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Individuals are exposed to chemical mixtures while carrying out everyday tasks, with 

unknown risk associated with exposure.  Given the number of resulting mixtures it is not 

economically feasible to identify or characterize all possible mixtures.  When complete dose-

response data are not available on a (candidate) mixture of concern, EPA guidelines define a 

similar mixture based on chemical composition, component proportions and expert biological 

judgment (EPA, 1986, 2000).   

Current work in this literature is by Feder et al. (2009), evaluating sufficient similarity in 

exposure to disinfection by-products of water purification using multivariate statistical
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 techniques and traditional hypothesis testing.  The work of Stork et al. (2008) introduced the 

idea of sufficient similarity in dose-response (making a connection between exposure and effect).  

They developed methods to evaluate sufficient similarity of a fully characterized reference 

mixture, with dose-response data available, and a candidate mixture with only mixing 

proportions available. A limitation of the approach is that the two mixtures must contain the 

same components.   

It is of interest to determine whether a fully characterized reference mixture 

(representative of the random process) is sufficiently similar in dose-response to a candidate 

mixture resulting from a random process.  Four similarity measures based on Euclidean distance 

are developed to aid in the evaluation of sufficient similarity in dose-response, allowing for 

mixtures to be subsets of each other.  If a reference and candidate mixture are concluded to be 

sufficiently similar in dose-response, inference about the candidate mixture can be based on the 

reference mixture.  An example is presented demonstrating that the benchmark dose (BMD) of 

the reference mixture can be used as a surrogate measure of BMD for the candidate mixture 

when the two mixtures are determined to be sufficiently similar in dose-response.  Guidelines are 

developed that enable the researcher to evaluate the performance of the proposed similarity 

measures.
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Chapter 1:  Introduction and Prospectus 
 

 

Section 1.1 Introduction 
Individuals are exposed to chemical mixtures throughout the processes of carrying out 

everyday tasks.  Whether an individual takes a drink of water from the faucet or eats a piece of 

fruit or a vegetable from the grocery store they are exposed to some type of chemical mixture.  

The particular chemical mixtures to which individuals are exposed can be thought of as the result 

of randomly occurring processes.  This process could be the application of pesticides in different 

locations, such as child care centers (Tulve et al., 2006); the disinfection of drinking water at 

different purification stations with different source waters (Bull et al., 2009); the breakdown of 

environmental estrogens and the subsequent leaching into the soil and drinking water at different 

waste sites (Vom Saal and Hughes, 2005).  Each of these random processes creates different 

chemical mixtures, which implies that individuals are exposed to different levels and different 

chemicals as a result of the different mixtures.   

Characterizing the toxicologic effect of these mixtures, particularly the effect of exposure 

to these mixtures, is of great importance with respect to risk assessment.  However, it is 

important to note that the toxicological effect of a chemical mixture depends on the toxicity of 

the components and how the components interact with each other in a dose-dependent way  
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(Gennings et al., 2004).  Given the number of mixtures generated as the result of these random 

processes, it is not economically feasible to identify or characterize all possible mixtures. 

Consider the case of mixtures of polycyclic aromatic hydrocarbons (PAHs) that can occur 

in the environment through residential heating and cooking, incinerators, and by many other 

means.  One of the suggested available approaches to PAH risk assessment is the surrogate 

approach, described in an EPA guidance document as:  

“a whole mixture approach based on the assumption that any mixture of PAHs in the 
atmosphere (or mixture of concern) is merely a dilution of a ‘surrogate’ mixture of PAHs, 
the ‘surrogate’ being a potent PAH-containing mixture that has been well characterized 
both chemically and toxicologically. Under this assumption, the risk from any PAH 
mixture of concern is directly related to the extent of this dilution. The extent of dilution 
is based on examining the ratios of several PAHs common to both the mixture of concern 
and the surrogate mixture. The surrogate approach is based on the Agency’s mixtures’ 
guideline that recognizes and endorses whole mixture approaches. Fundamental 
difficulties of this approach include the appropriate choice of a ‘surrogate’ whole mixture 
and evaluation of ‘sufficient similarity’ to the mixture of concern, based on EPA’s 
mixtures’ guidelines. Major advantages to the surrogate approach include: (1) a mixture 
(as compared to single components) is used as the reference compound, and (2) the 
composition and toxicity of the surrogate mixture as a whole is known.” (EPA, 2001) 

 

Ideally, environmental health risk assessments are conducted using dose-response data from the 

mixture of concern (Feder et al., 2009).  However, when complete dose-response data are not 

available on a (candidate) mixture of concern, EPA guidelines define a similar mixture based on 

similar chemical composition and similar component proportions, based on expert biological 

judgment (EPA, 1986, 2000).  The guidance does not provide specific direction on methods to 

approach this type of problem (Feder et al., 2009) and as Stork et al. (2008) point out, one of the 

inherent difficulties with this approach to using the concept of sufficient similarity in a whole 
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mixture approach to risk assessment is making an appropriate choice of the surrogate (reference) 

mixture. 

To this point there have been relatively few attempts at developing empirical approaches 

to evaluating sufficient similarity.  The most current work in the literature is by Feder et al. 

(2009), Bull et al. (2009) and Rice et al. (2009).  In an example evaluating sufficient similarity in 

disinfection by-products of water purification, Feder et al. (2009) present multivariate statistical 

techniques for evaluating sufficient similarity, that include utilization of Hotelling’s T2 and 

principal components analysis.  They characterize similarity with respect to process input and 

output variables.  For purposes of demonstrating how to implement their proposed method, we 

will only consider the case of assessing similarity with respect to process input variables.  

Consider that there are nine process input variables where two of the input variables are 

dichotomous, such that i=1,2 and j=1,2.  The other p=7 input variables are considered to be 

continuous response variables so that for each combination (i, j) a p-dimensional joint 

distribution exists with mean vector ijµ  and covariance matrix ijΣ .  It is assumed that  

 ~ ( , )   , 1, 2ij ij ijX MVN i jµ Σ = . (1.1) 

They then suggest that with sufficient data, distribution parameters can be estimated with a linear 

model: 

0

1   if  1
  where 

0       o.w.

