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Background: Alcohol dependence (AD) shows evidence for genetic liability, but genes influencing
risk remain largely unidentified.

Methods: We conducted a genomewide association study in 706 related AD cases and 1,748
unscreened population controls from Ireland. We sought replication in 15,496 samples of European
descent. We used model organisms (MOs) to assess the role of orthologous genes in ethanol (EtOH)-
response behaviors. We tested 1 primate-specific gene for expression differences in case/control post-
mortem brain tissue.

Results: We detected significant association in COL6A3 and suggestive association in 2 previously
implicated loci, KLF12 and RYR3. None of these signals are significant in replication. A suggestive sig-
nal in the long noncoding RNA LOC339975 is significant in case:control meta-analysis, but not in a
population sample. Knockdown of a COL6A3 ortholog in Caenorhabditis elegans reduced EtOH sensi-
tivity. Col6a3 expression correlated with handling-induced convulsions in mice. Loss of function of the
KLF12 ortholog inC. elegans impaired development of acute functional tolerance (AFT).Klf12 expres-
sion correlated with locomotor activation following EtOH injection in mice. Loss of function of the
RYR3 ortholog reduced EtOH sensitivity in C. elegans and rapid tolerance in Drosophila. The ryan-
odine receptor antagonist dantrolene reduced motivation to self-administer EtOH in rats. Expression
of LOC339975 does not differ between cases and controls but is reduced in carriers of the associated
rs11726136 allele in nucleus accumbens (NAc).

Conclusions: We detect association between AD and COL6A3, KLF12, RYR3, and LOC339975.
Despite nonreplication of COL6A3, KLF12, and RYR3 signals, orthologs of these genes influence
behavioral response to EtOH in MOs, suggesting potential involvement in human EtOH response and
AD liability. The associated LOC339975 allele may influence gene expression in human NAc. Although
the functions of long noncoding RNAs are poorly understood, there is mounting evidence implicating
these genes in multiple brain functions and disorders.

Key Words: Alcohol Dependence,COL6A3, KLF12, LOC339975, RYR3.

ALCOHOL DEPENDENCE (AD) is a major public
health burden with substantial costs for individuals

and societies (Rice, 1999). Despite robust evidence for
genetic influences on risk (Cotton, 1979; Prescott et al.,
2005a; Sigvardsson et al., 1996) and heritability estimates of
~50% (Ystrom et al., 2011), the genes influencing AD risk
remain largely unidentified.

Prior genomewide association studies (GWAS) of AD and
alcohol-related phenotypes in European samples detected
novel signals in the PECR (Treutlein et al., 2009), AUTS2
(Schumann et al., 2011), and uncharacterized c15orf53
(Wang et al., 2013) genes. None of these novel signals were
replicated. Two independent signals were detected and repli-
cated around the long-standing candidate gene ADH1B
(Frank et al., 2012; Gelernter et al., 2014). Three studies of
Asian subjects identified signals at ALDH2 (Baik et al.,
2011; Quillen et al., 2014) and theADH1B functional variant
H47R (rs1229984) (Park et al., 2013), likely due to the fre-
quencies of functional ADH and ALDH alleles in Asian pop-
ulations.

To identify genes influencing alcohol-related phenotypes,
we conducted a GWAS of AD. To maximize power, we stud-
ied an ethnically homogeneous sample of cases, affected sib-
lings, and unscreened controls from Ireland, correcting for
relatedness and lack of control screening analytically. We
sought replication in 15,496 subjects of European descent
(6,742 case/controls and 8,754 population samples).

Well-developed experimental approaches can test directly
whether changes in candidate genes impact behavioral
response to ethanol (EtOH) in vertebrate (Crabbe, 2002) and
invertebrate (Grotewiel and Bettinger, 2015) model organ-
isms (MOs). Orthologs of genes that affect simple EtOH

responses in invertebrates also affect more complex EtOH
responses in mammals, including measures of sensitivity and
voluntary drinking (Bhandari et al., 2012; Kapfhamer et al.,
2008; Liu et al., 2008). This approach has previously been
successful in demonstrating functional relevance of genes
implicated by GWAS in EtOH-response behaviors (Schu-
mann et al., 2011).

To provide functional support for GWAS candidates, we
tested whether perturbation of orthologous genes alters
behavioral response to EtOH in Caenorhabditis elegans and/
or Drosophila, depending on the presence of orthologous
genes and the availability of genetic reagents and informa-
tion. In vertebrate MO, we analyzed correlations between
candidate gene expression and alcohol phenotypes bioinfor-
matically in curated archival data from recombinant inbred
(BXD) mouse lines and we tested the effect of pharmacologi-
cal antagonism of 1 candidate gene product on motivation to
self-administer EtOH in rats after chronic EtOH exposure.
For 1 candidate gene with no ortholog outside of primates,
we tested for expression differences in alcohol-dependent and
control human postmortem brain tissue stratified by clinical
status or genotype.

MATERIALS ANDMETHODS

GWASDiscovery Sample

Participants in the Irish Affected Sib Pair Study of Alcohol
Dependence (IASPSAD) were recruited in Ireland and Northern
Ireland between 1998 and 2002 (Prescott et al., 2005b). Briefly,
probands were ascertained in community alcoholism treatment
facilities and public and private hospitals. Probands were eligible
for inclusion if they met DSM-IV criteria (American Psychiatric
Association, 1994) for lifetime AD and if all 4 grandparents had
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been born in Ireland, Northern Ireland, Scotland, Wales, or Eng-
land. Probands, siblings, and parents were interviewed by clini-
cally trained research interviewers, most of whom had extensive
clinical experience with alcoholism. We assessed lifetime history
of AD using a modified version of the Semi-Structured Assess-
ment of the Genetics of Alcoholism interview, version II (Bucholz
et al., 1994), demographic characteristics, other comorbid condi-
tions, alcohol-related traits, personality features, and clinical
records. All participants provided informed consent. We included
815 probands and siblings in genotyping.

