JxB FORCE EFFECTS ON BERYLLIUM MELT SPLASHING IN FUSION DEVICES

Cheng Zhang
Virginia Commonwealth University

Gennady Miloshevsky

Follow this and additional works at: https://scholarscompass.vcu.edu/gradposters

Part of the Nuclear Engineering Commons

Downloaded from
https://scholarscompass.vcu.edu/gradposters/53

This Poster is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Graduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
The 23rd Annual Graduate Research Symposium, VCU, Richmond, Virginia 23284, April 21, 2020

JxB FORCE EFFECTS ON BERYLLIUM MELT SPLASHING IN FUSION DEVICES
Cheng Zhang and Gennady Miloshevsky
Virginia Commonwealth University, Department of Mechanical and Nuclear Engineering, 401 West Main St, Richmond, VA 23284, USA

Abstract
Instability and disruption of high-temperature plasma in fusion devices may result in the edge-localized modes (ELMs) and lead to melting of plasma facing components (PFCs) causing their damage. Beryllium (Be) is used as a first wall for PFCs due to its low density, high strength, and high thermal conductivity. However, melting of Be on the surface of first wall is of a great concern as splashing of a melt Be layer will result in the plasma contamination and termination of fusion reaction. Therefore, it is important to understand the physics mechanisms characterizing the splashing of Be from a pool under the plasma impact in a strong magnetic field as that in the International Thermonuclear Experimental Reactor (ITER). The computational model that combines the volume of fluid (VOF) and magnetohydrodynamic (MHD) models is used to simulate the effects of thermal, viscous, gravitational and surface tension forces on the molten Be layer. The additional source terms representing the external and surface tension forces on the molten Be layer. The computational model that combines the volume of fluid (VOF) and magnetohydrodynamic (MHD) models is used to simulate the effects of thermal, viscous, gravitational and surface tension forces on the molten Be layer. The additional source terms representing the external and surface tension forces on the molten Be layer.

Computational Model

• Eclipse IDE: Primarily used for developing C++ computer code
• OpenFOAM: Initially created by Henry Weller in 1989 at Imperial College, London
• OpenFOAM is a C++ toolbox for the development of customized numerical solvers
• It contains many pre-built and ready-to-use solvers which designed to solve partial differential equations (PDE) for continuum mechanics and CFD problems
• OpenFOAM also consists of many pre-processing and post-processing utilities which are designed to perform tasks involving data manipulation before and after CFD simulation
• Can be used in other areas such as solid dynamics, molecular dynamics and Monte Carlo problems, electromagnetics, pricing of financial options
• ParaView: An open-source multiple-platform application which used to analyze and generate visual image through the input datasets
• Set up of the simulation:
 - Initially, create a melt Be layer (red region) at the material surface
 - Set thickness of Be layer to be 0.2 mm
 - Temperature of the layer is set as 1560 K which is the melting point of Beryllium
 - The background pressure for the whole system is set to p = 1 bar and the applied magnetic field is B = 5 T
 - Stream of viscous plasma with a velocity of 100 m/s impacts Be-melt layer moving with a speed of 2 m/s

Background and Motivation
ITER: International Thermonuclear Experimental Reactor, the frontier of tokamak fusion reactor
JET: Joint European Torus, conduct research and experiment on tokamak design and support the progress of ITER program
PFC: Plasma facing component in fusion reactor to withstand high temperature, pressure and magnetic field during fusion reaction
Beryllium: Material which is used for interior first wall of tokamak reactor due to its unique properties
JxB Force: The resulting force due to current density and magnetic flux density which occurs in magnetic confinement fusion reactor during operation
Geometric Factor: Should be considered because the motion of splashing will be affected by the location where melt Be is formed

Motion of Melt Beryllium at Magnetic Field of 5T

The motion of melt Be is closely monitored at different time interval
- At 0.2ms, small altitude waves start to form at the liquid surface
- As the time progresses, the waves are affected by the magnetic field and begins to fluctuate
- However, with the given amount of magnetic force, the melt Be layer does not have significant splashing at time of 0.6ms

Motion of Melt Beryllium under Higher Magnetic Field

- Similar to lower magnetic field simulation, waves are formed due to the influence of JxB force
- Starts from 0.4ms, higher number of high altitude waves begin to form.

Comparison of Motion of Melt Beryllium Splashing at Different JxB Force

- At 0.6ms, surface of the liquid Be under higher JxB force starts to produce significantly higher waves
- The waves signal that the melt Be responds to the higher JxB force and splashing will occur at an earlier stage than lower JxB force condition

Conclusions

- Wave pattern starts to form at the surface of melt Be layer within a short period of time (<0.2ms)
- As the liquid Be continues its exposure to magnetic field, the motion of the layer varies as well
- Under the influence of higher JxB force, splashing will happen faster as higher altitude waves occur as early as 0.6ms

Acknowledgment
This work is supported by U.S. Nuclear Regulatory Commission under Grant No. 31310018N0047.