgM. As im-

mune effectors, they also secrete Immunoglobulin A (IgA) at

mucosal sites. However, only a few reports have demonstrated

IgE production by B1 cells (Takatsu et al., 1992; Vink et al.,

1999; Perona-Wright et al., 2008; Savage and Baumgarth,

2015). The importance of parasite-specific IgE in controlling

infection is controversial, yet there is evidence to support

IgE-mediated clearance of phylogenetically distinct helminths

such as Schistosoma mansoni and Trichnelia spiralis (Joseph

et al., 1983; Gurish et al., 2004; Oettgen, 2016). These parasites

strongly promote IgE synthesis (Wu and Zarrin, 2014). In this

work, we showed that poly-specific IgE made by B1 cells

was responsible for reduced MC degranulation by mechanism

of IgE saturation of FcεRI that was initially proposed by Bazaral

et al. (1973).

Nippostrongylus brasiliensis and Heligmosomoides polygyrus

bakeri are Th2-inducing helminth parasites of mice similar to

the human hookworms, Necator americanus and Ancylostoma
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duodenale (de Silva et al., 2003). Wild-type (WT) mice are able to

clear these infections in a T cell-dependent manner, relying on

the cytokines IL-13 and IL-4 for the ‘‘weep and sweep’’ of intes-

tinal helminth clearance (Madden et al., 2002; Finkelman et al.,

2004). This refers to the increased mucus production, goblet

cell hyperplasia, and enteric nerve stimulation associated with

intestinal parasite expulsion(Camberis et al., 2003; Finkelman

et al., 2004). In response to these intestinal helminths, we

demonstrated that B1 cells class switch to IgE. In addition, the

signals that drive B1 cells to IgE production and the functional

relevance of B1 cell IgE in parasite-host interactions are shown.

RESULTS

B1 Cells Make Large Amounts of IgE in Response
to Helminth Infection
In our laboratory, we generated mice that lack BM-derived B

cells, or B2 cells (Gibb et al., 2011), the ADAM10Tg mouse.

This is due to overexpression of ADAM10 at the common

lymphoid progenitor stage that leads to improper NOTCH

signaling and loss of B cell development. As this defect is

restricted to the BM, the B1 cell compartment is intact (Gibb

et al., 2011). To study the B1 cell antibody response during hel-

minth infection, we inoculated ADAM10Tg and WT control mice

with N. brasiliensis or H. polygyrus bakeri infective third-stage

larvae (L3). Wemeasured the amount of IgE and Immunoglobulin

G1 (IgG1) antibody in the serum in the naive state and on day 14

post infection. Interestingly, there was no significant difference in

IgE production between WT and ADAM10Tg mice infected with

either helminth (Figures 1A and 1B). This suggested that B1 cells

produced significant levels of IgE post helminth infection in the

absence of B2 cells. ADAM10Tgmice have an increased number

of immature myeloid cells throughout the organs and circulation

due to the defect in hematopoiesis (Gibb et al., 2011). These cells

were selectively depleted utilizing gemcitabine (GEM) to assess

whether they played a role in enhancing B1 cell IgE (Sinha et al.,

2007; Saleem et al., 2012). N. brasiliensis-infected and GEM-

treated mice exhibited no change in IgE levels (Figure 1A), indi-

cating an inconsequential role of immature myeloid cells on

B1 cell IgE antibody production. Myeloid-derived suppressor

cell (MDSC) depletion was confirmed by flow cytometry (Fig-

ure S1A). To ensure B1 IgE production was not altered due to

ADAM10 overexpression, we sorted B1 cells (Figure S1B), and

ADAM10 message was not different, as measured by qPCR

(Figure S1C).

B1 Cell IgE Production during Helminth Is T Cell
Dependent
To assess whether helminth-induced B1 cell IgE production

required T cells, we depleted both CD8+ and CD4+ T cells with

GK1.5 and 2.43 antibodies, respectively (Saleem et al., 2012).

BothWT and ADAM10Tgmice had significantly reduced IgE pro-

duction after T cell depletion (Figure 1C). WT mice had signifi-

cantly reduced IgG1 after T cell depletion that was not seen in

ADAM10Tg mice (Figure 1D). IgG1 levels were significantly

reduced in ADAM10Tg mice (Figures 1A and 1D). The reason

for this is not known; however, the ADAM10Tg mice make IgE

that is equivalent or more than WT levels (Figures 1A and 1C).

A baseline level of IgE and IgG1 remained in both WT and

ADAM10Tg mice despite the loss of T cells (Figures 1C and

1D). This could represent a small amount of T cell-independent

IgE production.

B1Cell Antibody Production after NP-KLH Immunization
Is Not NP Specific
We next examined the antigen specificity of B1 cell IgG1 in the

ADAM10Tg mouse. Mice were immunized intraperitoneally

(i.p.) with NP32-KLH in alum and both high-affinity IgG1 antibody

and total specific IgG1 antibody was assessed in serum by

enzyme-linked immunosorbent assay (ELISA) (Smith et al.,

1997). On day 14, ADAM10Tgmice have almost undetectable ni-

trophenol (NP)-specific IgG1 antibody (Figures 2A and 2B) in

addition to having measurable total IgG1 that was significantly

less than WT (Figure 2C). A boost at day 28 induced increased

Figure 1. B1 Cell IgE Is Induced with T Cell

Help during Helminth Infection

(A–D) Total serum IgE (closed circles) (A and C) and

IgG1 (open circles) (A and D) was measured on day

0 (PB) and 14 post N. brasiliensis inoculation in

ADAM10Tg (A10Tg, orange) and wild-type (WT;

magenta) mice. Where indicated, GEM depletion of

MDSCs was performed.

(B) Total serum IgEwasmeasured on days 10 and 15

post H. polygyrus bakeri inoculation.

(C and D) Mice were T cell depleted or treated with

control IgGmAb followed byN. brasiliensis infection.

*p < 0.05, **p < 0.01, ***p < 0.001. If not indicated, the

comparison was not significant between groups.

The error bars depict SEM. (A) was representative of

three independent experiments. (B), (C), and (D)

were representative of two independent experi-

ments. One-way ANOVA with a Tukey post hoc was

used to compare all IgE or all IgG1 groups in (A)–(D).
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high-affinity IgG1, total specific IgG1, and total IgG1 in WT mice

(Figures 2A–2C). ADAM10Tgmice, while having a large spread in

total IgG1, did not increase significantly after the boost, even

from the naive bleed (Figure 2C), and though some animals

developed a limited amount of NP-specific IgG1, it was three

to four orders of magnitude different than the WT (Figures 2A

and 2B).

B1 Cell-Derived IgE Fails to Induce MC Degranulation
A major function of antigen-specific IgE is to induce degranula-

tion through FcεRI on MCs and basophils. To measure the anti-

gen specificity of B1 cell IgE as well as examine the ability of B1

cell antibody to induce degranulation, we used a model of active

cutaneous anaphylaxis (ACA) (Evans et al., 2014). MC degranu-

lation was induced by crosslinking OVA-specific IgE molecules

bound to FcεRI on skin MCs; the resulting dye leakage creates

a blue spot. This degranulation can also result from and be

enhanced by IgG complexes bound to FcgRIII (Strait et al.,

2006). Measurement of the area of the spot and its content of

Evans blue in WT mice indicated significantly increased MC

degranulation compared to ADAM10Tg mice (Figures 3A and

3B) despite an equivalent total IgE (Figure 3C) and IgG1 (Fig-

ure 3D) in the serum of both groups of mice. This indicated

that neither the B1 cell IgE nor the B1 cell IgG1 induced with

this antigen in alum was OVA specific. Further, OVA-specific

IgE was confirmed as significantly less by ELISA in the

ADAM10Tg mice (Figure 3E). Next, blocking of specific IgE to

FcεRI by helminth-induced B1 cell antibody was tested in a

model of passive cutaneous anaphylaxis (PCA). ADAM10Tg

and WT mice were infected with N. brasiliensis L3, and PCA re-

action was assessed 21 days later (Figures 3F and 3G). All unin-

fected control mice had no statistical differences in degranula-

tion, indicating that skin MC activation was normal (Figures 3F

and 3G). Additionally, numbers of MCs in the skin between

ADAM10Tg and WT mice were equivalent (data not shown),

but the amount of MC degranulation seen in both ADAM10Tg

and WT mice was significantly reduced by helminth infection

(Figures 3F and 3G) supporting a helminth-induced blockage

of MC degranulation. Total IgE levels in these mice were equiva-

lent and increased during helminth infection (Figure 3H). Total

IgG1 levels were elevated in WT mice after helminth infection,

but not in ADAM10Tg mice (Figure 3I). This is similarly seen in

previous infections (Figures 1A and 1C). To illustrate that this

PCA suppression was IgE dependent, we utilized IgE deficient

mice (IgE�/�). After N. brasiliensis infection, there was no evi-

dence of suppression of the PCA reaction in IgE�/�mice (Figures

3F and 3G).

B1 Cells Are Primed to Make IgE during Helminth
Infection
To investigate the signals necessary for the B1 cell to class

switch to IgE, we sorted peritoneal cavity B1 from naive or

N. brasiliensis-infected mice (Figure S1B). Naive B1 cells

make little IgE when treated with anti-CD40 and IL-4, but the

addition of IL-5, a known B1 proliferative agent (Erickson

et al., 2001; Takatsu, 2011), significantly increased IgE produc-

tion (Figure 4A). Interestingly, B1 cells from N. brasiliensis-in-

fected mice made significantly more IgE than from B1 cells

from naive mice, after anti-CD40 and IL-4 treatment. This did

not correlate with increased cell proliferation (Figures 4 A and

4B). When IL-5 was added, B1 cells from N. brasiliensis-in-

fected mice had increased sensitivity to IL-5-induced prolifera-

tion, and this correlated to increased IgE production as well

(Figures 4 A and 4B). Overall, this indicated that B1 cell IgE

was stimulated in vitro by similar signals as B2 cell-induced

IgE with respect to anti-CD40 and IL-4; however, other signals

may be priming B1 cells for increased IgE production during

infection with N. brasiliensis. Since B1 cells are known to

secrete large amounts of IgM, IgM production by both B1

and B2 cells was compared in culture. B1 cells from

N. brasiliensis-infected mice treated with anti-CD40, IL-4,

and ± IL-5 made significantly more IgM than similarly treated

B2 cells from infected mice, reinforcing that B1 cells were being

examined (Figure S2A).