1   if  1
                                              and    

0       o.w.

ij i j i j i

j

i
I J I J I

j
J

µ µ α β γ
=⎧

= + + + = ⎨
⎩

=⎧
= ⎨
⎩
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where I and J are indicator functions for the previously defined dichotomous variables.  If the 

interaction term,γ , is significant this implies that at a given level of i there is a difference in 

means at different levels of j and vice versa.  If the interaction term is not significant the model 

reduces to a main effects model where when α  and β  are both significant it implies that there is 

a difference in means within i  and j , respectively.  There is one main issue with applying this 

linear model that Feder et al. (2009) do not address.  Concluding that means are different with 

respect to “some” input variables, and i j , is not of interest in determining sufficient similarity.  

Further, failing to conclude that means are different (failing to reject the null hypothesis) does 

not imply that the means are the same (equivalent to accepting the null hypothesis).  Also, recall 

that there exists a p-dimensional joint distribution among the continuous input variables, 

implying some covariance structure exists.     

Feder et al. (2009) also consider comparing a new treatment process to a reference set of 

similar processes.  Assume that a reference set distribution exists across  and i j , and that it is 

modeled as normally distributed with mean and covariance as defined above.  Now, 

,
ij

i j
N N=∑ samples are selected from this single population of similar processes and the p-

dimensional response vector for this set of responses is ijX .  Suppose an additional treatment 

plan has a p-dimensional response vector Y  and it is desired to test the null hypothesis that the 

process that generates Y is the same as the process that generates ijX  (Feder et al., 2009).  

Assuming a common covariance matrix among X and Y, Hotelling’s T2 statistic can be used 

where Hotelling’s T2 is defined as 
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( ) ( )
1

2 11T Y X S Y X
N

−
⎡ ⎤⎛ ⎞′= − + −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 where under the null hypothesis 2T  is proportional 

to that of a central F distribution with and ( 1)p v p− − degrees of freedom 

2
, ( 1)

( 1) ~ p v p
v p T F

vp − −
− −  (Feder et al., 2009).  Similar to the situation with the linear 

model, failing to reject the null hypothesis does not imply that one can accept the null and 

conclude the means are the same.  This method does allow for determining if a joint mean vector 

is different.  However, when evaluating sufficient similarity the concept is to be able to conclude 

that  and X Y are the same. 

 The work of Stork et al. (2008) makes an attempt to evaluate the sufficient similarity of 

chemical mixtures in an empirical manner, utilizing dose-response data.  Stork et al (2008) 

propose using mixed model theory and the principle of confidence interval/region inclusion to 

test for sufficient similarity in dose-response.  Because these chemical mixtures can be thought 

of as the result of random processes, the corresponding dose-response curves can be thought of 

as representing random exposure/dilutions and this needs to be accounted for in the total 

variability in the dose-response curve.  Stork et al. (2008) suggest using a non-linear mixed 

effects model to account for the random changes in the exposure/dilutions, where the random 

effect (random coefficient), denoted as h, can be thought of as the similarity measure.  It is of 

interest to determine how much variability due to the random process is associated with mixtures 

that are sufficiently similar in dose-response. It should be noted that any cumulative distribution 

function can be used, such as the Gompertz, logistic, or exponential (this is not an exhaustive 
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list).  In evaluating risk in mixture studies it is often of interest to be able to detect a threshold.  

Stork et al. (2008) suggest a non-linear mixed effects model of the following form  

 
                    if 

( , , )  if 0
( )    if 

k th
y f t b

F th th
α γ β δ

ω ε ε β
α γ β δ β δ
+ >⎧ ⎫

= + = + <⎨ ⎬+ − ≤⎩ ⎭
 (1.2) 

where y is the response variable; [ ], , ,ω α γ β δ ′=  is a [ ]1p×  vector of unknown parameters; β is 

a parameter associated with the slope of the curve and the random coefficient; t is the total dose 

of the mixture; δ is a parameter associated with the dose-threshold of the curve; k  is a constant 

satisfying the nonlinear threshold constraint ( )k F thβ δ= = ; 1h b= +  is the random effect 

where 2~ (0, )hb N σ  so that 2~ (1, )hh N σ ; ε  are iid random errors such that [ ]1 2, , , Nε ε ε ε ′= K  is 

an N-vector assumed to follow 2(0, ) where NN R R Iσ= ; and ε and b  are assumed to be 

distributed independent of each other.  Without loss of generality, when increasing curves are 

considered, the inequalities in eq. (1.2) are switched.   

Consider the following notation and general setup presented by Stork et al (2008) to 

describe the mixtures and dose-response curves that result from some dynamic process.  Let j 

(j=1,2,…) be the number of randomly sampled mixtures where each mixture contains the same 

c(c=1,2,…) components/chemicals but for each j the mixing ratios are different; the c mixing 

ratios (proportions) for the jth mixture are 

1

2

1
where 1

j

c
j

ij
i

cj

a

a
a

a
=

⎡ ⎤
⎢ ⎥
⎢ ⎥ =⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

∑
M

; jky is the response from the 
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thk observation of the thj mixture where 1 jk n≤ ≤ ; ij ij jx a t=  is the dose of the 

( ) chemical 1thi i c≤ ≤  of the thj  mixture  where 
1

c

j ij
i

t x
=

= ∑  is the total dose of the thj  mixture; 

and j
j

N n=∑ are the total number of observations for a given dose-response curve.  Recall it is 

assumed that complete dose-response data are available on all j sampled mixtures (i.e., the data 

rich case).  In order to test if two curves are sufficiently similar in dose-response, Stork et al. 

(2008) suggest following equivalence testing logic and further presents the idea of 

reparameterizing the dose-response curve in eq. (1.2) as functions of the model parameters 

(conditional on the minimum and maximum effect parameters).  Consider D functions of the 

model parameters ( )
1( )

( )D

g
g

g

ω
ω

ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

M  where the d=1,…,D  have an intuitive meaning such as an  

 

1 0

0( )
F

ED
h

µ α δ
γ

µ
β

− ⎛ ⎞−
+⎜ ⎟

⎝ ⎠=  or  (1.3) 

 * δδ
β

=  (1.4) 

a dose-threshold.  For visualization the dose-response curve is reparameterized in two 

dimensions (D=2).  Using expert judgment, shifts of the curve associated with inappreciable 

differences representing a biologically significant region can be determined.  Let’s call these 
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shifts 
( )
( )