A total of 2,048 DNA samples from healthy, unpaid volunteers
donating blood at the Irish Blood Transfusion Service and obtained
from the Trinity Biobank at Trinity College Dublin were used as
controls. Biobank controls were eligible if they denied any problems
with alcohol or history of mental illness and if all 4 grandparents
had been born in Ireland, Northern Ireland, Scotland, Wales, or
England. Because of the sample source, controls were not formally
screened for AD, but the lack of screening was addressed analyti-
cally (see GWAS Statistical Analyses). Information about age and
sex was available for these subjects.

GWAS Genotyping, Quality Control, and Imputation

Genomic DNAs passing quality control (QC) standards were
genotyped on Affymetrix v6.0 SNP arrays (Affymetrix, Santa
Clara, CA). All arrays included in analysis passed standard QC
measures. Genotypes were called using BEAGLECALL (Brown-
ing and Yu, 2009), followed by rigorous genotype QC. We
imputed the 1000 Genomes Project (1000 Genomes Project Con-
sortium, 2010) April 2012 integrated variant reference panel of
36.5 million simple nucleotide polymorphisms (SNPs) using
IMPUTE2 (Howie et al., 2009). We converted posterior genotypic
probabilities to allelic dosages using GenABEL (Aulchenko et al.,
2007). After postimputation QC, 8,344,348 SNPs were available
for analysis. Complete details of array, SNP and individual QC,
BEAGLECALL genotyping, imputation, and postimputation QC
and sample power are included in Appendix S1 and Figs S1–S4.

GWAS Statistical Analyses

We tested individual SNPs for association by Modified Quasi-
Likelihood Score (MQLS) (Thornton and McPeek, 2007) because
MQLS accepts genotypes in postimputation dosage format and can
account for subject relatedness by using a kinship matrix calculated
from pedigree data. Unscreened Biobank controls were coded as
phenotype unknown. We included an estimated sex-weighted 8.9%
population AD prevalence derived from population (Hasin et al.,
2007) and unpaid Dutch blood donor (Atsma et al., 2011) data to
account for lack of control screening. Varying this estimate from
0% to 12% gave a similar p-value distribution for all prevalence
estimates. MQLS cannot include covariates. We used a threshold of
p ≤ 5 9 10�8 for genomewide significant (GWS) results. Odds
ratios were not calculated due to the nonindependence of related
case alleles. Secondary analytic approaches for gene-based, net-
work, and geneset analyses are described in Supplementary Meth-
ods in Appendix S1.

Selection for Further Study

We calculated false discovery rate (FDR) q-values (Storey and
Tibshirani, 2003) for all SNPs to select loci for further study. For
replication and secondary analysis of discovery data, we used a
threshold q < 0.3 (p < 1 9 10�5 for our p-value distribution, 30%
of results are false discoveries) to maximize discovery potential. For
functional studies, we included any loci achieving GWS signals in
discovery or replication (COL6A3, LOC339975) and any loci with

both q < 0.1 (10% of results are false discoveries) and prior evi-
dence of involvement in EtOH phenotypes from human and/or MO
studies (KLF12, RYR3).

Assessment of Variants for Potential Functional Impact

For variants with q < 0.1, we assessed variant potential to impact
function either directly or via linkage disequilibrium (LD) with
other variants using GWAS3D (Li et al., 2013). GWAS3D provides
an adjusted p-value from Fisher’s combined probability test incor-
porating the GWAS evidence of genetic association with evidence
that the variant alters (i) coding or (ii) conserved sequence, or (iii)
sites of long-range interactions, (iv) binding energy for known tran-
scription factors or lies within (v) promoter, (vi) enhancer, or (vii)
insulator elements from ENCODE and other published sources.

GWAS Replication

We conducted replication analyses in N = 15,496 European sub-
jects from 3 AD case–control samples (Edenberg et al., 2010; Frank
et al., 2012; Gelernter et al., 2014; Treutlein et al., 2009) and 1 pop-
ulation sample (Heath et al., 2011). Details of the individual sam-
ples, genotyping, and imputation are provided in Appendix S1. We
conducted look-up analysis of replication SNPs in each sample and
meta-analysis of all replication SNPs first in the 4 ascertained case–
control samples, then adding the unascertained population sample,
for which AD diagnoses were derived rather than directly assessed
(Heath et al., 2011), using METAL (Willer et al., 2010). We
weighted meta-analyses by sample size and direction of effect
because MQLS does not generate standard errors. Many markers
are nonindependent due to LD, so we assessed the 274 replication
SNPs for independence using SNAP (Johnson et al., 2008) to deter-
mine the number of independent tests.

InvertebrateMO Studies

C. elegans Studies. A single, continuous acute exposure of C. el-
egans to 400 mM exogenous EtOH yields an internal concentration
of 40 to 50 mM (Alaimo et al., 2012) (~200 mg/dl, within the range
observed in humans after heavy drinking (Bond et al., 2010)). A
concentration-dependent slowing of locomotion at 10-minute expo-
sure (measuring initial sensitivity) is followed at ~30 minutes by an
increase in speed of locomotion (measuring AFT) (Davies et al.,
2003, 2004) despite an increase in the internal tissue concentration
of EtOH (Alaimo et al., 2012). Both measures can be independently
affected by the loss of individual genes (Bettinger et al., 2012; Bhan-
dari et al., 2012; Davies et al., 2003, 2004; Kapfhamer et al., 2008;
Mathies et al., 2015).

C. elegans Strains—C. elegans strains were maintained as previ-
ously described (Brenner, 1974). Strains used in these studies were
wild-type N2 (var. Bristol), RB1603 klf-3(ok1975), TR2170 unc-68
(r1161), and TR2171 unc-68(r1162).