Figure 2. B1 Cell Antibody Responses to NP-KLH Are Not Specific

(A–C) ADAM10Tg (A10Tg, orange) and WT (magenta) mice were immunized

i.p. with NP32-KLH in alum. Serum levels of high-affinity NP-specific (NP4BSA-

binding) (A), total NP-specific IgG1 (NP25BSA binding) (B), and total IgG1 (C)

were measured by ELISA on day 0, 14, and day 5 post boost. NS, not signif-

icant; *p < 0.05, **p < 0.01. The error bars depict SEM. Significance was ob-

tained using an unpaired Student’s t test to compare WT and A10Tg. Data are

from three independent experiments.

1826 Cell Reports 22, 1824–1834, February 13, 2018



The Alarmin IL-25, but Not IL-33, Enhances B1 Cell IgE
Production during Helminth Infection
IL-25 production by intestinal tuft cells has been shown to be

important for cytokine production by ILC2 and Th2 cells (von

Moltke et al., 2016; Gerbe et al., 2016). Fort et al. (2001) re-

ported that i.p. IL-25 injection induced IgE production at

10 days. These data, as well as the importance of IL-25 release

by intestinal tuft cells during helminth infection, led to an exam-

ination of the effects of IL-25 on B1 cell IgE. B1 cells from

N. brasiliensis-infected mice, but not naive mice, made signifi-

cantly more IgE when treated with anti-CD40, IL-4, and IL-25 (in

the range of 1 to 100 ng/mL) as compared to cells treated with

anti-CD40 and IL-4 alone (Figures 5A and 5B). IL-25 plus IL-5

did not further increase B1 cell IgE production from either naive

or N. brasiliensis-infected B1 cells (Figures 5A and 5C). In

addition, IL-25 induced a moderate amount of proliferation in

B1 cells treated with anti-CD40 and IL-4 (Figure 5D), but the

increased baseline proliferation seen with IL-5, anti-CD40,

and IL-4 treated B1 cells was not further augmented with

IL-25 (Figure 5E). The increase in IgE seen after treatment

with IL-25 in B1 cells from N. brasiliensis-infected mice was

demonstrated by quantitative RT-PCR (qRT-PCR) analysis of

secreted IgE expression (Figure 5F). Additional controls show

that IL-25 alone did not induce detectable levels of IgE in

culture (Figures S2G–S2I).

Since IgM is typically secreted by B1 cells, the regulation of

IgM levels by IL-25 was examined. B1 cells from naive mice

treated with anti-CD40 and IL-4 produced IgM that was not

affected by the addition of IL-25, with or without IL-5 (Figures

S2B and S2C). IL-5 increased IgM production overall (Figures

S2B and S2C). Inversely, B1 cells from mice infected with

N. brasiliensis that were treated with anti-CD40 and IL-4 had

lower IgM when treated with IL-25 compared to naive. IL-25

also had no significant effect on IgG1 levels by ELISA (Figures

S2D and S2E) or qRT-PCR (Figure S2F). To see whether this

pathwaywas active only in B1 cells, we examined IgE production

in B2 cells from both naive andN. brasiliensis-infected mice. IgE,

IgG1, and IgM were not significantly altered beyond the addition

Figure 3. Antibody Produced by B1 Cells Blocks Antigen-Specific IgE-Mediated MC Degranulation

(A–E) ADAM10Tg (A10Tg, orange) and WT (magenta) mice were immunized with OVA in alum for an ACA model. Post i.d. OVA challenge and i.v. injection with

Evan’s blue dye solution, MC degranulation was measured by dye release into the back skin as surface area of the spot (A) and dye extraction (B) (minus control

spot). Total serum IgE (C), serum IgG1 (D), and OVA-specific IgE (E) (dotted line depicts limits of detection) antibody were asmeasured from sera just prior to ACA

test. PCA model utilized either naive or day 21 post-N. brasiliensis (Nb) mice.

(F and G) Surface area of the spot (F) or dye extraction (G) was measured in WT, A10Tg, or IgE deficient (IgE�/�) mice.

(H and I) Total serum IgE (H) and serum IgG1 (I) antibody were measured from sera collected just prior to PCA test.

*p < 0.05, **p < 0.01, ***p < 0.001. If not indicated, the comparison was not significant between groups. Error bars depict SEM. Significance was obtained as

follows: Student’s t test for (A)–(E), Kruskal-Wallis test with a Dunn’s multiple comparison for (F) and (G), and a one-way ANOVA with a Tukey post hoc test for (H)

and (I).
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of anti-CD40 and IL-4 (Figures S3A–S3F). In addition, IL-25 alone

did not induce IgE, IgG1, or IgM secretion by B2 cells (Figures

S3A–S3F).

Komai-Koma et al. recently showed that B1 cells proliferate af-

ter daily i.p. injection with IL-33 (Komai-Koma et al., 2011)

through production of IL-5 that then upregulated ST2 on B1 cells

(Ahmed and Koma, 2015). To test the effect of IL-33 on B1 cell

IgE production, we injected IL-33 i.p. into WT mice and

compared sorted B1 cells to B1 cells from naive mice. IL-33 in-

jected i.p. did not increase B1 cell IgE or IgG1 (Figures S4D

and S4E). In addition, in vitro IL-33 treatment also failed to in-

crease IgE or IgG1 production, either with or without IL-5 pre-

treatment (Figures S4D and S4E). Finally, ex vivo IL-33 treatment

did not enhance IgE secretion by B1 cells isolated from mice in-

fected with N. brasiliensis but did increase proliferation, as

described (Figures S4A–S4C). These data suggest that IL-33

does not enhance IgE production in B1 cells.

IL-25-Dependent B1 Cell-Produced IgE Blocks
Enhanced B2 Cell-Produced IgE-Mediated Suppression
of N. brasiliensis
To examine the physiological importance of B1 cell-produced

IgE during infection with N. brasiliensis, we turned to a RAG1�/�

mouse model that lacks functional T cells and B cells, including

B1 cells (Paciorkowski et al., 2000). All mice were reconstituted

with WT CD4+ T cells and further reconstituted with B1 cells

alone, B2 cells alone, or B1 and B2 cells. One week after recon-

stitution, mice were inoculated with N. brasiliensis L3. The total

number of lymphocytes that are reconstituted after 1 week

was determined by flow cytometry and compared to that of a

WT mouse (Figures S5A–S5F). Proper reconstitution was

confirmed by flow cytometry after N. brasiliensis infection (Fig-

ure S5G). The level of infection was monitored by measuring

fecal egg levels (Figures 6A and 6B). Both B1 cell-only and

CD4+ T cell-control reconstituted mice had similar infection

levels, demonstrating that B1 cells did not alter parasitic clear-

ance mediated directly by CD4+ T cells (Figures 6A and 6B).

Intriguingly, B2 cell-only reconstituted mice showed significantly

decreased egg production compared to the other groups, and

B1/B2 cell-reconstituted mice showed greater egg production

compared to the B2 cell-only group (Figures 6A and 6B). This

indicated that B1 cells were hindering B2-mediated clearance.

To test whether this was B1 cell IgE mediated, we reconstituted

mice with B1 cells from IgE�/� mice and WT B2 cells. These

IgE�/� B1 cells did not inhibit the B2-mediated suppression of

egg production (Figures 6A and 6B). To further show that the

B2-mediated suppression of egg production was IgE depen-

dent, we reconstituted RAG1�/� mice with IgE�/� B2 cells.

These B2-IgE�/� mice exhibited considerably greater egg pro-

duction than the mice reconstituted with WT B2 cells (Figures

6A and 6B). The total IgE levels in serum were similar between

all three groups that had been reconstituted with WT B cells

and were only significantly reduced in the IgE�/� mice

(Figure 6C).

These mice were maintained for 35 days after N. brasiliensis

inoculation and then injected intradermally (i.d.) with

N. brasiliensis excretory-secretory extract (NES) in a model of

ACA to determine whether B1 cell IgE provided protection

against IgE-mediated helminth-specific MC degranulation. We

observed that the mice reconstituted with WT B2 cells gener-

ated an ACA reaction (Figures 6D and 6E). The mice that

were reconstituted with WT B1 and WT B2 had reduced ACA

responses reflective of their decreased parasite clearance (Fig-

ures 6D and 6E). Mice reconstituted with IgE�/� B2 cells from

N. brasiliensis-infected mice failed to induce ACA responses.

Mice that had been reconstituted with both IgE�/� B1 cells

and WT B2 cells generated ACA skin reactions similar to WT

B2 cells alone, demonstrating the importance of B1 cell-derived

IgE in blocking B2 cell induced degranulation (Figures 6D

and 6E).

To examine whether this B1 cell-derived IgE was dependent

on the cytokine IL-25, we reconstituted RAG1�/� mice with

either WT B2 cells and WT B1 cells or WT B2 cells and B1 cells

from IL-25 receptor deficient mice (IL-25R�/�). These were both

compared to mice with just WT B2 cells. As the IL-25R�/� mice

were on aBALB/c background, this experiment used the BALB/c

Figure 4. IL-5 Enhanced IgE Production in B1 Cells

B1 cells were sorted (CD23�B220int, CD11bint, CD138�) (Figure S1B shows

gating) from the peritoneal lavage of mice infected with N. brasiliensis (day 14)

or naive WT mice.

(A) 30,000 cells/mL were cultured with anti-CD40, IL-4, ± IL-5. Supernatants

were harvested on day 9 of culture for total IgE ELISA.

(B) For proliferation, 60,000 cells/mL were cultured for 72 hr, followed by the

addition of 1 mCi/well [H3]-thymidine with cell harvest at 24 hr later.