1 2

3 4

,

,

⎡ ⎤∆ ∆
⎢ ⎥
∆ ∆⎢ ⎥⎣ ⎦

.  Boundary curves defined by these shifts specify a region of similarity.  Stork 

et al. (2008) developed an approach to test for sufficient similarity following the principles of 

equivalence testing logic and mixed model theory (described in Chapter 2) that, when D=2, tests 

the hypothesis 

 
( ) ( ) ( ) ( )

( ) ( )
0 1 1 1 2 2 3 2 4

1 1 2 3 2 4

:  or  or  or 

:  and a

H g g g g

H g g

ω ω ω ω

ω ω

< ∆ > ∆ < ∆ > ∆

∆ ≤ ≤ ∆ ∆ ≤ ≤ ∆
 (1.5) 

In order to test the hypothesis stated in eq. (1.5) graphical methods were developed that extend 

the principles of confidence interval/region inclusion (Berger and Hsu, 1996) to confidence 

region inclusion with multidimensional hypotheses (see chapter 2 appendix).  The acceptable 

shifts define a similarity region that can be plotted and further a conservative D-dimensional 

100(1 )%α−  confidence region, for any parametric function ( )g ω , can be plotted (described in 

chapter 2 appendix).  The variance-covariance matrix of this confidence region is a function of 

the variance of the random exposure/dilution factor, 2
hσ .    If the ellipse is contained within in the 

region then the null hypothesis in eq. (1.5) can be rejected.  Berger and Hsu (1996, Theorem 4) 

argue that this is a valid levelα −  test.  When D=2 the resulting confidence region is an ellipse.  

This method is generalizable to the case when D > 2, however it becomes harder to visualize. 

The situation described above is the “ideal” data rich situation.  In the case when data are 

only available on a surrogate/reference mixture (i.e., the data poor case) Stork et al. (2008) 

describe a method that utilizes the concepts of mixed models and confidence region inclusion as 

previously described.  Consider the mixed model in eq. (1.2).  When this mixed model is fit to a 
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single dose-response curve, it is equivalent to fitting a mixed effects model with 2 0hσ =  and h=1.  

This is the same as fitting a fixed effects model to the single dose-response curve.  Again, think 

of reparameterizing the dose-response curve in terms of some parametric functions, ( )g ω , that 

have an intuitive or toxicologically relevant meaning.  Once again, shifts of the dose-response 

curve (in terms of the specified functions) associated with inappreciable differences can be 

specified through expert judgment as 
( )
( )

1 2

3 4

,

,

⎡ ⎤∆ ∆
⎢ ⎥
∆ ∆⎢ ⎥⎣ ⎦

.  These shifts create the similarity region.  Once 

the similarity region is determined, the associated D-dimensional 100(1 )%α−  confidence region 

is formed for ( )g ω  .  Recall that the variance-covariance matrix of this confidence region is a 

function of 2
hσ .  Given that there is only one dose-response curve, 2 0hσ = .  The additional 

variability that can be added to this ellipse such that it is still contained in the similarity region 

can be found by incrementing through values of 2
hσ  while holding fixed the mean parameters 

and variance estimates.  The form of this variance-covariance matrix is obtained through the zero 

order Taylor series expansion (Wolfinger and Lin, 1997) as described in the appendix of chapter 

3.  Based on the maximum size of 2
hσ , the acceptable interval ( ),L Uh h for the random 

exposure/dilution factor (the similarity measure),h, is obtained based on the similarity region 

such that 2 2
max max1  and 1L h U hh z h zσ σ= − = +  where maxz  is chosen such that at least one of the 

following holds for some acceptably small value of * 0,  1, 2,3, 4j jε > =  



 

10 

 

( )
( )
( )
( )

*
1 1 1

*
1 2 2

*
2 3 3

*
2 4 4

L

U

L

U

g h

g h

g h

g h

ω ε

ω ε

ω ε

ω ε

−∆ <

−∆ <

−∆ <

−∆ <

. 

The acceptable interval of the similarity measure is decomposed to form acceptable intervals for 

the mixture components ( ),  for 1,...,iL iUa a i c=  such that 

( ) ( )
 and 

1 1
i L i U

iL iU
i L i U i U i L

a h a ha a
a h a h a h a h

= =
+ − + −

. 

Given a randomly sampled candidate mixture, if each ( ),i iL iUa a a∈  for 1,...,i c=  then it is 

concluded that the reference and candidate mixtures are sufficiently similar in dose-response. 

 The methods of Stork et al. (2008) require calculation of 2
hσ and that all chemical 

mixtures of concern contain the same c components.  The methods proposed in the following 

chapters allow for mixtures of concern to be subsets of each other and a relationship is developed 

that does not require the calculation of 2
hσ .  Guidelines are developed that enable the researcher 

to evaluate the performance of the proposed methods. 

Section 1.2 Prospectus 
In Chapter 2 the concept of adjusting dose scale due to chemicals that are in ‘active’ and 

‘inactive’ dose ranges is explored in the data rich case when it is possible to use the “gold 

standard” test for sufficient similarity.  It is suggested to use the equivalence test, which we coin 
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the “gold standard” test in Chapter 2, as proposed by Stork et al. (2008) when complete dose-

response data are available on both the reference and candidate mixtures.   

While the multivariate statistical methods, such as principal components analysis 

presented by Bull et al. (2009) present viable techniques for the data poor case we will focus on 

advancing and extending the method proposed by Stork et al. (2008).  This method is most 

suitable in the case when there are complete data on the reference mixture and only mixing ratios 

for the candidate mixture.  This approach made advances in providing an empirical approach to 

evaluating sufficient similarity in dose-response.  However, the one inherent restriction in this 

method is that it requires the reference mixture and candidate mixture to have the same c 

chemicals in both mixtures.  The research in Chapter 3 proposes an extension to this method and 

a working example that utilizes the concept of Euclidean distance to provide a similarity 

measure, h, that can ultimately be used for the purposes of risk assessment.  Utilizing the concept 

of Euclidean distance provides for either the reference or candidate mixture being a subset of the 

other.  There are four different similarity measures presented in this research which allows for 

the measure to account for additional chemicals/components (in either mixture) that are either 

sub-threshold (in an inactive range) or at the threshold or beyond (in an active range).  This 

method provides additional flexibility by allowing for a weight matrix, W, to be used to up 

weight more potent components or down weight less potent components, for example.       