RNAi Treatment—RNA interference (RNAi) induction and
locomotion assays were performed as previously described
(Kamath et al., 2001). Briefly, cultures of bacteria containing
RNAi vectors corresponding to genes C16E9.1, C18H7.1, cutl-23,
or empty vector (L4440) (Geneservice, Cambridge, UK) were pla-
ted on nematode growth media (NGM) plates with 1 mM IPTG,
and allowed to grow at room temperature for 24 hours. Three to
5 fourth larval stage wild-type N2 worms were placed on the
seeded plates and incubated at 20°C and allowed to produce F1
progeny, which were maintained on RNAi cultures to adulthood.
First-day adult F1 progeny were collected and subjected to
behavioral analysis.
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Locomotion Tracking—Locomotion was assayed as previously
described (Bettinger et al., 2012). Ten worms for each strain
were tested in each assay, and we calculate the average of the
speeds of the 10 worms in each iteration of the assay (n = 1).
Comparisons were only made of animals tested simultaneously
on the same plates. Briefly, NGM-containing plates were dried
for 2 hours with lids off at 37°C, and then, copper rings were
embedded in the surface of the plate to act as corrals. EtOH
was added to the plates to a final concentration of 0 or
400 mM, the plates were sealed, and the EtOH was allowed to
equilibrate for 2 hours. Worms were placed in the corrals and
2-minute movies were captured at 10 and 30 minutes of expo-
sure using a Retiga 4000R camera (QImaging, Surrey, BC,
Canada) on an Olympus SZX-7 microscope (Center Valley, PA).
Movies were analyzed using ImagePro Plus (6.2) (MediaCyber-
netics, Rockville, MD) software. We derived 2 measures of
EtOH response: initial sensitivity (depression of speed of locomo-
tion at 10-minute exposure compared to the same strain
untreated) and AFT (increase in speed at 30-minute exposure
compared to the same strain at 10 minutes).

Statistical Analysis—Comparisons were made of animals tested
in identical conditions. Relative speeds (treated/untreated 9 100)
were used in comparisons. We used Prism 5.0 software (GraphPad,
La Jolla, CA) to perform 2-way ANOVA comparisons across time
of EtOH exposure and genotype with Bonferroni post hoc compar-
isons at each time point to determine differences between genotypes.
Development of AFT was tested using a paired 2-tailed t-test.

Drosophila Studies. Only 1 candidate locus (RYR3) had both a
Drosophila ortholog and genetic reagents available. Detailed meth-
ods for Drosophila studies are provided in Supplementary Materials
andMethods in Appendix S1.

Mammalian MO Studies

Mouse Studies. We queried selected candidate genes for local-
ization to EtOH behavioral quantitative trait locus (QTL) inter-
vals using the Mouse Genome Informatics (MGI) tool set. We
queried published expression microarray and EtOH behavioral
response data sets within the curated GeneNetwork web-based
resource of genetic, phenotypic, and genomic data for evidence
that basal candidate gene expression correlated with measured
EtOH behavioral phenotypes in C57BL/6J 9 DBA/2J BXD
mouse lines. All expression data were from Affymetrix M430
microarrays (Affymetrix, Santa Clara, CA). We included saline or
air-treated BXD control whole brain (GN113), nucleus accumbens
(NAc) (GN156), prefrontal cortex (PFC) (GN135), and ventral
tegmental area (VTA) (GN228) (Wolen et al., 2012).

We used the single Col6a3 probeset (1424131_at_A). We selected
the most representative probeset based on GeneNetwork quality
scores for Ryr3 (1427427_at_A) and Klf12 (1455521_at; we also
assessed the better of the 2 probesets showing Klf12 EtOH response
(Wolen et al., 2012), 1439847_s_at). Robust multi-array average
normalized expression data were used for Spearman rank correla-
tion analyses with EtOH behavioral phenotypes. Identifiers of
probesets and phenotypes used for specific analyses are shown in
Results and in Fig. 5. Expression and phenotype data archived in
GeneNetwork were produced in different laboratories and at differ-
ent times; as a result, the N of BXD lines tested in our analyses var-
ies across the tissues and phenotypes analyzed. We use the
GeneNetwork default setting to retrieve the top 1,000 correlations
for each probeset 9 tissue pair.

A total of 5,134 traits are present in GeneNetwork, but they
are not all independent because of both the multiple related
measures made within studies and the partial overlap of BXD
lines used between studies. GeneNetwork developers suggest that

Bonferroni correction for 200 independent traits approximates
an FDR of 0.2 based on data in (Wang et al., 2016)). We apply
a more stringent correction for 2,000 independent tests to main-
tain a conservative significance threshold of 0.05/2,000 = 2.5E-
05.

Rat Studies. We studied the effect of pharmacological antago-
nism of ryanodine receptors on EtOH self-administration in rats.
Detailed methods for this single rat study are provided in Supple-
mentaryMaterials andMethods in Appendix S1.

Human Postmortem Studies

PFC and NAc tissues from 41 AD cases and 41 controls
were provided by the New South Wales Tissue Resource Centre.
Age, sex, ethnicity, brain weight, brain pH, postmortem interval
(PMI), tissue hemisphere, cause of death, blood toxicology,
smoking status, neuropathology, and liver pathology were pro-
vided for each subject. Confounding effects of all these covari-
ates were controlled by analysis of covariance (ANCOVA;
Table S7). Total RNA was isolated from 100 mg frozen tissue
using the mirVana-PARIS kit (Life Technologies, Carlsbad, CA)
following manufacturer’s protocols. RNA concentration was
measured using the Quant-iT Broad Range RNA Assay kit
(Life Technologies). The RNA integrity number (RIN) was mea-
sured on the Agilent 2100 Bioanalyzer (Agilent Technologies,
Inc., Santa Clara, CA). Quantitative real-time PCR (qRT-PCR)
analyses were performed as previously described using SYBR
Green (Riley et al., 2010) with primers spanning the
LOC339975 exon 2 to 3 junction. Samples with missing geno-
types and outliers (�2 standard deviations [SD] from the mean)
were omitted from further analysis.

RESULTS

Irish Case/Control Discovery Data Set

After all QC, the data set consisted of 706 probands and
affected siblings, 464 (65.7%) male and 242 (34.3%) female,
mean age 41.8 (SD 9.8) years, and 1,748 population controls,
755 (43.2%) male and 993 (56.8%) female, mean age 37.2
(SD 12.6) years, with 8,344,348 SNPs for analysis. The Man-
hattan plot for case/control analysis of AD is shown in
Fig. 1. The QQ plot for the final data set after imputation
and all QC is shown in Fig. 2.