CPM, counts per minute. *p < 0.05, **p < 0.01, ***p < 0.001. Error bars depict

SEM. Significance was obtained using a one-way ANOVA with a Tukey post

hoc test.
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RAG1�/� mice. IL-25R�/� B1 cells were unable to hinder the WT

B2 cell-mediated clearance (Figures 6F and 6G), strongly sup-

porting the in vitro cytokine data for IL-25 enhancement of B1

cell IgE production.

B2 Enhancement of Helminth Clearance Is MC
Dependent
To further elucidate the mechanism behind B2 cell IgE

enhancement of helminth clearance, we infected T cell plus

B2 cell or T cell only control reconstituted RAG1�/� mice with

N. brasiliensis L3. ELISAs showed significant increases in

both MC-produced histamine and MC protease-1 (MCPT-1)

in the mucus of the jejunum on day 7 in B2 cell reconstituted

mice (Figures 7A and 7B). qRT-PCR analysis of total jejunal

tissue demonstrated that B2 cell reconstitution significantly

increased MC protease genes Mcpt1, Mcpt2, Cpa3, and

Cma1, consistent with a role for MCs in suppression of

N. brasiliensis egg production (Figure 7C; Table S1). Expression

of the Th2-associated genes Il4, Il5, Il13, Il6, and Il9 were

similar between T cell only and T cell plus B2 cell reconstituted

mice, indicating that differences in Il4 and Il13 are probably not

responsible for the reduced fecal egg burden in mice that had

received B2 cells (Figure 7C; Table S1). In contrast, the mucus-

related genes Muc2, Muc3, Tff2, and Fcgbp are significantly

elevated by B2 cell reconstitution, pointing to a mechanism

for the increased clearance (Figure 7C; Table S1). Differences

in the expression of additional genes were also examined as

well as for un-reconstituted RAG1�/� mice infected with

N. brasiliensis L3, naive mice (Table S1), and lung at day 2

post helminth infection (Table S2). In the lung, no gene expres-

sion was altered by B2 cell reconstitution except Ear11, an

eosinophil-related gene.

To confirm that the mechanism was MC dependent, we in-

jected anti-ckit antibody (ACK.2) into T cell plus B2 cell or

T cell only controls to deplete MCs (Brandt et al., 2003).

ACK.2-treated mice lacked the B2 enhancement of helminth

clearance that was seen in control Rat IgG isotype treated

mice (Figure 7D). MC depletion was confirmed in jejunal intesti-

nal sections by chloroacetate esterase staining (Figure 7E) and in

peritoneal lavage (PL) on day 7 post inoculation by flow cytome-

try (Figure 7F). As ckit is an important marker on ILC2s and these

cells are implicated in helminth clearance, we examined the

Figure 5. IL-25 Enhanced B1 Cell IgE Production Only from Helminth-Infected Mice

B1 cells were sorted (Figure S1B) from mice infected with N. brasiliensis or naive mice. They were then cultured with anti-CD40, IL-4, ± IL-5 and with increasing

doses of IL-25.

(A) Fold change in IgE as compared to no IL-25 was assessed.

(B and C) Total IgE from no IL-5 in cultures (B) and IL-5 added to cultures (C).

(D and E) Proliferation of B1 cells from mice infected with N. brasiliensis was examined as in Figure 4 after addition of IL-25, without (D) or with (E) IL-5. CPM,

counts per minute.

(A–F) Secreted Ighemessage was assessed after 4 days anti-CD40 and IL-4 culture in B1 cells ± 30 mg IL-25 and normalized to Actb from N. brasiliensis infected

mice. Statistics: fold change in B1 cells from naive (black open circle, solid line) was compared to fold change in N. brasiliensis-infected mice (Nb) (black filled

circle, dotted line) by unpaired Student’s t test (A); comparison was made between no IL-25 and dosages of IL-25 added to culture using an unpaired Student’s

t test (B and C) and a Mann-Whitney, non-parametric comparison (D–F).

*p < 0.05, ***p < 0.001. If not indicated, the comparison was not significant. n > 7mice per group in (A)–(E), n = 3 pooledmouse samples per group in (F). Error bars

depict SEM. Experiments are the products of at least two independent repeats for all groups.
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mesenteric lymph node (MLN) and lung of ACK.2 and control

RAG1�/� mice after N. brasiliensis infection for ILC2 percentage

and numbers and found them not statistically different (Figures

7G, 7H, S5H, and S5I). To further support the IgE-mediated

mechanism, we injected the anti-IgE antibody (R1E4, which

blocks IgE binding to the FcεRI) i.p. into T cell plus B2 cell or

T cell only controls to prevent IgE from binding to FcεRI (Ba-

niyash et al., 1988). As in ACK.2-treated mice, R1E4-treated

mice lacked the B2 enhancement of helminth clearance that

was seen in the Rat IgG isotype control treated mice (Figures

7I and 7J).

To determine whether B1 cells suppressed antigen-specific

IgG1 responses, we reconstituted RAG1�/� mice with CD4+

T cells plus B1 and/or B2 cells and immunized them with NP32-

KLH in alum. RAG1�/� mice reconstituted with B1 cells only

have significantly reduced total-specific and high-affinity IgG1

to the NP antigen, but NP-specific IgG1 levels and total IgG1

levels were similar in mice given B2 cells regardless of the addi-

tion of B1 cells. (Figure S5J). These data recapitulate the results

observed in the ADAM10Tg mouse model.

DISCUSSION

B1 cells have long been thought to be important innate immune

effectors. They generate critical IgM responses to bacteria, as

well as to influenza virus (Savage and Baumgarth, 2015; Waffarn

et al., 2015). In the past few years, a role for B1 cells in Th2 dis-

ease has emerged. Patel and Kearney (2015) demonstrated that

B1 cell IgM blocked the response to a house dust mite (HDM) an-

tigen asthma model, with germline anti-phosphorycholine (PC)

antibody. Another study suggested that B1 cell IgEmight be spe-

cific for PC in an HDM model, yet this was never shown (Patel

and Kearney, 2015). Both N. brasiliensis and H. polygyrus bakeri

have secreted PC epitopes (Péry et al., 1979; Hewitson et al.,

2011). Recent studies have emphasized that B1 cell B cell recep-

tors (BCRs) require stimulation during development without co-

stimulation (Kreslavsky et al., 2017). Since this requires abun-

dant amounts of antigen, the majority of B1 cell BCRs are self

reactive (Kreslavsky et al., 2017). We do not know whether

self-specific B1 cell IgE is present, but B1 cell IgE clearly does

not enhance parasitic clearance (Figures 6A and 6B). In addition,

Figure 6. IL-25-Mediated B1 Cell IgE Blocks Parasite Clearance by B2 Cell IgE in Reconstituted Mice

RAG1�/� mice were reconstituted with the indicated cells as described in Experimental Procedures.

(A) Eggs per gram (EPG) of feces were determined over the time course of infection with N. brasiliensis L3.

(B) Day 7 EPG.

(C) Total serum IgE was measured in serum by ELISA on day 14.

(D and E) 35 days post infection, an ACA test was induced using NES and spot size (D) and dye extraction (E) from skin was assessed.

(F) EPG was measured over the time course of infection.

(G) Day 7 EPG.

*p < 0.05, **p < 0.01, ***p < 0.001. If not indicated, the comparisonwas not significant. For (A)–(E), n > 7mice per group in all groups except T cell alone, which n = 4

mice per group and data are the product of four independent repeats. For (G) and (F), n = 4 mice per group, and data are representative of two independent

repeats. Error bars depict SEM. Significancewas determined as follows: one-way ANOVAwith a Tukey post hoc for (B), (D), (E), and (G), and a Kruskal-Wallis non-

parametric test with a Dunn’s post hoc for (C).
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we did not observe significant antigen-specific IgE in the B1-only

mice that were immunized with OVA (Figure 3E). Variable region

mapping is an important next step in determination of the

IgE-switched B1-clones that are expanded in response to

N. brasiliensis infection. This will help determine whether there

is a preference for enhancement of a particular B1 variable re-

gion in this infection.

Pochanke et al. (2007) has described a clone of IgE that is pre-

sent on FcεRI and can degranulate MCs as early as day 7. This

early IgE clone is specific for a pharynx-derived epitope on

N. brasiliensis, and it does not undergo any somatic hypermuta-

tion (SHM) (Pochanke et al., 2007), which is not surprising as

germinal centers are minimally developed. The result that spe-

cific IgE is made against the parasite is not unexpected, and

we would anticipate that this clone would induce MC activation,

as exemplified by the PCA (Pochanke et al., 2007). However,

there is no evidence that this IgE enhances rejection of the para-

site, as we demonstrate with our B2 cells in the RAG1�/� recon-

stitution model. Also, in our PCA studies (Figures 3F and 3G),

N. brasiliensis infection caused an inhibition of the PCA reaction,

not its complete elimination. Thus, our results are quite compat-

ible with the Pochanke et al. (2007) findings.

Figure 7. B2 Cell Enhanced Clearance Is MC and IgE Dependent

(A and B) Mice were reconstituted as in Figure 6. Day 7 post-N. brasiliensis infection. Histamine (A) and MCPT-1 (B) were measured by ELISA on mucus from the

jejunum.

(C) Expression profiles from jejunal RNA were examined for genes potentially associated with helminth clearance (see also Tables S1 and S2).

(D) Mice were administered anti-ckit (ACK.2) antibody or control IgG daily starting at day 1 and day 7; EPG were measured.

(E) MCs were visualized in intestinal sections with chloroacetate esterase staining countered with hematoxylin (pink and arrows). Scale bar, 500 mm.

(F) PL was examined by flow for MCs (ckit+FcεRI+).

(G and H) MLN and lungs were examined by flow for ILC2 (Live,CD45+Lin�CD90.2+Sca1+ICOS+) percentage (G) and number (H). (Gating schematic SF8A, B.)

Reconstituted mice were infected with 750 N. brasiliensis L3 and treated with anti-IgE (R1E4) antibody or control IgG daily starting at reconstitution.

(I and J) On day 7, EPG (I) and adult worms (J) were measured.