In Chapter 4, simulation studies are conducted for two cases that evaluate the properties 

of the four proposed similarity measures.  This research addresses how to characterize the 

properties of the methods described by Stork et al. (2008) as well as the proposed method in 
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Chapter 3.  Measures such as sensitivity and specificity are evaluated for the two cases that are 

presented. 

Chapter 5 addresses general technical issues that can arise throughout the process of 

evaluating sufficient similarity. How to address issues such as additivity when conducting 

simulations, power of the “gold standard” method, study design, general simulation issues, and 

issues regarding model parameterization are outlined in this chapter.   

Chapter 6 includes a discussion and summary of Chapters 2, 3, 4, and 5.  Also included 

are possible extensions to the methods presented in Chapter 3.  The Appendices include some 

additional figures and tables and the associated SAS programs.  While reading Chapters 2 and 3 

be aware that there will be some redundancy as these chapters are essentially written as stand 

alone papers.  

This research was partially supported by the National Institute of Environmental Health 

Sciences, National Institute of Health (NIEHS, NIH) training grant #T32ES007334. 
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Chapter 2 :  Testing for Sufficient Similarity:  Do Interaction and 
Dose Scale Matter? 

 

 

Section 2.1 Introduction 
 The protection of human health from adverse effects of environmental exposure to 

chemical mixtures is an important issue (Gennings et al., 2004).  Recently, interest in 

understanding the potential human health effects of exposure to chemical mixtures has increased 

due to congressional acts, such as, the Food Quality Protection Act of 1996 and the Safe 

Drinking Water Act Amendments of 1996 (Food Quality Protection Act, 1996; Safe Drinking 

Water Act Amendments, 1996).  These congressional acts direct that assessments of pesticide 

safety include consideration of the risk(s) associated with the cumulative effects of chemicals 

that have a common mechanism of toxicity and request the development of new approaches for 

studying complex chemical mixtures (Gennings et al., 2004).  The U.S. EPA has developed 

guidance and suggests procedures for conducting health risk assessment for complex chemical 

mixtures (Feder et al., 2009; U.S. EPA, 1986, 2000) and ideally these assessments are conducted 

using dose-response data from the chemical mixture of concern (Feder et al., 2009).  When 

toxicity data are not available (data poor situation) for a chemical mixture of concern, U.S. EPA 

guidelines allow risk assessment to be based on data for a surrogate mixture considered 

“sufficiently similar” in terms of chemical composition and component proportions.  As a 

supplementary approach, using statistical equivalence testing logic Stork et al. (2008) developed 
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methodology to define sufficient similarity in dose-response for mixtures of many chemicals 

containing the same components with different ratios when complete dose-response data are 

available (i.e., the data rich situation) on all mixtures of concern.  Using the method of 

confidence region inclusion as described by Stork et al. (2008), the appropriate equivalence type 

test for sufficient similarity can be conducted (Berger and Hsu, 1996).  The equivalence test 

conducted in the data rich situation is coined the “gold standard” test for sufficient similarity. 

Motivating Example 

To illustrate, consider (Gennings et al., 2004) 5 OP pesticides (acephate, chlorpyrifos, 

diazinon, dimethoate, and malathion) in a mixing ratio based on an average exposure level as 

specified by the Dietary Evaluation Exposure Model (DEEM) conducted by the U.S. EPA (Table 

2.1).  It is known that there is an interaction between malathion and the other OP pesticides 

(Gennings et al., 2004).  To evaluate potential neurotoxicity, the endpoint for this analysis was a 

dichotomized gait score: normal gait (Y=0) vs abnormal gait (Y=1). 

Consider Mixture 1 (reference mixture) which contains all five OP pesticides and 

Mixture 2 (candidate mixture) which excludes malathion.  For ease of notation in later sections 

Mixture 1 is referred to as the ‘full’ mixture and Mixture 2 as the ‘reduced’ mixture.  The full 

mixture consists of 82.5% of malathion, which is inactive alone given the dose range of the study 

(0-450 mg/kg), while the remaining 17.5% of the mixture is a mixture of four dose-responsive 

chemicals; and the reduced mixture contains only the four dose-responsive chemicals (0-78.8 

mg/kg).  This is to say that given a large enough dose, malathion could elicit an effect, however, 

given the dose range of the study it is not dose-responsive.  In fact, doses of malathion alone (0-
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500 mg/kg) yielded no effect on gait score.  Essentially malathion acts in a way that artificially 

inflates total dose as mass is added to the total dose that is not expected to elicit any response.  

However, given these two mixtures and the knowledge that malathion interacts with the other 

four chemicals, it is of interest to determine what effect, if any, malathion has on the dose-

response relationship of the other four pesticides with respect to the concept of sufficient 

similarity. 

While it is preferable for risk assessments of chemical mixtures to be based on toxicity 

and exposure (dose-response) data on the chemical mixtures of concern (Rice et al., 2009), it is 

not the actual risk assessment that is of concern in this example but how an additional chemical 

affects the dose-response curve with respect to sufficient similarity.  In practice, it is often the 

situation that one chemical mixture is a subset of the other and it is of particular interest to 

evaluate the effect the subset (or the additional chemical(s)) has on the dose-response 

relationship with respect to determining sufficient similarity.   

An important extension to the work of Stork et al. (2008) is to develop methodology such 

that sufficient similarity can be determined for a full and a reduced mixture which contains only 

a subset of the chemicals in the full mixture.  Consider the example where the full mixture has an 

additional chemical (as compared to the reduced mixture), malathion, that is not dose-responsive 

given the dose range of the study.  It may be reasonable to assume (under the assumption of no 

interaction) that a mixture of chemicals in an active dose range, such as the reduced mixture, 

should be sufficiently similar to the same mixture with the addition of a chemical that is not 

dose-responsive or is in an inactive dose range.  The following methodology follows the work of 
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Stork et al. (2008) and presents a dose adjustment factor to be utilized in testing for sufficient 

similarity in dose-response.     

