Investigating The Role of AEG-1 in Mouse Models of Pain

Bryan Mckiver
Virginia Commonwealth University

Wisam Toma

Deniz Bagdas

Devanand Sarkar

M. Imad. Damaj

Follow this and additional works at: https://scholarscompass.vcu.edu/gradposters

Part of the Medicine and Health Sciences Commons

Downloaded from

Mckiver, Bryan; Toma, Wisam; Bagdas, Deniz; Sarkar, Devanand; and Damaj, M. Imad., "Investigating The Role of AEG-1 in Mouse Models of Pain" (2020). *Graduate Research Posters*. Poster 47.
https://scholarscompass.vcu.edu/gradposters/47

This Poster is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Graduate Research Posters by an authorized administrator of VCU Scholars Compass. For more information, please contact libcompass@vcu.edu.
Introduction

• Astrocyte Elevated Gene 1 (AEG-1) was first identified as an upregulated gene in primary human fetal astrocytes infected with HIV-1 and has since been observed to have elevated expression levels in various CNS diseases.
• AEG-1 acts as a scaffold protein and mediates inflammation via direct protein-protein interaction with NF-κB.
• AEG-1 global knockout mice have been shown to be more resistant to inflammation compared to wild type littermates.
• Chemotherapy Induced Peripheral Neuropathy (CIPN) may develop in cancer patients undergoing treatment and may result in them having to switch to less effective drug regimens or causing treatment entirely.
• Current FDA approved drugs for chronic pain and neuropathy show modest efficacy and have severe side effects such as drug misuse and addiction.

Hypothesis

• AEG-1 acts as a mediator of inflammation via a NF-κB-dependent molecular mechanism. Therefore, making it a potential target for treatment in inflammatory pain.
• Therefore, we decided explore the role of AEG-1 in mouse models of Chronic Inflammatory Pain and Chemotherapy Induced Peripheral Neuropathy (CIPN).
• We hypothesized that deletion of AEG-1 gene would result in protection from noceception in our chosen mouse models of pain.

Methods

Animals:
• C57Bl6/J male and female mice, 8-14 weeks old (n = 5).
• AEG-1 WT or global knockout male and female mice on C57Bl6/J background, 8-14 weeks old (n = 6).

Models:
• Chronic Inflammatory Pain was induced via Freund’s Complete Adjuvant (CFA). Mice received 20 μl, i.pl. injections of 50% CFA or vehicle.
• Chemotherapy Induced Peripheral Neuropathy was induced via Paclitaxel (Taxol®). Mice received 8 mg/kg, i.p, injections of 50% Paclitaxel or Control at 3 days post injection cycle.

AEG-1 WT and global KO mice were given 4 periodic intraperitoneal injections of Paclitaxel in a Kolliphore solution (8 mg/kg) to model chemotherapy-induced peripheral neuropathy. AEG-1 KO mice displayed enhanced recovery from Paclitaxel-induced edema.

Results

AEG-1 WT and global KO mice were given a single intraplantar injection of 50% CFA in mineral oil to model chronic inflammatory pain. (a) AEG-1 WT mice displayed a higher degree of mechanical hypersensitivity at all time points, post injection, compared to AEG-1 KO mice. (b) AEG-1 WT mice displayed a higher degree of thermal sensitivity on day 4, post injection, compared to AEG-1 KO. (c) AEG-1 WT mice appear to show higher paw edema, measured 3 days following CFA injection, compared to AEG-1 KO mice.

Conclusion / Future

• Transgenic global knockout of AEG-1 appears to provide protection from CFA-induced mechanical hypersensitivity, thermal sensitivity, and paw edema.
• AEG-1 expression levels do not differ between C57Bl6/J mice treated with CFA or Control at 3 days post injection.
• Transgenic global knockout of AEG-1 appears to provide enhanced recovery from paclitaxel induced mechanical hypersensitivity and cold sensitivity.
• AEG-1 expression levels do not differ between C57Bl6/J mice treated with 8mg/Kg paclitaxel or Control at 3 days post injection cycle.

Future:
• Optimized IHC studies to assess AEG-1 and NF-κB protein localization in mice PAG, SpC, and DRG of various pain models.
• Performing a time course and collecting tissues at earlier time points to assess potential changes in AEG-1 expression in neuronal tissues.
• Assess the effects of analgesic drugs (such as morphine and gabapentin) on the anti-nociceptive phenotype displayed by AEG-1 KO mice.

Acknowledgements

This research was supported by the National Institutes of Health [Grant 1R01CA221260-01].

References

1 Department of Pharmacology and Toxicology, 2 Translational Research Initiative for Pain and Neuropathy at VCU, 3 Yale University School of Medicine, 4 Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298