*p < 0.05, **p < 0.01, ***p < 0.001. n > 8mice per group in (A), (B), and (D)–(F). n = 6mice per group in (C). n = 3mice per group in (G) and (H). n = 4mice per group in

(I) and (J). Error bars depict SEM. Data are the product of two independent repeats. Statistics: an unpaired Student’s t test was utilized for comparison in (A), (B),

and (H), a one-way ANOVA with a Tukey post hoc test was used in (D), (G), (I), and (J) and with a Bonferroni post hoc in (C).
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The alarmin IL-25 has been shown to be an important regulator

of ILC2s. These cells secrete IL-5 after IL-25 stimulation; both

cytokines are important for B1 cell IgE production (Figures 4A

and 5). Although we know from our depletion studies that

T cells are important in the B1 cell IgE response to

N. brasiliensis in vivo, there is a small basal amount of IgE that re-

mains despite this depletion (Figure 1C). This residual B1 cell IgE

may be stimulated by these cytokines directly. The role of T cells

and location of interaction with B1 cells warrants further investi-

gation, as mice with B1 cells only do not exhibit germinal centers

(data not shown). The cytokine order and amount may be impor-

tant for IL-5 to further increase IgE production in conjunction with

IL-25.

Our studies demonstrate a role for IL-25 in the B1 cell IgE

response during helminth infection. Along with other signals,

such as IL-4, IL-5, and CD40L stimulation from T cells, IL-25

causes B1 cells to proliferate and enhances CSR to IgE. This

IgE binds to MC FcεRI and competes with the binding of para-

site-specific IgE that is produced by B2 cells. Traditionally,

IgE antibody was not thought to be critical in the clearance of

helminth infections since clearance of N. brasiliensis was not

delayed in IgE�/� mice (Watanabe et al., 1988). In addition,

MC-deficient mouse models only exhibit a small delay in

N. brasiliensis clearance; thus, the role of MCs in this model

has also been minimized (Mitchell et al., 1983). The importance

of ILC2s (Neill et al., 2010), alternatively activated macrophages

(AAMs) (Oeser et al., 2015), and basophils (Liu et al., 2010)

in N. brasiliensis clearance has certainly been recognized. How-

ever, our RAG1�/� reconstitution model demonstrates that

IgE activation of MCs can play a host-protective role in

N. brasiliensis infection. This role is diminished by the B1 cell-

produced non-specific IgE. MC degranulation is then no longer

evident (Figures 6 and 7; Table S1). Figures 7G and 7H ensure

that ILC2 loss was not the cause of the results seen with the

anti-ckit antibody; this is in agreement with a recent separate

study (Shimokawa et al., 2017). Shimokawa et al. (2017) noted

with the use of the anti-ckit antibody, the loss of MCs in the intes-

tines caused a very small reduction in ILC2 number only in the in-

testinal site due to MC-derived IL-33 that is lost when MCs are

deleted. Questions still need to be answered about the effects

of anti-ckit treatment on the interstitial cells of Cajal. These cells

play a role in intestinal wave activity and are ckit+ (Ordög et al.,

1999). The loss of these cells may alter helminth clearance, yet

studies utilizing ACK.2 show that the loss of wave activity that

leads to muscle quiescence takes 3–4 weeks of treatment (Or-

dög et al., 1999). Our short anti-ckit treatment regime (Figure 7D)

and anti-IgE treatment (Figures 7I and 7J) combine to confirm

that IgE binding to the FcεRI is crucial for the B2-mediated

enhanced worm expulsion. The lower level of suppression

seen with anti-IgE is simply due to a higher N. brasiliensis L3 in-

jection in this experiment series; 750 versus 650 L3. While our

data do not directly exclude a contribution by IgE binding to

the FcεRI on basophils, we note that there were no significant

changes in Mcpt8, the basophil-specific protease expression

(Table S1) (Ugajin et al., 2009). Extrapolating fromboth Hepworth

et al. (2012) and Shimokawa et al. (2017), who have recently

highlighted the importance of mast cells in clearance of

H. polygyrus bakeri, our data support MCs as the primary driver

of this phenotype. Although the RAG1�/� reconstitution model

has limitations due to lymphopenia (Figures S5A–S5F), there

are clearly sufficient cells to give a strong IgE (Figure 6C) and

equivalent IgG1 responses (Figure S5J) as well as mediate the

observed clearance (Figures 6A and 6B).

IgE has been long known to be induced during helminth infec-

tion, and its role in immunity to parasites is often debated (Mac-

Donald et al., 2002). We hypothesize that in the long evolutionary

interaction between helminths and mammals, helminths have

developed a mechanism of inducing large amounts of B1 cell

IgE that may provide it an evolutionary survival advantage.

Slower parasite clearance and increased fecundity leads to

increased egg output for the parasite and improved evolutionary

success (Quinnell et al., 2004). In summary, this study provides

evidence for two opposing roles of IgE in helminth infection.

The induction of B1 IgE represents a regulatory mechanism

that inhibits MC function and in its absence reveals a previously

sidelined role for B2 cell IgE and IgE-mediatedMCdegranulation

in the enhancement of helminth clearance.

EXPERIMENTAL PROCEDURES

Further details and an outline of resources used in this work can be found in

Supplemental Experimental Procedures.

Statistical Methods

Error bars represent the standard error of the mean (SEM). A horizontal line

with a symbol representing the p value indicates statistical comparison. For

pairwise comparisons, Mann-Whitney tests were performed for non-normally

distributed data, and Student’s t tests were performed for normally distributed

data. For multiple comparisons, Kruskal-Wallis tests with Dunn’s post hoc

were performed for non-normally distributed data, and one-way ANOVA tests

with Tukey post hoc or Bonferroni post hoc were performed for normally

distributed data. All tests are detailed in the figure legends. A p value of

<0.05 was considered significant. All statistical analysis was performed with

GraphPad Prism 6 (SCR_002798).

Mice

Mice were kept at Virginia Commonwealth University (VCU) in a barrier vivar-

ium facility in accordance with the humane treatment of laboratory animals

sets forth by the National Institutes of Health and the American Association

for the Accreditation of Laboratory Animal Care. All mouse protocols were con-

ducted with the permission and oversight of the VCU Institutional Animal Care

and Use Committee.

Immunization Models

ACA (Evans et al., 2014) and PCA (Starkl et al., 2016) models were performed

as described with the following modifications: i.d. spotting (ACA with OVA-al-

bumin [Sigma-Aldrich] or in PCA with IgE anti-DNP) (Keegan et al., 1991) was

done on the pre-shaven flank. Evan’s Blue dye (Sigma-Aldrich) was intrave-

nously (i.v.) injected (in ACA immediately following i.d. spot or in PCA 24 hr

following mixed with DNP-BSA [Sigma-Aldrich]). Spot size was measured on

the back, and back skin was collected for formamide (Sigma-Aldrich) extrac-

tion (Evans et al., 2014). For NP Immunizations, NP32KLH (LCG BioSearch

Technologies) in alum is injected i.p. in 200 mL saline.

RAG1�/� Reconstitution

All naive RAG1�/�mice were i.v. reconstituted with 53 106 CD4+ T cells. CD4+

T cells are isolated by first B220+ depletion, followed by anti-mouse L3T4mag-

netic bead selection (Miltenyi Biotec) from the spleens of WT mice. Indicated

mice were i.v. reconstituted with 103 106 naive B2 cells. B2 cells are isolated

by depletion using either anti-mouse CD43 Miltenyi microbeads (Miltenyi

Biotec) or biotinylated anti-mouse CD43 (AB_493384) followed by anti-biotin
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microbeads (Miltenyi Biotec) from the spleens of WT mice. Indicated mice

were i.p. reconstituted with 2–4 3 105 B1 cells. B1 cells are isolated from

the peritoneal and pleural cavities of WT mice (Yenson and Baumgarth,

2014). Briefly, cells were Fc blocked on ice for 10 min (2.4G2) (Unkeless,

1979) followed by the following biotinylated antibodies for 30 min on

ice: anti-mouse CD23 (B3B4) (AB_312829), anti- mouse CD49b (DX5)

(AB_313035), anti-mouse F4/80 (BM8) (AB_893499), anti-mouse CD90.2

(30-H12) (AB_313175), and anti-mouse GR-1 (RB6-8C5) (AB_313368). After

washing, anti-biotin microbeads (Miltenyi Biotec) were added, and magnetic

bead depletion was performed for B1 enrichment. Mice were not used in ex-

periments until 1 week post reconstitution.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and two tables and can be found with this article online at

https://doi.org/10.1016/j.celrep.2018.01.048.
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ner, M., Jaritz, M., Weiss, S., Taneja, R., Rossner, M.J., and Busslinger, M.

(2017). Essential role for the transcription factor Bhlhe41 in regulating the

development, self-renewal and BCR repertoire of B-1a cells. Nat. Immunol.

18, 442–455.

Liu, Q., Kreider, T., Bowdridge, S., Liu, Z., Song, Y., Gaydo, A.G., Urban, J.F.,

Jr., and Gause, W.C. (2010). B cells have distinct roles in host protection

against different nematode parasites. J. Immunol. 184, 5213–5223.

MacDonald, A.S., Araujo, M.I., and Pearce, E.J. (2002). Immunology of para-

sitic helminth infections. Infect. Immun. 70, 427–433.

Madden, K.B., Whitman, L., Sullivan, C., Gause,W.C., Urban, J.F., Jr., Katona,

I.M., Finkelman, F.D., and Shea-Donohue, T. (2002). Role of STAT6 and mast

cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell

function. J. Immunol. 169, 4417–4422.