Variation inCOL6A3 is Associated with AD

In single marker analyses, 14 SNPs defining 2 independent
genomic intervals achieve genomewide significance, 13
within the collagen VI A3 (COL6A3) gene on chromosome
2q37.2 (Fig. 3A), including the most significant SNP in our
study, rs2256485, p = 6.17 9 10�9 (Table 1). COL6A3
encodes an extracellular matrix (ECM) protein expressed in
brain. Although there is no prior human association evidence
for this gene, remodeling of the ECM has been strongly
implicated in response to various drugs of abuse (Lubbers
et al., 2014). The second interval is defined by a single SNP
(rs150268941, p = 1.65 9 10�8, Table 1) on chromosome
3q26.31 (Fig. S5A).
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Additional Loci are Suggestively Associated with AD

A total of 28 SNPs in 7 LD-independent loci had q < 0.1
(Table 1). These include SNPs in 2 loci with prior support
from both human and MO alcohol studies (the ryanodine
receptor 3 [RYR3] gene, chr. 15q14, rs4780153, p = 1.47 9

10�7, Fig. 3B, and the Krueppel-like factor 12 [KLF12] gene,
chr. 13q22.1, rs117695261, p = 6.63 9 10�8, Fig. 3C). Four
additional regions with suggestive signals are shown in
Fig. S5B–E.
If the Fisher’s combined probability test from GWAS3D

provided increased evidence based on potential function of
the test SNP or a SNP in LD with the test SNP, the com-
bined p-value is also shown in Table 1. Of the 28 SNPs with
q < 0.1 input to GWAS3D, 14 showed more significant com-
bined p-values after incorporating evidence of function. Of
these 14 results, 12 were based on evidence of functional
impact for the GWAS target SNP itself. For the 2 sites where
the increased evidence was based on putative functional
impact of a variant in LD with the GWAS signal, the LD
SNP rsID, r2 with the GWAS target and functional evidence
are shown. GWAS3D analysis yields strongly enhanced sig-
nals in COL6A3 (rs2646265: p = 1.47 9 10�8, combined p
= 1.40 9 10�12; rs2256485: r2=1 with rs2646265, p = 6.17
9 10�9, combined p = 6.18 9 10�13) and RYR3 (rs4780153:

r2=0.867 with rs2076954, p = 1.47 9 10�7, combined p =
7.92 9 10�10).
The signals at 3q26.31 (Fig. S5A) and KLF12 (Fig. 3C)

are with single imputed SNPs of low minor allele frequency
(MAF). In 1000 Genomes Phase 3 data from U.K. subjects
(GBR, British residents of England and Scotland),
rs117695261 (MAF 0.03) in KLF12 has no r2>0.2 with any
other SNP, consistent with the lack of correlated signals in
Irish subjects. By contrast, rs150268941 on 3q26.31 is tagged
by rs148750402, which was imputed and analyzed in our
sample (0.034, p = 0.00147, q = 0.754464). Direct genotyp-
ing of rs150268941 also did not support the observed associa-
tion (see Appendix S1), and we did not consider the
chromosome 3q26.1 region further.

Human Replication

A total of 274 SNPs had discovery q < 0.3, and were
included in replication. SNAP analysis indicated that 121
represent LD-independent tests, setting replication signifi-
cance at 0.05/121 = 0.0004. Lookup replication and meta-
analysis results arranged by chromosome and base pair are
also shown for all 28 SNPs with q < 0.1 in Table 1. Table S1
shows these results for all 274 SNPs with q < 0.3. No

Fig. 1. Manhattan plot for case/control analysis of alcohol dependence. Horizontal red line indicates genomewide significance (5 9 10�8).
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individual SNP achieved p < 0.0004 in any sample. In meta-
analysis of the 4 case–control samples, 1 SNP in a second
novel locus, the long noncoding RNA (lncRNA) gene
LOC339975 showed a GWS signal (chr. 4q35.2, rs11726136,
p = 7.52 9 10�7, q = 0.149 in the discovery sample, Fig. 3D,
and GWS p = 4.20 9 10�8 in meta-analysis of the 4 case/
control samples, Table 1 and Table S1). Because of differ-
ences in ascertainment and severity of affection, we per-
formed replication analyses including the Australian
population sample separately; this signal was not significant
when the Australian sample was included (Table S1).

We also assessed evidence in our discovery data for asso-
ciation with loci identified in prior AD GWAS in subjects
of European ancestry. We detect modest signals in PECR
(minimum p = 0.0017), AUTS2 (minimum p = 0.0009), and
ADH1B (minimum p = 0.00166), but none of these signals
are with the SNPs originally reported (Table S2). We detect
no evidence of signal in c15orf53 (minimum p = 0.2058).

Secondary Analyses

Results of secondary analyses of discovery GWAS data
are shown in Table S3 (gene-based analyses), Fig. S6 and

Fig. 2. QQ plot for final postimputation data set after all quality control
and exclusions. Gray shading indicates 95% confidence interval for
expected values. The postimputation lambda (1.046) and sample size-
standardized lambda1000 (1.045) indicate there is little inflation of test
statistics.
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Table S4 (network analyses) and Table S5 (geneset analyses).
Gene-based analyses assess over representation of case–con-
trol allele frequency differences in all SNPs within defined
genic regions (with LD pruning or weighting as described in
Supplementary Materials and Methods in Appendix S1).
The hybrid set-based test incorporated in Knowledge-Based
Mining System for Genome-Wide Genetic Studies (KGG)
shows strong gene-based association of AD with COL6A3
(p = 7.30 9 10�9, q = 0.00016), RYR3 (p = 2.62 9 10�7,
q = 0.0029), and LOC339975 (p = 5.31 9 10�6, q = 0.0248)
(Table S3).

Selection for Functional Studies

We undertook functional studies of 4 candidate loci,
COL6A3, and LOC339975 based on the GWS signals in dis-
covery or replication analyses and KLF12 and RYR3 based
on discovery q < 0.1 and prior evidence of implicating these
loci in alcohol-related phenotypes (reviewed below). We used
established behavioral paradigms to test orthologs of
COL6A3, KLF12, and RYR3 for effects on behavioral
responses to EtOH in C. elegans and Drosophila where
orthologous genes were present in the models and genetic
reagents and information were available. We analyzed corre-
lation between brain gene expression and alcohol-related
phenotypes in BXD mouse data for all 3 genes. All these
studies are summarized in Table 2, and we report here the
results of all studies performed. We additionally tested the
effect of the ryanodine receptor antagonist dantrolene on
EtOH self-administration in rats. The fourth gene,
LOC339975, is primate-specific and was taken forward for
study in human postmortem brain.