Section 2.2 Methods 
It is of interest to test whether two mixtures, a full mixture and a reduced mixture, are 

sufficiently similar in dose-response; one mixture contains an additional chemical in an inactive 

dose range in a substantial quantity (i.e. one mixture is a subset of the other) that causes the dose 

scales to be significantly different.  It is assumed that this additional chemical in the mixture 

adds additional mass in terms of total dose that will shift the dose-response curve to the right, 

solely as a function of the increasing total dose.  That is, due to dose scale there might not be 

sufficient evidence to conclude that the two curves are sufficiently similar and this conclusion is 

an artifact of the differing dose scales.  This suggests that it is necessary to make an adjustment 

to the dose scales before performing an equivalence test (utilizing graphical methods and the 

concept of confidence region inclusion) to test whether the two dose-response curves are 

sufficiently similar in dose-response.  Following the methods suggested by Stork et al. (2008) 

(steps 2-5), the following steps will form the hypothesis test for sufficient similarity 

1. Rescale the total dose for the mixture with chemicals that are inactive (in an inactive 

range/subthreshold).  

2. Fit the appropriate mixed effects/random coefficients model. 

3. Fully characterize the curve as functions of the model parameters and determine the 

similarity bounds (region) based on allowable shifts of the functions of model 

parameters. 
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4. Construct a ( )100 1 %α−  confidence region for the defined functions of model 

parameters. 

5. By inspection determine if the confidence region is contained within the similarity region 

to determine if sufficient similarity can be concluded.      

Step 1 

Consider the case where there are two mixtures of interest; a full mixture and a reduced 

mixture.  The following notation is established for the reduced (red) and full (full) mixtures, 

respectively, { },  where 1,...,red i reda a i k= = , { }, where 1,...,full i fulla a i c= =  and , , and i full i reda a are 

the individual chemical proportions of each mixture.  Define the two mixtures as:  

1,1,

2,2,

,

,

 and 
0

0

fullred

fullred

red k red full

c full

aa
aa

a a a

a

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

= = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

M M

M

M

MM

 where there are c k s− =  ”placeholder” zeros in reda . Also, 

red reda t x=  and full fulla t x= .  The total dose groups for the reduced mixture are 

{ }0, 1, , , , , ,     where 0,1, ,  , =  and red red d red i red j red ij red ij redt t t j d a t x x⎡ ⎤ =⎣ ⎦L K is the dose of the thi  

component in the mixture at the thj  total dose, 0,1, ,j d= K , such that, , ,
1

k

ij red j red
i

x t
=

=∑ .  The 

total dose groups for the full mixture are 
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{ }0, 1, , , , , ,     where 0,1, ,  , =  and full full J full i full j full ij full ij fullt t t j J a t x x⎡ ⎤ =⎣ ⎦L K  is the dose of the thi  

component in the mixture at total dose, jt , such that, , ,
1

c

ij full j full
i

x t
=

=∑ .  The total dose for the full 

mixture can be rescaled by adjusting the value based on the percentage of active (i.e., dose-

responsive) chemicals in the mixture.  We will define the dose adjustment factor as the 

proportion of chemicals in the full mixture that are also in the reduced mixture, AFD ,
1

k

i full
i

a
=

=∑  

such that , _ , ,
1

k

j full adj j full i full
i

t t a
=

= ∑  is the rescaled total dose for the full mixture.  This adjustment 

attempts to bring the dose scales closer together.  The reasoning for adjusting the total dose scale 

follows the logic of Casey et al. (2004) using data described in Moser et al. (2005). 

Step 2 

 Following the logic of Stork et al. (2008) and without loss of generality, consider the 

following mixed-effects model 

 

 ( )0 1[ ] ( , , )E y f t h F htω β β= = +  (2.1) 

where y is the response variable; [ ]0 1,ω β β=  is a ( )1p×  vector of unknown model parameters 

(p=2); 0β is a parameter associated with the intercept of the curve; t is the total dose of the 

mixture; 1β is a parameter associated with the slope and the random coefficient; h is the random 

effect where 2~ (1, )hh N σ . 
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Figure 3.10.  Histogram of chemicals from 1000 simulations where the red line is the pe- 
IBMDL for candidate mixture 2. 
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Figure 3.11.  Histogram of chemicals from 1000 simulations where the red line is the pe- 
IBMDL for candidate mixture 3. 

 It is evident from the histograms in Figures 3.9-3.10 for candidate mixtures 1 and 2 that the 

pe- IBMDL,cand are adequate surrogate estimates for the IBMDL,cand as the estimates fall in the 

center of the distribution.  For candidate mixture three the pe- IBMDL,cand does not appear to 

perform as well in estimating the center of the distribution as they are in the tails of the 
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distribution (Figure 3.11).  These results are not surprising as only 0.10% of the simulated dose-

response curves for candidate mixture 3 were found to be sufficiently similar to the simulated 

reference mixture data set while roughly 99% of the simulated dose response curves for mixtures 

1 and 2 were sufficiently similar.    

Figure 3.12a Histogram for candidate 
mixture 1 

Figure 3.12b Histogram for candidate 
mixture 2 

 

Figure 3.12c Histogram for candidate 
mixture 3 

 

  Figures 3.12a-c.  Histograms of the estimates for the BMDL’s from the 100 simulations for 
each of the three candidate mixtures with the estimate of the BMDL (5.5 mg/kg; solid red line) 
from the simulated reference mixture data set. 
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 It is also of interest to view where the estimate of the BMDL,ref (5.5 mg/kg) for the 

simulated reference data set is located in relation to the distribution of the estimated BMDL,cand’s 

from the 1000 simulations (Figures 3.12a-c).  For mixtures 1 and 2, the BMDL,ref is an adequate 

surrogate for BMDL,cand as it falls in the middle of these two distributions, whereas in mixture 3 

it is in the tail.  Once again, these results are not surprising as only 0.10% of the simulated dose-

response curves for candidate mixture three were found to be sufficiently similar to the simulated 

reference mixture data set while roughly 99% of the simulated dose response curves for mixtures 

1 and 2 were sufficiently similar.   

Section 3.4 Discussion 
 The four similarity measures proposed in the methods section, based on Euclidean distance, 

demonstrate added flexibility as compared to the method proposed by Stork et al. (2008).  The 

proposed methods have the ability to account for the reference and candidate mixtures having 

differing dose scales due to one mixture being a subset of the other.  These similarity measures 

also provide the option to include different weights for each of the c chemicals.  In general, the 

weights should be decided through expert judgment based on environmentally or toxicologically 

relevant characteristics.  Perhaps one of the most convenient extensions from the work of Stork 

et al. (2008) is the relationship between ( ,L Uh h ) and the allowable percentage shifts in 

1 2( ) and ( )g gω ω as this does not require a form of the variance-covariance matrix that is a 

function of the variance parameter for the random effect and allows for use with all types of data. 