Cell Reports 22, 1824–1834, February 13, 2018 1833

https://doi.org/10.1016/j.celrep.2018.01.048
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref1
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref1
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref1
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref2
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref2
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref2
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref3
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref3
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref3
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref4
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref4
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref4
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref4
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref5
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref5
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref5
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref5
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref6
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref6
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref6
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref7
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref7
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref7
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref8
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref8
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref8
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref9
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref9
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref10
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref10
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref10
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref10
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref11
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref11
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref11
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref12
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref12
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref12
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref12
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref13
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref13
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref13
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref14
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref14
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref14
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref14
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref15
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref15
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref16
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref16
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref16
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref16
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref17
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref17
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref17
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref18
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref18
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref18
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref18
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref19
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref19
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref19
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref20
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref20
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref20
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref20
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref20
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref21
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref21
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref21
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref22
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref22
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref23
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref23
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref23
http://refhub.elsevier.com/S2211-1247(18)30080-9/sref23


Mitchell, L.A., Wescott, R.B., and Perryman, L.E. (1983). Kinetics of expulsion

of the nematode, Nippostrongylus brasiliensis, in mast-cell deficient W/WV

mice. Parasite Immunol. 5, 1–12.

Neill, D.R., Wong, S.H., Bellosi, A., Flynn, R.J., Daly, M., Langford, T.K.A.,

Bucks, C., Kane, C.M., Fallon, P.G., Pannell, R., et al. (2010). Nuocytes repre-

sent a new innate effector leukocyte that mediates type-2 immunity. Nature

464, 1367–1370.

Oeser, K., Schwartz, C., and Voehringer, D. (2015). Conditional IL-4/IL-13-defi-

cient mice reveal a critical role of innate immune cells for protective immunity

against gastrointestinal helminths. Mucosal Immunol. 8, 672–682.

Oettgen, H.C. (2016). Fifty years later: emerging functions of IgE antibodies

in host defense, immune regulation, and allergic diseases. J. Allergy Clin.

Immunol. 137, 1631–1645.
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1 

Supplemental Experimental Procedures 

CONTACT FOR REAGENT AND RESOURCE SHARING 

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead 

Contact, Daniel Conrad (Daniel.Conrad@vcuhealth.org). 

EXPERIMENTAL MODEL AND SUBJECT DETAIL 

Mice 

Mice were kept at Virginia Commonwealth University (VCU) in a barrier vivarium facility in accordance with the 

humane treatment of laboratory animals sets forth by the National Institutes of Health and the American Association 

for the Accreditation of Laboratory Animal Care. All mouse protocols were conducted with the permission and 

oversight of the VCU Institutional Animal Care and Use Committee. Sex was randomized between groups, including 

both males and females. Differences between sexes were not observed (data not shown). Mice ages ranged between 

6 and 16 weeks for all experiments with an approximate body weight of 20 grams. ADAM10Tg mice were generated 

as described in Gibb et al. and have been continuously backcrossed an additional 20 generations to the C57BL6/J 

background (Gibb et al., 2011). Littermates were used as WT controls. RAG1-/- mice 

(IMSR_JAX:002216) and BALB/c RAG1-/- mice (IMSR_JAX:003145) were purchased from The Jackson 

Laboratory and maintained through breeding. WT (IMSR_JAX:000664) and BALB/c WT (IMSR_JAX:000651) 

mice were also purchased from The Jackson Laboratory and maintained through breeding. IgE-/- (MGI:3603569) 

mice were a gift from Hans Oettgen and Mitch Grayson and were generated as described (Oettgen et al., 1994). IL- 
25R-/- mice (IL17rb-/-) were a gift from Yui Hsi Wang. They were generated as described(Lee et al., 2016). IL-25R-/-, 

IgE-/- , WT, and BALB/c WT mice were used to harvest cells for reconstitution experiments in strain paired RAG1-/- 

mice. Cells were harvested from both male and female donor mice, mixed and then adoptively transferred into male 

and female recipient mice.  

METHOD DETAILS 

Parasite lifecycles, infection, and NES preparation 

The life cycles of both N. brasiliensis and H. polygyrus bakeri were maintained as previously described (Camberis, 

Le Gros and Urban, 2003). Infective larvae (L3) were prepared from mouse fecal cultures. 650 N. brasiliensis L3 

(unless otherwise noted) were injected s.c. into experimental mice. 200 H. polygyrus bakeri L3 were inoculated i.g.. 

Mice were monitored for eggs per gram of feces (EPG) by collecting feces by weight and resuspending in flotation 

solution (Saturated NaCl solution) based on 1 gram feces to 60mL of flotation solution, followed by counting two 

chambers in a McMaster Counting Slide (Chalex, LLC.), taking the average, and multiplying by 400 to obtain EPG 

(Finkelman et al., 2004; Saleem et al., 2012; Martin et al., 2014). Day 7 intestinal worms were recovered for 

counting, utilizing the proximal half of the small intestine longitudinally bisected and suspended in 37°C PBS in 

cheesecloth (Camberis, Le Gros and Urban, 2003). NES extract was generated from adult worms as 

described(Camberis, Le Gros and Urban, 2003). 

GEM, GK1.5, 2.43, ACK.2, and R1E4 treatment 

For MDSC depletion, 1.5mg/mouse gemcitabine (GEM) (Eli Lilly and Company) in 200µL saline was injected i.p. 

on day 0 and every 5 days following until the conclusion of the experiment (Saleem et al., 2012). For T cell 

depletion, 200µg anti-CD4 (GK1.5)(Wilde et al., 1983) and anti-CD8a (2.43)(Sarmiento, Glasebrook and Fitch, 

1980) antibodies or 200µg control Rat IgG were injected i.p. in 200µL saline on days -3, -2, -1, 0, 5, and 10 (Saleem 

et al., 2012). For mucosal MC depletion, 1mg of anti-ckit (ACK.2)(Nishikawa et al., 1986) or control Rat IgG was 

injected in 200µL saline on days 1, 2, 3, 4, 5, and 6. The initial dose was i.v., then subsequent doses were 

administered i.p. as described previously(Brandt et al., 2003). Treatment began 24 hours after N. brasiliensis 

inoculation. For anti-IgE (R1E4) treatment, 100µg was injected daily i.p. starting at reconstitution and continuing 

until experimental completion(Baniyash, Kehry and Eshhar, 1988; Keegan et al., 1991). 

Total IgE, IgG1, and IgM ELISA 

For total IgE ELISA, briefly, plates were coated with 5µg/mL of rat anti-mouse IgE (B1E3)(Keegan et al., 1991) in 

borate buffered saline, blocked (PBS with 0.02% Tween20 and 2% FBS), detected with biotin rat anti-mouse IgE 

(R1E4) and Streptavidin-Alkaline phosphatase (Southern Biotech). Plates were developed with phosphate tablets 

mailto:Daniel.Conrad@vcuhealth.org
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(Sigma-Aldrich) dissolved in substrate buffer (0.1g MgCl2.6H2O, 0.2 NaN3, 50mL diethanolamine, pH to 9.8 per 

500mL). Absorbance was measured at 405nm - 650nm(Damle et al., 2016). IgE standard was purified mouse IgE 

anti-DNP antibody(Keegan et al., 1991). Fold IgE (Fig 5A) was calculated for each replicate by dividing the 

condition with IL-25 (for each dose) by the cells sorted from the same mouse without IL-25. For total IgG1 levels, 

plates were coated with 5µg/mL of goat-anti mouse IgG-UNLB (Southern Biotech) and detected with goat anti-

mouse IgG1-AP (Southern Biotech)(Chaimowitz et al., 2011). For total IgM levels, plates were coated with 5µg/mL 

of goat-anti mouse IgM-UNLB (Southern Biotech) and detected with goat anti-mouse IgM-AP (Southern Biotech). 

All ELISAs were read using SoftMax Pro Data Acquisition and Analysis Software (Molecular Devices) on a 

Molecular Devices Plate reader (Molecular Devices). 

NP and OVA-specific ELISAs 

For NP-specific ELISAs, plates were coated with NP25BSA for total affinity and NP4BSA for high affinity antibody 

measurement ( LCG BioSearch Technologies) and detected as with total Ig assays (Smith et al., 1997). For OVA-

specific IgE ELISAs briefly, plates were coated with 5µg/mL of anti-IgE (R1E4), blocked with SuperBlock Dry 

Blend Blocking Buffer (Thermo Fisher Scientific), standard was IgE anti-DNP, secondary was OVA-DNP-Biotin, 

and was streptavidin-AP (Southern Biotech). 

Histamine and MCPT-1 ELISAs 

For ELISA on mucus, one third of the jejunal tissue harvested, dissected open and mucus was gently scraped from 

the lumen. The mucus was then weighed and flash frozen in a 1.5mL tube. Immediately prior to performing ELISA, 

mucus was resuspended in 50µL ELISA dilution buffer per 0.01g wet weight. Histamine (Neogen) and MCPT-1 

(AB_2575142) ELISAs were performed as directed by manufacturer. 

B cell Culture 

Cells were plated in cRPMI 1640 containing 10% FBS, 2mM L-glutamine, 50µM 2-mercaptoethanol, 100 U/mL 

penicillin, 100g/mL streptomycin, 1mM HEPES (Quality Biological), and 1mM sodium pyruvate (Corning Cellgro) 

at indicated concentrations. Cytokines (10ng/mL rIL-4 (PeproTech), 2µL/mL anti-CD40 (HM40-3) (AB_312944), 

300ng/mL rIL-5 (Peprotech), 50 ng/mL IL-33(Biolegend)(Komai-Koma et al., 2011; Ahmed and Koma, 2015), rIL-

25 (Biolegend), various concentrations) were added. Cell-free supernatants were harvested at days 5, 7, or 9, or cells 

were harvested at day 4 or 5. For in vivo experiments with IL-33, rIL-33 was injected i.p. daily at 2µg/mouse for 7 

days prior to sorting. 