COL6A3: Regulation of EtOH Sensitivity in C. elegans and
Correlation with Handling-Induced Convulsions in Mice

We tested 3 C. elegans genes with equally high orthol-
ogy to human COL6A3 for effects on initial sensitivity
and AFT. RNAi knockdown of C16E9.1 decreased initial
sensitivity compared to control RNAi animals (p < 0.05,
Fig. 4A) but did not affect the development of AFT.
RNAi knockdown of the other COL6A3 orthologs
(C18H7.1 and cutl-23) produced no significant differences
in either measure (Fig. 4B,C). Statistics and uncorrected
basal speed data for all C. elegans experiments are shown
in Table S6.

In mice, Col6a3 is located within the Alcw5 QTL interval
(MGI:3037048) for handling-induced convulsions (HIC) fol-
lowing 72-hour EtOH vapor exposure (Bergeson et al.,
2003). The Alcw5 QTL maps to 39.16 centiMorgans (cM) on
mouse chromosome 1, with a support interval of 28 to
47 cM. After converting cM to megabase pairs (Mb) for the
latest version of the mouse genome (GRCm38/mm10), this
yields a physical location of the Alcw5 QTL peak of
75.57 Mb and a QTL support interval of 62.12 to

107.66 Mb. Col6a3 is located at mouse chr1:90766860–
90843971, within the defined Alcw5 QTL support interval.

In GeneNetwork, the strongest correlation observed for
mouse Col6a3 basal whole brain expression (GN113, probe-
set 1424131_at_A) is with total HIC score (sum of baseline
subtracted HIC at 4, 6, and 7 hours) after 4 g/kg IP EtOH in
males (Philip et al., 2010) (trait 11,382, correlation rank = 1,
rho = 0.959, p = 1.05 9 10�9, N = 13 strains, Fig. 5A),
which surpasses our Bonferroni-corrected significance level
of p = 2.5 9 10�5. HIC at 7 hours in males (trait 11,380,
correlation rank = 2, rho = 0.835, p = 3.11 9 10�6, N = 18
strains) and in males and females (trait 11,894, correlation
rank = 3, rho = 0.780, p = 5.11 9 10�5, N = 18 strains)
(Philip et al., 2010) are also strongly correlated with Col6a3
expression, and all 3 HIC measures are highly correlated
(phenotypic rho = 0.91 to 0.95). Col6a3 expression corre-
lated negatively with 2-bottle choice EtOH preference (Phil-
lips et al., 1994) (trait 10,479, correlation rank = 67,
rho = �0.569, p = 0.0124, N = 18 strains, Fig. 5B). While
this is not significant after multiple test correction, it is con-
sistent with the expectation that factors increasing HIC will
decrease voluntary consumption (Metten et al., 1998).

KLF12: Regulation of AFT to EtOH inC. elegans and Gene
Expression Correlation with Locomotor Activity inMice

There is significant prior evidence for a role of KLF12 in
EtOH-response behaviors across species. In BXD mice,
Klf12 is regulated by acute EtOH in PFC, NAc, and VTA,
and is a hub in a network of EtOH-responsive genes (Wolen
et al., 2012). In humans, KLF12 acts in combination with
the co-repressor CTBP1 (Schuierer et al., 2001), and inC. el-
egans, the ctbp-1 gene is required for the development of
AFT (Bettinger et al., 2012). The closest C. elegans ortholog
to human KLF12 is klf-3, and this evidence collectively sug-
gests KLF-3 is likely to act together with CTBP-1 to regulate
AFT in worms.

We tested a strong loss-of-function allele in klf-3. There
was no difference in initial sensitivity between wild-type N2
and klf-3(ok1975) mutants (Fig. 4D). While wild-type N2
animals demonstrated normal AFT at 30 minutes, klf-3
mutants failed to develop AFT (Fig. 4D, t-test of degree of
speed recovery between 10 and 30 minutes, 400 mM EtOH:
N2 versus klf-3(ok1975), t3 = 8.99, p < 0.001). These data
strongly suggest that the transcriptional regulation provided
by KLF-3 is required for the development of AFT in worms.

Based on patterns of regulation of mouse Klf12 by EtOH
(Wolen et al., 2012), we analyzed correlation between basal
Klf12 expression in mouse PFC (GN135), NAc (GN156),
VTA (GN228), and whole brain (GN113) data sets and
BXD panel phenotypes in GeneNetwork. The strongest cor-
relations observed for basal Klf12 expression in PFC
(GN135, probeset 1455521_at) were with locomotor activity
0 to 5 minutes (trait 11,708, correlation rank = 1,
rho = 0.756, p = 1.69 9 10�5, N = 22 strains, Fig. 5C) and
0 to 20 minutes (trait 11,705, correlation rank = 3,
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rho = 0.747, p = 2.54 9 10�5, N = 22 strains) after 2.25 g/
kg IP EtOH in females (Philip et al., 2010). The first result
remains significant, and the second falls just below signifi-
cance after Bonferroni correction. Basal Klf12 expression in
mouse NAc (GN156, probeset 1439847_s_at) was positively
correlated with AFT (Kirstein et al., 2002) (trait 10,348, cor-
relation rank = 29, rho = 0.560, p = 0.003, N = 25 strains,
Fig. 5D). While not significant after Bonferroni correction,
this is consistent with the failure to develop AFT in C. ele-
gans klf-3mutants.

RYR3: Regulation of Initial Sensitivity to EtOH in
C. elegans, Rapid Tolerance to EtOH inDrosophila, and
Motivation to Self-Administer Alcohol inRats

Previous studies have implicated ryanodine receptors
(RyR) in EtOH phenotypes: In humans, RYR3 was impli-
cated in a GWAS of alcohol response (Joslyn et al., 2010).
Ryr1 and Ryr2 up-regulation in mouse brain is observed fol-
lowing acute exposure to multiple drugs including alcohol
(Kurokawa et al., 2010, 2013) and behavioral changes like
conditioned place preference and withdrawal expected fol-
lowing acute exposure are blocked by the RyR antagonist
dantrolene (Kurokawa et al., 2010, 2013).