 It appears that for candidate mixtures with similarity measures roughly below 1.40 the pe- 

IBMDL,cand and BMDL,cand perform well in estimating the respective centers of the distributions 
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of IBMDL,cand’s and BMDL,cand’s when there are no dose-response data available.  Similarly, it 

would be expected that the BMDref ,  BMDL,ref  , and   pe- IBMDL,ref’s for the original reference 

mixture in part I would provide good surrogate estimates for the BMDcand, BMDL,cand , and 

IBMDL,cand’s when there are no dose-response data available (Table 3.13).  As the similarity 

measure approaches the boundary (1.65) the simulation studies suggest that in fact these 

candidate mixtures are not sufficiently similar in dose-response.  One might argue that this 

suggests the similarity bounds should possibly be tighter (i.e., the percentage shifts should not be 

so great).  However, recall that the similarity bounds are selected with biologic significance in 

mind.  If it is the case that smaller bounds are also biologically significant then it would first 

need to be determined if this similarity region contains the 95% confidence ellipse.  If the ellipse 

is not contained in the similarity region, this presents a design issue that is addressed in Chapter 

6. 

Table 3.13.  pe- IBMDL’s for the 3 candidate mixtures as obtained from the original reference 
mixture dose-response study. 

  Candidate Mixture 

Chemical  1  2  3 

Permethrin  6.97  3.59  14.28 

Cypermethrin  3.09  6.39  0.01 

B‐Cyfluthrin  3.29  4.33  0.01 

Deltamethrin  0.09  0.03  0.03 

Esfenvalerate  0.91  0.01  0.02 
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 The proposed methods demonstrated their use as far as application to risk assessment with 

use of benchmark doses.  When a candidate mixture of concern is determined to be sufficiently 

similar in dose-response to reference mixture, the benchmark dose and individual benchmark 

doses from the reference mixture can be used as surrogates for the candidate mixtures of 

concern. It is safe to assume that there exists a relationship between the observed exposure of 

children in these child care centers to these pesticides.  Given the appropriate conversion factors 

the exposure data could be compared to the benchmark doses for the purpose of determining risk. 

 Perhaps one of the most important features of the proposed similarity measures with 

respect to use in other risk assessment applications is the ability to reduce multi-dimensional data 

into a single summary measure, h, that describes where a single observation is located with 

respect to the rest of the distribution.  Furthermore, the methods described have a direct link to 

toxicity through dose-response data and calculation of the benchmark dose, which is a nice 

feature as compared to the methods of Feder et al. (2009) that refer to similarity in terms of 

characteristics of a mixture, yet with no link to toxicity. 

 One issue not addressed in this chapter is the performance of the different similarity 

measures in different settings.  The next chapter (Chapter 4) provides simulation studies to help 

characterize the properties and performance of each of the similarity measures. 
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Chapter 4:  Properties of the Similarity Measures: Studies 
Through Simulation 

 

 

Section 4.1 Introduction 
In Chapter 3 we established four different similarity measures and presented an example 

demonstrating the use of sufficient similarity in risk assessment.  However, the methods in 

Chapter 3 do not represent a true statistical test of sufficient similarity in dose-response, such as 

the gold standard test in Chapter 2, as there is no α -level established and there are no data 

available for the candidate mixtures of concern.  Rather the methods in Chapter 3 represent a 

heuristic evaluation of sufficient similarity in dose-response.  Even though the methods in 

Chapter 3 represent a statistical evaluation and not a true statistical test, it is still of interest to 

evaluate the properties of the methods.  For example, when a new type of statistical hypothesis 

test or estimator is proposed it is often of interest to determine the properties of the test or 

estimator given different constraints, such as differing variances or distributional assumptions.  

Following the same logic, we evaluate the proposed similarity measures described in Chapter 3 

in different scenarios with different constraints imposed. 

Example 

 Consider a complex chemical mixture of five pyrethroids (permethrin, cypermethrin, β-

cyfluthrin, deltamethrin, esfenvelerate) with complete dose-response data and the dose groups
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 given in Table 4.1.  This mixture is completely characterized in dose-response and for the 

purpose of risk assessment, as described in Chapter 3, can be viewed as the reference mixture 

(eventually referred to as the reduced mixture) Now, consider a candidate mixture (eventually 

referred to as the full mixture), with only mixing ratios available, that is determined to be 

sufficiently similar in dose-response.  Following the methods developed in Chapter 3, inferential 

statements about the benchmark dose (BMD) for the candidate mixture can be made based on 

this reference mixture.  That is, given the BMD for the reference mixture statements about risk 

for the candidate mixture with respect to the BMD can be based on this value. 

Table 4.1.  Mixing ratios with their respective upper and lower bounds (Stork et al., 2008) and 
dose levels of the study in (mg/kg). 

         

Total 
Dose 
Levels 
(mg/kg)

Chemical    ia     .i lowera   ,i uppera      0 

Permethrin  0.522  0.19  0.84    0.274 

Cypermethrin  0.288  0.08  0.66    1.096 

B‐cyfluthrin  0.129  0.03  0.41    2.74 

Deltamethrin  0.034  0.007  0.14    9.042 

Esfenvelerate  0.027  0.006  0.12    13.7 

         

18.084 

27.400 
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Now, assume that this reference mixture represents average mixing proportions of some random 

process, such as applying pesticides at child care centers.  It is logical to assume that the 

application process varies across child care centers with respect to the mixing ratios and the 

pesticides used. This is to say that the resulting chemical mixtures might differ slightly in 

component proportions and possibly contain additional pesticides.  For the purposes of this 

example assume it is known that either resmethrin or λ-cyhalothrin is present in addition to the 

original five pyrethroids (Table 4.2) in other child care centers in the surrounding areas.  (In this 

example the candidate/full mixtures will contain either resmethrin or λ-cyhalothrin but not both.)  

Assume that resmethrin is present in the mixture in significant proportions (0.20, 0.50, 0.65, 

0.785) such that at the highest dose level it is still subthreshold (resmethrin threshold 117, Table 

4.2; Wolansky et al., 2005) while λ-cyhalothrin is present in the mixture in negligible 

proportions (0.02, 0.07) but at the highest dose level it is at the threshold or beyond (λ-

cyhalothrin threshold 1, Table 4.2; Wolansky et al., 2005).  It is of interest to determine how well 

the proposed similarity measures perform with respect to determining sufficient similarity in 

dose-response in these two cases: 

• Case 1: one (or more) chemical(s) in an inactive dose range comprises a significant 
proportion of the mixture, and 

• Case 2: one (or more) chemical(s) in an active dose range comprise a negligible 
proportion of the mixture. 