Flow Cytometry and Cell Sorting 

Peritoneal lavage, MLNs, lungs, and spleens were collected. Lungs were digested with collagenase I (Worthington) 

prior to obtaining a single cell suspension. MLNs were teased apart and all other organs were ground between two 

glass slides. Red blood cells were removed by ACK lysis buffer (Sigma-Aldrich) when needed. The cell suspension 

was flushed through a 40µm mesh cell strainer. After Fc blocking (2.4G2)(Unkeless, 1979), labeled antibodies were 

added at concentrations recommended by the manufacturer. Flow data was collected with a LSRFortessa or 

FACSAria II (BD Biosciences), using BDFACSDivaTM 8.0 (BD Biosciences) and analyzed with Flowjo v7.6.5 (BD 

Biosciences). Anti-mouse antibodies used were Pe-Cy7 or Biotin conjugated anti-CD11b (M1/70)(AB_312798, 
AB_312787), BV421 conjugated anti-CD23 (B3B4)(AB_2563599), APC, PE, or Biotin conjugated anti-B220 

(RA3-6B2)(AB_312996,AB_394620,AB_312989), PE conjugated anti-CD4 (GK1.5)(AB_312692), FITC 

conjugated anti-Ly6G (1A8)(AB_1236494), APC conjugated anti-Ly6C (HK1.4)(AB_1732076), PE conjugated 

anti-CD138 (281-2)(AB_10916119), Zombie Aqua Live/Dead Viability Kit, APCFIRE-conjugated anti-CD45 (30-

F11)(AB_2572116), BV786 conjugated anti-ICOS (C398.4A)(AB_2629729), BV605 conjugated anti-CD90.2 

(Thy1.2)(AB_11203724), and BV421 conjugated anti-Sca1 (D7)(AB_10898327), FITC conjugated anti-CD3ε 

(500A2) (AB_394620), FITC or Biotin conjugated anti-CD3ε (145-2C11)(AB_312671,AB_312669), Biotin 

conjugated anti-TER-119 (AB_313704), and Biotin conjugated anti-GR1 (RB6-8C5)(AB_313368). Biotinylated 

antibodies were followed by Streptavidin-PE(Biolegend). When more than one BV antibody was used, Brilliant 

Violet Stain Buffer was utilized according to the manufacturer’s protocol (BD Biosciences). 

qRT-PCR 

For Fig 5F, S1C, and S2F, cells were isolated and total RNA was extracted using TRIzol reagent (Thermo Fisher 

Scientific). RNA was reverse-transcribed using Superscript IV (Thermo Fisher Scientific). Control RNA samples 

were made without Superscript IV utilizing the same temperature protocol. 20ng of equivalent RNA was used per 

reaction in duplicate. Primers (Resource Table) were utilized in a Power Up SYBR Green (Thermo Fisher 
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Scientific) RT-PCR assay or Taqman probes (Resource Table) were utilized with TaqMan™ Universal PCR Master 

Mix (Thermo Fisher Scientific). For Fig 7C, Table S1 and S2, jejunal and lung RNA was isolated after flash 

freezing in TRIzol reagent (Thermo Fisher Scientific) followed by mechanical homogenization. 35µg of total RNA 

was reverse transcribed using oligo-d(T)20 primers for only mRNA. cDNA was used at a final dilution of 1:20 per 

reaction. Each reaction was carried out in duplicate. Primers were designed using NCBI PrimerBlast and were 

designed to span exon junctions. Specificity was confirmed using NCBI PrimerBlast. Primers used for Table S1 and 

S2 (Eurofins or Thermo Fisher Scientific) are listed in Supplemental Experimental Procedures Table 1. For Fig 7C, 

Table S1 and S2 qRT-PCR amplification was conducted with 45 cycles of annealing and elongation at 60°C for 20 

seconds with 1 second melting at 95°C. All qRT-PCR was run using QuantStudio 3 real-time PCR system and 

Thermo Fisher Cloud analysis software (Thermo Fisher Scientific). 

Histology 

Jejunum tissue was collected 10-12cm distal to the stomach, fixed in ten percent formalin, embedded in paraffin, 

sectioned, and mounted on slides. Tissue processing from post-fixation to mounting on slides was performed by 

Histo-Scientific Research Laboratories. 5-µm sections were then de-paraffinized followed by staining for mucosal 

MCs with chloroacetate (specific esterase) staining as directed (Sigma-Aldrich). Slides were visualized and images 

were taken on an Olympus BX41 microscope. 

RESOURCE TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies 

PE/Cy7 Rat Anti-Mouse/Human CD11b 
antibody(M1/70)(Lot#B227804) 

Biolegend Cat#101216; 
AB_312798 

Biotin Rat Anti-Mouse/Human CD11b antibody(M1/70) 
(Lot#B221905) 

Biolegend Cat#101204; 
AB_312787 

Brilliant Violet 421 Rat Anti-Mouse CD23 
antibody(B3B4) (Lot#B236144) 

Biolegend Cat#101621; 
AB_2563599 

Biotin Rat Anti-Mouse CD23 antibody(B3B4) 
(Lot#B200229) 

Biolegend Cat#101604; 
AB_312829 

APC Rat Anti-Mouse/Human CD45R/B220 
antibody(RA3-6B2) (Lot#B189921, B208579) 

Biolegend Cat#103212; 
AB_312996 

PE Rat Anti-Mouse CD45R/B220 antibody(RA3-6B2) 
(Lot#74790) 

BD Biosciences Cat#553090; 
AB_394620 

Biotin Rat Anti-Mouse/Human CD45R/B220 
antibody(RA3-6B2) (Lot#B226660) 

Biolegend Cat#103204; 
AB_312989 

PE Rat Anti-Mouse CD4 antibody(GK1.5)(Lot#B196677) Biolegend Cat#100407; 
AB_312692 

FITC Rat Anti-Mouse Ly-6G 
antibody(1A8)(Lot#B163428) 

Biolegend Cat#127606; 
AB_1236494 

APC Rat Anti-Mouse Ly-6C antibody(HK1.4) 
(Lot#B161489) 

Biolegend Cat#128016; 
AB_1732076 

PE Rat Anti-Mouse CD138 (Syndecan-1) antibody(281-
2) (Lot#B182508)

Biolegend Cat#142504; 
AB_10916119 

APC/Fire 750 Rat Anti-Mouse CD45 antibody(30-F11) 
(Lot#B226658) 

Biolegend Cat#103154; 
AB_2572116 

Brilliant Violet 785 Hamster Anti-Human/Mouse/Rat 
CD278 (ICOS) antibody(C398.4A)(Lot#B235753) 

Biolegend Cat#313534; 
AB_2629729 

Brilliant Violet 605 Rat Anti-Mouse CD90.2 (Thy1.2) 
antibody(Lot#B241066) 

Biolegend Cat#140318; 
AB_11203724 

Biotin Rat Anti-Mouse CD90.2 antibody (30-
H12)(Lot#B217943, B243047, B241136) 

Biolegend Cat#105304; 
AB_313175 

Brilliant Violet 421 Rat Anti-Mouse Ly-6A/E (Sca-1) 
antibody(D7)(Lot#B202856) 

Biolegend Cat#108128; 
AB_10898327 
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FITC Hamster Anti-Mouse CD3ε antibody(145-
2C11)(Lot#B182508) 

Biolegend Cat#100306; 
AB_312671 

Biotin Hamster Anti-Mouse CD3ε antibody(145-
2C11)(Lot#B240049, B216147) 

Biolegend Cat#100306; 
AB_312669 

FITC Hamster Anti-Mouse CD3ε antibody(500A2) Biolegend Cat#152304; 
AB_2632667 

Biotin Rat Anti-Mouse TER-119/Erythroid Cells 
antibody(Lot#B247740, B218645) 

Biolegend Cat#116204; 
AB_313704 

Biotin Rat Anti-Mouse Ly-6G/Ly-6C (Gr-1) antibody 
(RB6-8C5)(Lot#B236916, B200655) 

Biolegend Cat#108404; 
AB_313368 

Biotin Rat Anti-Mouse CD43 Activation-Associated 
Glycoform antibody (1B11)(Lot#B214275) 

Biolegend Cat#121204; 
AB_493384 

Biotin Rat Anti-Mouse CD49b 
antibody(DX5)(Lot#B232367, B215293) 

Biolegend Cat#108904; 
AB_313035 

Biotin Rat Anti-Mouse F4/80 
antibody(BM8)(Lot#B234292, B206030) 

Biolegend Cat#123106; 
AB_893499 

Purified Hamster Anti-Mouse CD40 antibody(HM40-
3)(Lot#B174833) 

Biolegend Cat#102902; 
AB_312944 

Goat Anti-Mouse IgG1, Human Ads-AP(Lot#B8613-
VB04E) 

Southern Biotech Cat#1070-04 

Goat Anti-Mouse IgM, Human Ads-AP(Lot#D2013-
R653C) 

Southern Biotech Cat#1020-04 

Goat Anti-Mouse IgG, Human Ads-UNLB(Lot#K3515-
X447) 

Southern Biotech Cat#1030-01 

Goat Anti-Mouse IgM, Human Ads-UNLB(Lot#K2915-
QF36) 

Southern Biotech Cat#1020-01 

CD4 (L3T4) MicroBeads, mouse(Lot#5170526210) Miltenyi Biotec Cat#130-117-043 

CD43 (Ly-48) MicroBeads, mouse Miltenyi Biotec Cat#130-049-801 

Anti-Biotin MicroBeads(Lot#5170630319) Miltenyi Biotec Cat#130-090-485 

Purified Rat Anti-Mouse IgE (B1E3) antibody Isolated from 
hybridoma(Keegan et 
al., 1991) 

N/A 

Biotin-Purified Rat Anti-Mouse IgE (R1E4) antibody Isolated from 
hybridoma(Keegan et 
al., 1991) 

N/A 

Purified Rat Anti-Mouse CD16 / CD32 (2.4G2) antibody Isolated from 
hybridoma(Unkeless, 
1979) 

N/A 

Purified Rat Anti-Mouse ckit (ACK.2) antibody Laboratory of Fred 
Finkelman(Nishikawa 
et al., 1986) 

N/A 

Purified Rat Anti-Mouse CD8a (2.43) antibody Isolated from 
hybridoma(Sarmiento, 
Glasebrook and Fitch, 
1980) 

N/A 

Purified Rat Anti-Mouse CD4 (GK1.5) antibody Isolated from 
hybridoma(Wilde et 
al., 1983) 

N/A 

Purified Mouse IgE anti-DNP antibody Isolated from 
hybridoma(Keegan et 
al., 1991) 