C. elegans has 1 RyR gene, unc-68. We tested the effect of
EtOH on 2 strains carrying different unc-68mutations (r1161
and r1162). Loss of unc-68 confers reduced sensitivity to
EtOH (minimum p < 0.001 for r1162, Fig. 4E, F). We also
observed consistent effects of mutations in 2 additional genes

with products involved in calcium regulation and known to
interact with UNC-68 (Supplementary Materials and Meth-
ods, Supplementary Results, and Fig. S7 in Appendix S1).

There is a single RYR3 ortholog in Drosophila, RyR. We
found that 2 insertional mutations that cause partial loss of
function in RyR reduce the development of rapid tolerance
to EtOH with no obvious effects on initial sensitivity (Sup-
plementary Materials and Methods, Supplementary Results
and Fig. S8 in Appendix S1).

The mouse Ryr3 gene is localized to the support intervals
for a complex group of EtOH behavioral QTL mapped to
Chr 2 but Ryr3 basal whole brain expression (GN113; probe-
set 1427427_at) is not strongly correlated with EtOH-related
phenotypes.

The availability of dantrolene, a pharmacological
antagonist of ryanodine receptors, allowed us to assess
the effect of antagonism of RyRs on the complex behav-
ior of EtOH self-administration in rats. We found that in
rats, dantrolene dose dependently reduced motivation to
self-administer EtOH after 50 contiguous days of chro-
nic EtOH self-administration (Supplementary Materials
and Methods, Supplementary Results, and Fig. S9 in
Appendix S1).

rs11726136 Genotype Alters LOC339975 Expression in
Human NAc

LOC339975 shows homology only with sequences from
other primates. To assess the potential functional impact of
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Fig. 4. Mutations in Caenorhabditis elegans orthologs of human candidate genes cause ethanol (EtOH)-response phenotypes. Speed of locomotion
wasmeasured at 10 and 30 minutes, and expressed as a percent of the untreated control speed. Control worms were tested simultaneously on the same
plates. Worms were treated with 400 mM exogenous EtOH. The waxy cuticle of worms excludes most of the exogenous EtOH; tissue concentrations are
approximately 12% of the exogenous dose (~48 mM). (A, B, C) RNAi-induced gene knockdown reduced sensitivity to EtOH for C16E9.1 (a COL6A3
ortholog) but not for 2 other orthologous genes relative to untreated worms. (D) Loss of function of the KLF12 ortholog, klf-3, prevented the development
of acute functional tolerance between the 10- and 30-minute time points relative to wild-type N2. (E, F) unc-68mutant animals demonstrate reduced sen-
sitivity to EtOH relative to wild-type N2. Statistical significance is shown for 2-way ANOVA followed by post hoc comparisons across genotypes
(*p < 0.05, **p < 0.01).
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alleles at rs11726136, we therefore tested AD case and con-
trol postmortem tissue from PFC and NAc for differences in
LOC339975 expression by clinical status or genotype. The
final numbers available for analysis were for PFC, 28 cases
and 30 controls and 50 reference allele T/T and 5 T/G geno-
types, and for NAc, 34 cases and 35 controls and 58 T/T and
7 T/G genotypes (Table S7).
We included age, sex, ethnicity, brain weight, brain pH,

PMI, tissue hemisphere, cause of death, blood toxicology,
smoking status, neuropathology, and liver pathology as
covariates in analysis. Neuropathology and brain weight
were both significantly associated with expression level in the
NAc; no covariates were associated with expression level in

the PFC (Table S7). We detected no difference in expression
level between AD cases and controls in either NAc
(p = 0.75) or PFC (p = 0.23) (Fig. 6A,B and Table S7A,B).
After controlling for covariates, expression of LOC339975 is
significantly reduced in carriers of the associated nonrefer-
ence allele in NAc (p = 0.003, Fig. 6C, Table S7C) but did
not differ by genotype in PFC (p = 0.54, Fig. 6D,
Table S7D). Alternative regulation in NAc and PFC is con-
sistent with the presence of several distinct transcription fac-
tor binding sites upstream of lncRNA genes (Alam et al.,
2014). Although we do not detect case/control differences in
expression, our data suggest the associated allele of
rs11726136 has functional consequence based on the reduced

Fig. 5. Bioinformatic analysis of correlation of Col6a3, Klf12, or Ryr3 expression with ethanol (EtOH) behaviors in C57BL/6J x DBA/2J recombinant
inbred (BXD) mouse lines. The GeneNetwork (GN) web-based analysis platform was used to identify correlations between basal expression levels of
Col6a3, Klf12, or Ryr3 and EtOH behaviors. Panels A–D display Spearman ranked order correlations between microarray gene expression (x-axis) and
behavioral phenotypes (y-axis).Col6a3 (probeset 1424131_at) in GN113 whole brain expression data set showed significant positive correlation with total
handling-induced convulsion (HIC) score (sum of baseline subtracted HIC at 4, 6 and 7 hours) after 4 g/kg intraperitoneal (IP) EtOH in males (GN record
11382; Panel A) and negative correlation with EtOH 2-bottle choice voluntary consumption (GN record 10479; Panel B). Klf12 basal expression in pre-
frontal cortex (GN135, probeset 1455521_at) was significantly positively correlated with locomotor activity 0 to 5 minutes after 2.25 g/kg IP EtOH (GN
record 11708; Panel C) and in nucleus accumbens (GN156, probeset 1439827_s_at) was positively correlated with EtOH acute functional tolerance (GN
record 10348; Panel D).
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LOC339975 expression observed in the NAc in heterozy-
gotes.

DISCUSSION

We identified 2 novel GWS association signals in
COL6A3 and LOC339975, and suggestive signals in a
number of loci, including 2 genes with prior support,
KLF12 and RYR3. COL6A3, RYR3, and LOC339975 are
further supported by gene-based analyses (Table S3). We
detect evidence of human replication only for LOC339975
but we observe consistent evidence across multiple MOs
that COL6A3, KLF12, and RYR3 orthologs modulate
behavioral response to EtOH. Human postmortem studies
show that the AD-associated allele reduces LOC339975
expression in NAc.