Performance is defined by sensitivity and specificity of the proposed methods. 
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Table 4.2.   Proportion of the chemicals resmethrin and λ-cyhalothrin added to the simulated 
mixtures and their respective masses at the highest total dose group. 

Chemical    

Resmethrin 

Mass in Mixture 
at Highest Dose 
Group (mg/kg) 

0.20  6.85* 

0.50  27.40* 

0.65  50.89* 

0.785  100.04* 

λ‐cyhalothrin   

0.02  0.56 

0.07  2.06 

*Indicates that the mass at the given proportion is subthreshold. 

Recall the four distance measures ( d
t

) from Chapter 3:  

• Unadjusted Unweighted Distance (UUD; eq. (3.4))  

• Adjusted Unweighted Distance (AUD; eq. (3.5)) 

•  Unadjusted Weighted Distance (UWD; eq. (3.6)) 

• Adjusted Weighted Distance (AWD; eq. (3.7)) 

The similarity measure is one plus the distance measure, 1 dh
t

= + , and is chosen based on the 

structure of the reference and candidate mixtures (full and reduced mixtures).   
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The following summarizes when it is appropriate to utilize each measure.  The UUD 

might be used when the two mixtures have the same composition and dimension or when the 

additional chemical(s) in the full mixture are present in an inactive range but constitute a 

negligible proportion of the mixture.  The AUD is used when the additional chemical(s) in the 

full mixture are present in an inactive dose range but constitute a significant proportion of the 

mixture.  The UWD is used when the additional chemical(s) in the full mixture are present at 

threshold levels or beyond.  The AWD is used when the additional chemical(s) in the full 

mixture are present in an inactive range and weighting is needed in addition to adjusting for total 

dose. 

Section 4.2 Simulation Methods 
To be able to evaluate how well each of the proposed similarity measures perform in the 

two cases it is necessary to define the “truth” with respect to sufficient similarity in dose-

response.  This is to say it is important to know whether the curves are sufficiently similar.  One 

way to statistically determine if two mixtures are sufficiently similar in dose-response is by being 

able to perform the “gold standard” test which requires that complete dose-response data are 

available on both the reference and candidate mixtures.  However, we only have complete dose-

response data on the reference mixture (five pyrethroids data) and observed exposure data on the 

five pyrethroids of concern.  We propose to generate possible candidate mixtures by utilizing the 

observed exposure data and then use these mixtures to simulate dose-response data.  This allows 

for the gold standard test to be implemented (described in Chapter 2) as well as the evaluation of 

sufficient similarity in dose-response described in Chapter 3.  The performance of the similarity 

measures is evaluated by computing the sensitivity and specificity (defined later in the section).   
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Section 4.2.1 Generating Possible Candidate Mixtures 

  To ultimately simulate dose-response data, it is first necessary to generate possible 

candidate mixtures.  In order to generate candidate mixtures for the purpose of simulating dose-

response data and to finally evaluate the performance of the proposed similarity measures, we 

use the observed exposure data that are available on the five pyrethroids (ng/cm2).  The top 20 

observations with respect to total loading were selected to avoid dealing with observations with 

an exceedingly high proportion of readings below the limit of detection.  For the purposes of 

simulation it was assumed that the log transformation of the observed exposures were 

multivariate normal, data ~ ( , )n kX MVN µ× Σ  where n=20 and k=5.  Generating one observation 

from this distribution results in a vector of the form [ ]1 2   kx x xL .  The resulting mixture has the 

following form 1, 2, , ,

1

    where i
cand cand k cand i cand k

i
i

xa a a a
x

=

′⎡ ⎤ =⎣ ⎦
∑

L .  Simulate N=1000 candidate 

mixtures in this fashion.  Let 

1,

2,

,

cand

cand

k cand

a
a

a

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M
 be a 1k ×  vector of (chemical) components that constitute 

a candidate mixture with the constraints that 0 1ia< < for all i and 
1

1
i

k

i
a

=

=∑ .  At this point we 

have 1000 candidate mixtures of dimension 1k ×  and reference mixture of dimension 1k × .  

However, it is desired to add an additional component or subset of components of dimension 

1s×  to the candidate mixtures to create a new set of full mixtures with dimension ( ) 1k s+ × , 

where c k s= + .  Now the candidate mixtures assume the label full mixtures (with dimension 
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1c× ) and the reference mixture assumes the label reduced mixture.  Consider the following, 

candidate (full) mixture, 

1,

2,

,

1,

,

where .

full

full

k full

k full

c k s full

a

a

a c k s

a

a

+

= +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥ = +
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

M

 

For ease of calculating the mixing ratios of the (candidate) full mixtures and the associated new 

total dose groups (Section 4.2.2) the first c mixing ratios are constructed so that they are in the 

same relative proportions as in the (reference) reduced mixture and ,
1

1
c

i full
i

a
=

=∑ .  This is to say 

that  ,
,

,
1

i full
i redk c s

i full
i

a
a

a
= −

=

=

∑
; , , ,

1

k c s

i full i red i full
i

a a a
= −

=

= ∑ where , ,
1

1
k c s

i full i full
i i s

a a
= −

= ∈

= −∑ ∑ ; 

  , , ,(1 )i full i red i full
i s

a a a
∈

= −∑ .  In the case where 1s =  this reduces to 

 , , ,(1 )i full i red k fulla a a= −  (4.1) 

Section 4.2.2 Generating Total Dose Groups for the Full Mixtures 

For the purposes of conducting a Monte Carlo simulation and for the example presented here, 

suppose that 1s =  and the total dose groups for the reduced  mixture are known to be 

{ }0, 1, , , , , ,     where 0,1, ,  , =  and red red d red i red j red ij red ij redt t t j d a t x x⎡ ⎤ =⎣ ⎦L K is the dose of the 
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thi component in the mixture at the thj dose group such that, , ,
1

k

ij red j red
i

x t
=

=∑ .  In order to create 

the dose groups for the full mixture { },ij redx will be held constant for each dose group, ,j redt .  This 

is to say that we only need to find ,c fullx such that  

( )