N/A 

Chemicals, Peptides, and Recombinant Proteins 

Streptavidin-Phycoerythrin, SAv-PE(Lot#B243518) Biolegend Cat#405204 

Zombie Aqua™ Fixable Viability Kit(Lot#B241805) Biolegend Cat#423102 
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Brilliant Stain Buffer BD Biosciences Cat#566349 

Streptavidin-AP(Lot#H0016-v566E) Southern Biotech Cat#7100-04 

Recombinant Murine IL-4 (Lot#111249) Peprotech Cat#214-14 

Recombinant Murine IL-5 (Lot#1206406) Peprotech Cat#215-15 

Recombinant Murine IL-33 (Lot#B223367) Biolegend Cat#580506 

Recombinant Murine IL-25(IL-17E)(Insect expressed, 
CF)(Lot#B213181, B213180, B173762) 

Biolegend Cat#587306 

NP-KLH (Keyhole Limpet Hemocyanin) LGC BioSearch 
Technologies 

Cat#N-5060-25 

NP-BSA (Bovine Serum Albumin), Ratio > 20 LGC BioSearch 
Technologies 

Cat#N-5050H-100 

NP-BSA (Bovine Serum Albumin), Ratio 1-4 LGC BioSearch 
Technologies 

Cat#N-5050XL-100 

SuperBlock™ (TBS) Blocking Buffer Dry Blend Thermo Fisher 
Scientific 

Cat#37545 

OVA-DNP-Biotin This paper(Damle et 
al., 2018) 

N/A 

SuperScriptTM IV Reverse Transcriptase Thermo Fisher 
Scientific 

Cat#18090010 

PowerUpTM SYBRTM Green Master Mix Thermo Fisher 
Scientific 

Cat#A25742 

Gemzar® (Gemcitabine) Eli Lilly and Company NDC Code#0002-
7501-01 

DNP-BSA (Albumin from Bovine Serum (BSA), 2,4-
Dinitrophenylated) 

Thermo Fisher 
Scientific 

Cat#A23018 

N. brasiliensis Excretory Secretory Extract This paper(Camberis, 
Le Gros and Urban, 
2003) 

N/A 

Albumin from chicken egg white (OVA) Sigma-Aldrich Cat#A5503; CAS: 
9006-59-1 

Formamide Sigma-Aldrich Cat#F9037; CAS: 
75-12-7 

Evan’s blue Sigma-Aldrich Cat#E2129; CAS: 
314-13-6 

Collagenase I (Lot#44K15158A) Worthington Cat#LS004196; 
CAS: 9001-12-1 

TaqMan™ Universal PCR Master Mix Thermo Fisher 
Scientific 

Cat#4304437 

Critical Commercial Assays 

Histamine Kit, 96 well kit(Lot#245546) Neogen Cat#409010 

Mouse MCPT-1 (mMCP-1) ELISA Ready-SET-Go!¨ 10 x 
96 tests w/plates Kit antibody 

Thermo Fisher 
Scientific 

Cat#88-7503-86; 
AB_2575142 

Deposited Data 

Gene Expression Analysis in Jejunum and Lung This Paper Table S1, Table S2 

Experimental Models: Organisms/Strains 

Mouse: RAG1-/-: B6.129S7-Rag1tm1Mom/J The Jackson 
Laboratory 

IMSR_JAX:002216 

Mouse: WT: C57BL/6J The Jackson 
Laboratory 

IMSR_JAX:000664 

Mouse: BALB/c RAG1-/-: C.129S7(B6)-Rag1tm1Mom/J The Jackson 
Laboratory 

IMSR_JAX:003145 

Mouse: BALB/c WT: BALB/cJ The Jackson 
Laboratory 

IMSR_JAX:000651 
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Mouse: IgE-/-: Igh-7tm1Led/Igh-7tm1Led Hans Oettgen(Oettgen 
et al., 1994) 

MGI:3603569 

Mouse: IL-25R-/-: IL17rb-/- Yui-His Wang(Lee et 
al., 2016) 

N/A 

Mouse: ADAM10Tg: Tg(ADAM10)2Dhc Daniel Conrad(Gibb et 
al., 2011) 

N/A 

N. brasiliensis Joseph Urban, 
Jr.(Camberis, Le Gros 
and Urban, 2003) 

N/A 

H. polygyrus bakeri Joseph Urban, 
Jr.(Camberis, Le Gros 
and Urban, 2003) 

N/A 

Oligonucleotides 

Secreted Ighe 5’-GTCGCCTAGAGGTCGCCAAG-3’ Integrated DNA 
Technologies(He et 
al., 2013) 

N/A 

Secreted Ighe 5’-CATCCACCTTCCCCACCACAGC-3’ Integrated DNA 
Technologies(He et 
al., 2013) 

N/A 

Secreted Ighg1 5’-TGCACAACCACCATACTGAGA-3’ 
Integrated 
DNATechnologies(He 
et al., 2013) 

N/A 

Secreted Ighg1 5’-GGGTGGAGGTAGGTGTCAGA-3’ Integrated DNA 
Technologies(He et 
al., 2013) 

N/A 

Actb 5’-CAATAGTGATGACCTGGCCGT-3’ Integrated DNA 
Technologies(Weber 
et al., 2015) 

N/A 

Actb 5’-AGAGGGAAATCGTGCGTGAC-3’ Integrated DNA 
Technologies(Weber 
et al., 2015) 

N/A 

Mouse Adam10 (Mm00545742_m1) Thermo Fisher 
Scientific 

Cat#4331182 

Mouse Gapdh (Mm99999915_g1) Thermo Fisher 
Scientific 

Cat#4331182 

See Supplemental Experimental Procedures Table 1 for 
a full list of primers 

This Paper N/A 

Software and Algorithms 

Graphpad Prism 6 GraphPad SCR_002798; 
https://www.graphpa
d.com

SoftMax Pro Data Acquisition and Analysis Software Molecular Devices SCR_014240; 
https://www.molecul
ardevices.com 

FlowJo 7.6.5 BD Biosciences https://www.flowjo.co
m/solutions/flowjo/do
wnloads 

BDFACSDivaTM 8.0 BD Biosciences http://www.bdbioscie
nces.com/us/instrum
ents/research/softwa
re/flow-cytometry-
acquisition/bd-
facsdiva-
software/m/111112/o
verview 
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Thermo Fisher Cloud Thermo Fisher 
Scientific 

https://www.thermofi
sher.com/us/en/hom
e/cloud.html 

Other 

Two-Chamber Opaque McMaster Slide Chalex, LLC Cat#2CO 
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Forward Reverse 

Ccl2 GGCTCAGCCAGATGCAGTTA GAGTAGCAGCAGGTGAGTGG 

Chil3 AGGAAGCCCTCCTAAGGACA CTCCACAGATTCTTCCTCAAAAGC 

Cma1 CTGCTCCTTCTCCTGGGTTCC TGTTATAGACCTTCCCGCACAGT 

Cpa3 AACTGCCTCCTAACCACCAG AGTCTTGTAAATTGTGGATGCTATT 

Fcer1a GCACTGCTGTTCATGTCTCTTG AATCCATGGTGGGTCCAAGG 

Fcgbp GAAGGGTGTGAGTGCGATGA GGGAAGAGTTCACCGGCATA 

Hprt CAGGGATTTGAATCACGTTTGTG TTGCAGATTCAACTTGCGCT 

Il13 CACACAAGACCAGACTCCCC GTTGGTCAGGGAATCCAGGG 

Il22 CTCCTGTCACATCAGCGGT CAGTTCCCCAATCGCCTTGA 

Il25 TATGAGTTGGACAGGGACTTGA TGGTAAAGTGGGACGGAGTTG 

Il33 GACCAGGTGCTACTACGCT CACACCGTCGCCTGATTGAC 

Il4 CCATATCCACGGATGCGACA CTGTGGTGTTCTTCGTTGCTG 

Il5 AGCAATGAGACGATGAGGCTT CCCCCACGGACAGTTTGATT 

Il6 CCACTTCACAAGTCGGAGGC TTGCCATTGCACAACTCTTTTCT 

Il9 GCTGCTTGTGTCTCTCCGTC TGGTTGCATGGCTTTTCGC 

Mcpt1 AGCTGGAGCTGAGGAGATTATT GTCCTCAGAACCTCTGTCCG 

Mcpt2 GAAGCTCACCAAGGCCTCAA CACCAATAATCTCCTCAGCTCCA 

Mcpt4 GTGGGCAGTCCCAGAAAGAAA TCCAGAGTCTCCCTTGTATGCT 

Muc1 TACCACACTCACGGACGCTA CCTGCCGAAACCTCCTCATAG 

Muc2 TCCTGACCAAGAGCGAACAC ACAGCACGACAGTCTTCAGG 

Muc3 CATCTCCCGGAACCTTCCAC GGCATGTAGTTTTCTCGTTCTTCAT 

Muc4 CATCCTCCTCAGGATTGACTACGA GGGGCTAGTAAGGGTCGAGG 

Muc5b TGATGTTGACCGCTTCCAGG GACTCATTCACCTGCCGGG 

Retnla GCTGGGATGACTGCTACTGG CTCCCAAGATCCACAGGCAA 

Retnlb TCAGTCGTCAAGAGCCTAAGAC GTCTGCCAGAAGACGTGACA 

Tff2 GAAACCTTCCCCCTGTCGG CCAGCGACGCTAGAGTCAAA 

Tnf ATGGCCTCCCTCTCATCAGT TGGTGGTTTGCTACGACGTG 

Tslp AGGGGCTAAGTTCGAGCAAA AAGCTGGCTTGCTCTCACAG 

Supplemental Experimental Procedures Table 1 
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Figure S1. Adam10 message is not overexpressed on ADAM10Tg B1 cells, Related to Figure 1. A. Flow 

cytometry of spleen from WT and ADAM10Tg (A10Tg) mice infected with N. brasiliensis, with and without 

treatment with gemcitabine (GEM) to deplete MDSCs after 14 days of infection. B1 cells were sorted from the 

peritoneal lavage (PL) fluid of mice utilizing the gating strategy illustrated in (B). C. Adam10 message was 

measured in WT and A10Tg B1 cells from mice infected with N. brasiliensis. Adam10 message is normalized to 