Collagen VI A3 (COL6A3)

Collagen IV (Joslyn et al., 2010) and VIII (Edenberg
et al., 2010) genes were implicated in EtOH response and

AD. COL6A3 is located in a QTL interval for alcohol with-
drawal identified in the IASPSAD sample (Kuo et al., 2006).
Although this signal did not replicate, our GWS association
with potentially functional SNPs (GWAS3D results,
Table 1) is supported by the reduced sensitivity after RNAi
knockdown in C. elegans (Fig. 4A), mapping to the Alcw5
QTL for HIC in mice and the strong correlation between
expression and HIC in BXD lines (Fig. 5A). COL6A3
encodes a component of the ECM, and there is mounting
evidence (Lubbers et al., 2014) that multiple substances of
abuse increase ECM remodeling and that remodeling is
required for the expected behavioral changes following expo-
sure. EtOH dose dependently induces tissue plasminogen
activator (tPA), required for ECM remodeling, which
enhances EtOH reward (Bahi and Dreyer, 2012). With-
drawal seizures are reduced in tPA-deficient mice following
chronic EtOH administration (Pawlak et al., 2005). Inhibi-
tion of proteolytic enzymes that degrade the ECM block
escalated responding during acute withdrawal in dependent
animals (Smith et al., 2011). Collectively, these results argue
that ECM structural components (like COL6A3) and

Fig. 6. Expression of long noncoding RNA LOC339975 in human postmortem nucleus accumbens (NAc) and dorsolateral prefrontal cortex (PFC)
stratified by diagnostic status and by genotype. Control mean RIN was 5.6 (SD = 1.8), case mean RIN was 5.8 (SD = 1.5), and did not differ between
cases and controls (Mann–Whitney p = 0.78). Samples that did not amplify (NAc, N = 13; PFC, N = 24) and 4 samples missing rs11726136 genotypes
were excluded. Case:control comparisons of LOC339975 expression in (A) 34 case and 35 control NAc samples, and (B) 28 case and 30 control PFC
samples. There were no significant differences in expression between diagnostic groups. Genotypic comparisons of LOC339975 expression in (C) 58 ref-
erence (T/T) homozygote and 7 T/G heterozygote NAc samples, and (D) 50 T/T homozygote and 5 T/G heterozygote PFC samples. While no significant
differences in expression by genotype were observed in the PFC, NAc expression was significantly reduced in carriers of the associated nonreference G
allele compared to reference allele homozygotes (F = 9.72, p = 0.003).
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remodeling enzymes are important determinants of EtOH-
induced neuroadaptation. We hypothesize that Col6a3 may
underlie the Alcw5 HIC QTL.

Krueppel-Like Factor 12 (KLF12)

Klf12 is regulated by acute EtOH in mouse brain and is a
hub in a network of EtOH-responsive genes (Wolen et al.,
2012) including many implicated in EtOH response (e.g.,
Grm3 (Gass and Olive, 2008), Kcnma1 (Davies et al., 2003),
and Gsk3b (French and Heberlein, 2009)). Orthologs of
KLF12 (Fig. 4D) and its binding partner CTBP1 (Bettinger
et al., 2012) are required for the development of AFT in
C. elegans. The targets of KLF12 regulation are not yet
known, but the convergent evidence argues strongly they are
central to acute EtOH response and potentially relevant to
AD risk.

Ryanodine Receptor 3 (RYR3)

RYR3 was implicated in a GWAS of EtOH response
(Joslyn et al., 2010) and our observed association may be
driven by functional SNPs (GWAS3D analysis, Table 1).
In C. elegans, loss of the single RyR gene unc-68 reduces
initial sensitivity to EtOH (Fig. 4E,F). This mutation
would be predicted to decrease intracellular Ca2+. Consis-
tent with this observation, we found that mutations in csq-
1, which would be predicted to increase intracellular Ca2+

concentration, increase initial sensitivity (Fig. S7A). Muta-
tions in the ether-a-go-go-related potassium channel gene
unc-103, which has a genetic interaction with unc-68, also
decrease sensitivity to EtOH (Fig. S7D). In Drosophila,
reduction in function of the RyR gene blunts rapid toler-
ance (Fig. S8B).
The RyR antagonist dantrolene reduces cocaine (Kuro-

kawa et al., 2011) and methamphetamine (Kurokawa
et al., 2010) induced conditioned place preference, EtOH
withdrawal symptoms (Kurokawa et al., 2013), and moti-
vation to self-administer EtOH after chronic exposure in
a dose-dependent manner in rats (Fig. S9), but these stud-
ies are limited by the nonspecificity of dantrolene, an
antagonist of both ryanodine and inositol triphosphate
receptors, the latter functioning upstream of RyR activa-
tion. In myocytes, RyRs provide the Ca2+ ions that acti-
vate BK channels (Lifshitz et al., 2011), which have
strong effects on EtOH response in vivo and in vitro
(Davies et al., 2003; Martin et al., 2008). EtOH modulates
BK channel function in a calcium-dependent manner (Liu
et al., 2008), and we hypothesize that RyRs may be
involved in this calcium-dependent modulation of BK
channel function.

lncRNA LOC339975

lncRNA are of emerging importance in the function and
dysfunction of the brain (Roberts et al., 2014). Expression of

the estimated 25 to 50K lncRNA genes in the human genome
(Hangauer et al., 2013) is widespread in the brain and highly
regulated (Guttman et al., 2011; Mercer et al., 2008).
lncRNA are implicated in multiple neurodevelopmental,
neurodegenerative, and neuropsychiatric diseases, including
schizophrenia (Barry et al., 2014), Alzheimer’s (Faghihi
et al., 2008), autism (Kerin et al., 2012), and neuronal
excitability and epilepsy (Barry et al., 2017). A recent GWAS
of AD detected GWS association in the lncRNA
LOC100507053 (Gelernter et al., 2014). While this signal is
part of the larger ADH gene cluster signal reported and asso-
ciated SNPs could only be analyzed in African Americans
due to MAF or imputation information, LOC100507053 is
anti-sense to multiple ADH genes, and has potential to regu-
late their expression. Although the role of these transcripts
remains unclear, the growing number of reported associa-
tions argues that lncRNA genes are also important in human
health and disease. Our data suggest the associated allele of
rs11726136 may have functional consequence based on the
reduced LOC339975 expression observed in the NAc.

