Controlling the Morphology of Silica-Copper Oxide Nanostructures from Laser Ablation in Liquid

Mallory G. John, Katharine M. Tibbetts

Motivation
Green and sustainable way of synthesizing oxide-metal composite nanomaterials: use photons to initiate chemical reactions rather than wet chemicals as reducing and stabilizing agents.

Pulsed Laser ablation in liquid (PLAL) is a common method for generating bare-surface metal nanoparticles by focusing intense laser pulses onto the surface of a solid target immersed in liquid.¹

When the liquid contains metal ions, they may interact with the ablated clusters from the target, forming supported metal nanoparticles. This is referred to as femtosecond- Reactive Laser Ablation in Liquid (fs-RLAL), when femtosecond laser pulses are used.²

Silica-supported copper nanoparticles are valued for their catalytic activity toward various reactions such as CO₂ hydrogenation to form methane and methanol.

Characterization

Counts

<table>
<thead>
<tr>
<th>Counts</th>
<th>SIK</th>
<th>OK</th>
<th>CuL</th>
</tr>
</thead>
<tbody>
<tr>
<td>12k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4k</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2k</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Counts vs. Solution pH

Left: Representative SEM, EDS spectrum of Cu-silica-10.4 sample. Shows wt.% Si, O, and Cu quantified in samples fabricated from different pH solutions.

Right: TEM images of (a) Cu-silica-3.0, (b) Cu-silica-5.4, (c) Cu-silica-10.4. Histograms of (d) Cu-silica-5.4 and (e) Cu-silica-10.4

fs-RLAL Setup

Ablated silicon wafer immersed in aqueous Cu(NO₃)₂ solutions (2 mM) with:

- HNO₃ (pH 3.0, Cu-silica-3.0)
- no additives (pH 5.4, Cu-silica-5.4), or
- KOH (pH 10.4, Cu-silica-10.4)

to see effect of pH on final morphology.

pH-Dependent Formation

Low and medium solution pH: ablated silica clusters (oxidized silicon atoms upon interaction with water) are protonated, repel nearby Cu⁺ ions, resulting in low wt.% loading of Cu, and Cu-core/silica-shell morphology.

High solution pH: ablated silica clusters are deprotonated, attracting nearby Cu₂(OH)₂⁺⁺ clusters, generating high wt.% loading copper on silica

CO₂ Hydrogenation

> Conversion increases from 4% at 450°C to 75% at 800°C

> Selectivity toward methanol below 600°C, and selective toward methane above 600°C

References