Gapdh. n=4 pooled experiments/group and statistical comparison was performed using a Mann-Whitney non-

parametric analysis. NS=not significant. Error bars depict SEM.  
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Figure S2. B1 cells from mice infected with N. brasiliensis make more IgM in response to IL-5, but not IL-25 

Related to Figure 4 and 5. B1 and B2 cells were sorted from mice infected with N. brasiliensis(A, B, C, D, E, G, 

H, I)   or naïve (B, C, D, E) and cultured for 9 days with anti-CD40, IL-4, and ± IL-5(A, C, E)  and/or ± IL-25(B, C, 

D, E). Controls are indicated (G, H, I). An ELISA was performed to detect total IgM (A, B, C, I), IgG1 (D, E, H), 

or IgE (G) in cell-free supernatants. Relative expression of secreted Ighg1 message (F) was assessed in cells 

cultured with or without added IL-25 and normalized to Actb message. ***p<0.001, NS=not significant. Error bars 

depict SEM. n>7 mice (A-E) n=3 pooled experiments/group. Statistical comparison was performed using a one-

way ANOVA with a Tukey post hoc test. 
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Figure S3. B2 cells from mice infected with N. brasiliensis or naïve mice are not induced to proliferate or 

secrete antibody by IL-25, Related to Figure 5. B2 cells were sorted from the PL of naïve mice or mice infected 

with N. brasiliensis (Nb). They were then cultured with anti-CD40 and IL-4 followed by detection of (A-F) antibody 

in the cell-free supernatants and (G-H) proliferation. Total IgE, IgM, and IgG1 were measured in the (A,C,E) 

absence or (B,D,F) presence of IL-5 added to culture respectively. Proliferation was performed as in Figure 5 on B2 

cells from mice infected with N. brasiliensis with (G) or (H) without IL-5 added to culture. CPM = counts per 

minute. All cells were treated with increasing doses of IL-25. Error bars depict SEM. n>7 mice per group and 

statistical analyses used Student’s T-test to compare IL-25-treated and non-treated groups. Data are inclusive of 

three independent experiments. 
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Figure S4. IL-33 does not enhance B1 cell IgE production, Related to Figure 5. B1 cells from naïve mice and 

mice infected with N. brasiliensis (Nb) were sorted and cultured with anti-CD40, IL-4 and ± IL-5 for 48 hours, 

followed by the addition of IL-33. After 9 days of culture, cell free supernatants were measured for total IgE (A) and 

IgG1 (B). Cell proliferation was also determined by culturing cells with anti-CD40, IL-4, and ± IL-5 for 48 hours 

and then adding IL-33. 24 hours later, 1µCi H3 was added and after 24 hours of incubation the plate was harvested 

onto GFC plates and read on a TopCount plate reader. CPM = counts per minute. (D,E) Mice were i.p. injected with 

2µg/mouse IL-33 daily for 7 days and then B1 cells were sorted from both these mice and naïve mice. After 9 days 

of culture, total IgE (D) and IgG1 (E) was measured. *p<0.05 **p<0.01 ***p<0.001. Error bars depict SEM. 

Significance was determined with a one-way ANOVA with a Tukey Post-hoc test. 
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Supplemental Figure 5 

Fig S5. RAG1-/- reconstitution is confirmed by flow cytometry after reconstitution and after infection with N. 

brasiliensis, Related to Figure 6. Flow cytometry was performed on spleen, PL and inguinal lymph node (ING) 

cells on day 7 after reconstitution A-F, and mesenteric lymph node (MLN) on day 21 after inoculation with N. 

brasiliensis (G). A. Total organ cell counts. B and C are percent and cell number respectively of CD45+B220+ cells, 

and D and E are percent and cell number respectively for CD45+CD4+ cells. F is percent of CD45+B220+CD23+ (B2) 

cells, CD45+B220+CD23-(B1) cells, and CD45+CD4+ cells in the PL. G is representative flow on MLNs. H. Gating 

strategy for ILC2s. I. Representative dot plots for ILC2 determination for Figure 7.G and H from digested lung and 

MLN. J. RAG1-/- mice were reconstituted as in Figure 6 and then immunized i.p. with NP32-KLH in alum. High 

affinity and total NP-specific IgG1 and total IgG1 were measured in the serum by ELISA as described for Fig. 2 on 

day 14.  *p<0.05 **p<0.01 ***p<0.001. Error bars depict SEM. n=4/group for A-F. n>7 mice/group for J. 

Significance was determined with a one-way ANOVA with a Tukey Post-hoc test. 
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Relative to Hprt 

B2 + T cell T cell Only 

Rag1-/- 

No 

Reconstitution 

Naive 

adj. P value 

(B2+T cell 

vs. naive) 

adj. P value 

(B2+T cell vs. 

T cell only) 

Ccl2 0.077044286 0.093739571 0.0112724 0.002798 0.013961 0.682789701 

Ccl11 0.153465857 0.061919714 0.026749 0.0208124 0.044843 0.097642131 

Chi3l 0.000345614 0.000122967 0.00007804 9.4725E-06 0.020655 0.060076939 

Cma1 0.024789571 0.006773714 0.0028904 0.0017496 0.008128 0.014051213 

Cpa3 0.068068286 0.016118286 0.0176172 0.0022334 0.003627 0.005956175 

Fcer1a 0.156148143 0.022642 0.0082074 0.002693 0.029824 0.021994047 

Fcgbp 0.00051315 2.19814E-05 7.61667E-05 0.00002719 0.062147 0.01252311 

Il4 0.005076243 0.001648714 0.0003178 0.0001644 0.085558 0.163845777 

Il5 0.001869857 0.001792 0.0002637 0.0000891 0.014381 0.933434232 

Il6 0.007308714 0.006642571 0.001565 0.0005286 0.049622 0.849245398 

Il9 0.066535143 0.024044143 0.006839 0.001173 0.046645 0.121267873 

Il13 0.005123557 0.002470429 0.000585 0.0001321 0.016998 0.237206092 

Il22 0.000401286 0.00031768 0.0001999 0.000061648 0.036571 0.662990261 

Il25 0.188965143 0.084581571 0.0059146 0.0033306 0.096698 0.357499826 

Il33 0.009379857 0.011231714 0.0172744 0.0286112 0.145367 0.633328373 

Mcpt1 0.126148286 0.035677286 0.1074352 0.007403 0.008382 0.014506206 

Mcpt2 0.058289286 0.013659 0.0213562 0.0008854 0.012884 0.018588217 

Mcpt4 0.013884571 0.007327143 0.0053466 0.0006952 0.237453 0.485531782 

Muc1 0.000447343 2.93287E-05 1.73777E-05 0.00001287 0.144678 0.083333152 

Muc2 0.000434243 0.000164141 0.00007188 0.000028702 0.003950 0.054720378 

Muc3 0.0001672 0.000006988 0.000033296 1.77245E-05 0.002572 5.6789E-06 

Muc4 0.001043 8.83271E-05 0.00010196 0.00005934 0.004945 0.001295176 

Muc5b 0.001103667 0.000123857 0.00023918 0.000011478 0.004818 0.000667575 

Retnla 0.0014116 0.00025974 0.000126092 0.000009806 0.005520 0.011604179 

Retnlb 0.000218638 0.000123653 3.52067E-05 3.33667E-05 0.318206 0.587769427 

Tff2 0.003614357 0.000299714 0.00013786 0.000128708 0.015806 0.006160113 

Tnf 0.03976 0.007283286 0.0025956 0.0013356 0.061868 0.058523604 

Tslp 0.001196167 0.0004902 0.000080648 9.8725E-06 0.015849 0.115030279 

Ccl24 0.209496667 0.213941429 0.0592898 0.0291746 0.033112 0.033112 

Chi3l4 0.004223967 0.00273828 0.090120876 0.0060115 0.762824 0.7628241 

Ear11 0.086239286 0.160493429 0.001719 0.20005054 0.522387 0.5223871 

Epx 0.001855167 0.001147514 0.000125988 0.000215382 0.021077 0.021077 

Gsdmc2 0.336043667 0.491415714 0.1833276 0.0666722 0.098321 0.098321 

Il10 0.000395486 0.000210367 0.0016544 0.00007306 0.101834 0.1018343 

Mcpt8 0.000337714 0.0000967 0.00009954 0.0000357 0.082365 0.082365 

Prg2 0.042052571 0.025133143 0.0048764 0.0054274 0.036326 0.036326 

Timp1 0.034064 0.074320429 0.0069508 0.0030494 0.042338 0.0423376 

Table S1. Intestinal gene expression in naïve or N. brasiliensis infected RAG1-/- mice, with or without 

reconstitution, Related to Figure 7. Genes are expressed relative to housekeeping Hprt. 
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Relative to Hprt 

B2 + T cell T cell Only 

adj. P value 

(B2 + T cell vs. T cell 

only) 

Ccl11 0.03783 0.0328 >0.9999 

Chi3l 33.38 34.87 >0.9999 

Cpa3 8.908 9.038 >0.9999 

Ear11 216.6 104.4 0.0292 

Epx 0.3414 0.4475 >0.9999 

Fcer1a 0.02022 0.01704 >0.9999 

Il4 98.8 52.02 >0.9999 

Il5 95.86 62.38 >0.9999 

Il6 0.01726 0.008323 >0.9999 

Il13 6.823 4.109 >0.9999 

Il33 7.748 3.262 >0.9999 

Mcpt1 0.4091 0.3219 >0.9999 

Mcpt2 1.306 0.478 >0.9999 

Mcpt4 3.253 1.995 >0.9999 

Mcpt8 241.6 215 >0.9999 

Muc5ac 1.157 1.318 >0.9999 

Retnla 3.839 1.586 >0.9999 

Retnlb 0.03805 0.03035 >0.9999 

Tnf 0.4493 1.377 >0.9999 

Tslp 0.4284 0.3338 >0.9999 

Table S2. Lung gene expression in N. brasiliensis infected RAG1-/- mice. Related to Figure 7. Genes are 

expressed relative to housekeeping Hprt. 
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