Limitations

Unscreened controls: While the use of unscreened controls
is common in studies of traits with low population preva-
lence, unscreened controls are not ideal for traits with the
high population prevalence of AD (Wellcome Trust Case
Control Consortium, 2007). However, the most likely impact
of this lack of screening is for a proportion of controls to be
unrecognized and phenotypically misclassified cases. This
will reduce the contrast between cases and controls, increase
type II error and reduce study power to detect effects. Impor-
tantly, the use of unscreened controls is not expected to
increase type I error and produce spurious positive results.
Lack of strong human replication: The lack of strong

human replication is a serious limitation of our study. How-
ever, nonreplication of novel signals is common in GWAS of
AD and may have several causes. Specific to our study, dif-
ferences in sampling, data production, QC, imputation, or
analysis can confound meta-analysis. The GESGA sample
was imputed to an older, smaller HapMap reference panel,
has many missing data points, and shows the least consistent
sign tests (Table 1 and Table S1). The OZALC population
sample was genotyped at multiple sites, a well-known source
of systematic genotype bias. We note that our strongest repli-
cation signals come from analyses of the 3 samples (Irish,
COGA, and Yale/Penn) with the most consistent ascertain-
ment and genotyping. More generally, this pattern of non-
replication may reflect the multiple independent domains of
risk for AD (Kendler et al., 2012), including variation in (i)
alcohol-specific physiological measures like initial sensitivity
and tolerance (Schuckit et al., 1997), (ii) brain reward cir-
cuitry implicated in substance use and other pathological
behaviors (Volkow et al., 2012), and (iii) personality traits
like internalizing and externalizing behaviors (Harford et al.,
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2013), which are unlikely to be influenced by the same genes.
As in other complex traits, these issues will be overcome pri-
marily by increasing sample size and power. Finally, as both
KLF12 and RYR3 were previously implicated in substance
phenotypes, our findings may be considered as replication
evidence for these signals.

Limited phenotypic consilience: Across our MO studies,
many different phenotypes are affected by manipulation of
candidate orthologs, with little consilience between species.
Although mammalian and invertebrate nervous systems
show extensive molecular and functional conservation (Barg-
mann, 1998; Brownlee and Fairweather, 1999) and many
drugs mediate their behavioral effects through orthologous
target proteins (Kaletta and Hengartner, 2006; Matthews
and Kopczynski, 2001), phenotypic consilience and consis-
tent direction of effect following manipulation of a specific
gene are not always observed across species (e.g., manipula-
tions of chloride intracellular channel 4 (Clic4) orthologs
altered sensitivity in flies and mice but in different directions
(Bhandari et al., 2012). There are also differences in EtOH-
response measures available for different MOs (e.g., AFT
has not been demonstrated in flies despite direct efforts to eli-
cit this response (Chan et al., 2014)). Within species, we
observe consilience across studies for effects of (1) Klf-3 and
binding partner Ctbp1 on AFT and (2) genes influencing
intracellular calcium levels on initial sensitivity in worms,
and (3) Col6a3 on HIC in mice.

CONCLUSIONS

Our combined data implicate COL6A3, KLF12, RYR3,
and LOC339975 in response to EtOH across multiple species
and/or AD risk in humans. Our data are also consistent with
prior work implicating remodeling of the ECM (COL6A3),
regulation of EtOH-responsive genes (KLF12), and regula-
tion of intracellular calcium release (RYR3) in response to
EtOH.
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Additional Supporting Information may be found online
in the supporting information tab for this article:
Appendix S1. Supplementary information.
Fig. S1.GWAS data QC processes.
Fig. S2. Impact of BeagleCall on pre-imputation geno-

typic data quality.
Fig. S3. Post-QC Ancestry Analysis using MDS.
Fig. S4. Power of the post-QC sample of 706 AD cases

and 1,748 controls.
Fig. S5. LocusZoom plots for additional loci with individ-

ual SNPs displaying q < 0.1.
Fig. S6. GeneMania network derived from the set of 45

genes annotated for the 274 SNPs with q < 0.3.
Fig. S7. Mutations in C. elegans orthologs of genes

involved in calcium regulation cause EtOH response pheno-
types.

Fig. S8. The RyR locus and behavioral responses to EtOH
in flies.

Fig. S9.Dantrolene dose dependently reduced the motiva-
tion to self-administer EtOH.

Table S1. All 274 SNPs with q < 0.3 (p < 1 9 10�5) in
Irish AD GWAS discovery data with results of replication in
3 independent samples, and meta-analyses of independent
case/control samples, all case control samples and all sam-
ples.
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Table S2. Lookup replication of AD genomewide associa-
tion signals previously reported in samples of European des-
cent.

Table S3.Results of gene-based analyses with KGG.
Table S4. Genetic interactions between associated loci

identified in GENEMANIA network analysis.
Table S5. Results of iGSEA4GWAS analysis of signal

over representation by functionally related sets of genes for 3
significant gene sets.

Table S6. Uncorrected basal speeds and 2-way ANOVA
comparisons across time of EtOH exposure and genotype
with Bonferroni post hoc comparisons at each time point.
Development of AFT was tested using a paired 2-tailed t-
test.

Table S7. Analysis of LOC339975 expression controlling
for covariates in post mortem brain tissue.

928 ADKINS ET AL.


	Virginia Commonwealth University
	VCU Scholars Compass
	2017

	Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol-Response Behaviors in Model Organisms
	Amy E. Adkins
	Laura M. Hack
	Tim B. Bigdeli
	See next page for additional authors
	Downloaded from
	Authors


	Genomewide Association Study of Alcohol Dependence Identifies Risk Loci Altering Ethanol&#x2010;Response Behaviors in Model Organisms