,
,

,
1

,
,

1 , 2 , ,

, , 1 , 2 , ,

, , 1 , , 2 , , ,

1

, , ,
1

cj full
c fullc

i j
i

cj full
c full

j full j full kj full

cj full c full j full j full cj full

cj full c full j full c full j full c full cj full

c

cj full c full ij full
i

x
a

x

x
a

x x x

x a x x x

x a x a x a x

x a x

=

−

=

=

=
+ +

= + + +

= + + +

=

∑

L

L

L

( )

( )

, ,

1

, , , , ,
1

1

, , , ,
1

1

, , 1
1

, , ,
1,

, ,
,

,

 

1

where  so that
1

1

c full cj full

c

kj full k full kj full k full i j
i

c

cj full c full c full i j
i

c

c full i j c
i

cj full ij full j red
ic full

c full j red
cj full

c ful

a x

x a x a x

x a a x

a x
x x t

a

a t
x

a

−

=

−

=

−

−
=

=

+

− =

− =

= =
−

=
−

∑

∑

∑

∑
∑

( )l

 

Now, recall that we want to find ,j fullt .   

                                                      

, 1 , 2 , ( 1) , ,

1

, ,
1

, ,

       

       

j full j full j full c j full cj full

c

ij full cj full
i

j red cj full

t x x x x

x x

t x

−

−

=

= + + + +

= +

= +

∑

L
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( )

, ,
,

,1
c full j red

j red
c full

a t
t

a
= +

−
. (4.2) 

Section 4.2.3 Simulating DoseResponse Data 

Now that we have generated a set of possible full mixtures and the associated new total 

dose groups ( ,j fullt ), dose-response data can be simulated.  Generating dose-response data for the 

full (candidate) mixtures requires single chemical information such as slopes and a common 

threshold (Table 4.3 based on published data; Wolansky et al. (2005)). 
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Table 4.3.  Slopes for the individual chemicals and the common threshold parameter from the 

nonlinear exponential threshold additivity model (
1

exp( )
c

i i
i

t aµ α γ β δ
=

= + −∑ , where c is the 

number of chemicals in the model) used in the simulation studies (Wolansky et al, 2005). 

Chemical  Parameter  Estimate 

Permethrin  1β   ‐0.0139 

Cypermethrin  2β   ‐0.0554 

β‐Cyfluthrin  3β   ‐0.2686 

Deltamethrin  4β   ‐0.2364 

Esfenvalerate  5β   ‐0.4959 

Resmethrin*  6β   ‐0.002 

λ ‐cyhalothrin**  7β   ‐0.4505 

 Threshold  δ   ‐0.2359 

*Indicates the additional chemical added to the simulated candidate mixtures in the following 
proportions (0.20,0.50,0.65,0.785) 

** Indicates the additional chemical added to the simulated candidate mixtures in the following 
proportions (0.02, 0.07) 
 

To simulate the data a nonlinear model is utilized and additivity is assumed so that the model has 

the general form 

 
1

( , ,
c

i i
i

y f a tα γ β δ ε
=

= + ) +∑  (4.3) 

For each of the N full mixtures that are generated a corresponding dose-response data set is 

simulated with fixed , , ' , ' , ,  and 'i ia s s t sα γ β δ .  The ε  terms were simulated assuming constant 
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variance obtained from the mean square error of the Crofton et al. study.  For the purposes of this 

example, each simulated data set is combined with the original 5 pyrethroid data set, resulting in 

a study that has complete data for two mixtures (reference/reduced and candidate/full).  This 

implies that there are N studies created.   

Section 4.2.4 Evaluating the Performance of the Chosen Similarity Measure 

First, the appropriate percentage shift in functions of model parameters, ( )g ω , is 

determined.  Then, for each of the studies, the gold standard test (Chapter 2) is conducted 

utilizing the fact that there are complete data on both mixtures of concern.  The proposed 

methods (Chapter 3) for evaluating sufficient similarity in dose-response utilizing the different 

similarity measures is performed following the methods developed in Chapter 3.  Having both 

results allows the performance of the proposed methods to be evaluated.   

To assess how well the methods perform sensitivity and specificity are utilized.  Recall 

that sensitivity is defined as the probability that given the condition exists the test indicates that 

the condition exists; specificity is the probability that given the condition does not exist the test 

indicates that the condition does not exist (Agresti, 2002).  In our application, sensitivity is the 

conditional probability that we conclude sufficient similarity when the gold standard test 

concludes sufficient similarity and specificity is the conditional probability that we fail to 

conclude sufficient similarity when the gold standard test fails to conclude sufficient similarity.  

The 100(1 )%α−  confidence intervals for sensitivity and specificity can be determined in the 

following manner.  Consider the 2x2 table below. 
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Table 4.4.  2x2 table used to calculated sensitivity and specificity and the associated standard 
deviations. 

 

Proposed Test 

( , )L Uh h h∈      

Gold Standard  yes   No     

Yes  n11  n12  1n +  
Sensitivity = 11

1

n
n +

No  n21  n22  2n +  
Specificity = 22

2

n
n +

 

Consider each row of the table to be independent binomial distributions.  Sensitivity is 11
1|1

1

n
n

π
+

=  

and specificity is 22
2|2

2

n
n

π
+

= .  Following the logic in Agresti (2002) and Casella and Berger 

(2002) the general form of the variance for |j iπ is | |(1 )j i j i

in
π π

+

−
.  The estimate of the variance can 

then be found by plugging in the maximum likelihood estimates of the respective parameters.  

The asymptotic 100 (1 )α− % confidence interval for sensitivity is 

 11

1

n
n +

1|1 1|1
1 /2

1

ˆ ˆ(1 )
z

nα

π π
−

+

−
±   and for specificity is 

22

2

n
n +

2|2 2|2
1 /2

2

ˆ ˆ(1 )
z

nα

π π
−

+

−
±    where |ˆ j iπ are the maximum likelihood estimates.  Alternatively, 

asymmetric confidence intervals could be constructed (Agresti, 2002). 
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Section 4.3 Results 
Before the properties of the similarity measures can be assessed, it is first necessary to fit 

the appropriate non-linear model to five pyrethroid reference (reduced) dose-response data set, 

reparameterize the model, determine the similarity bounds (region), and calculate the 95% 

confidence region.  Without loss of generality consider the nonlinear exponential threshold 

model  

 
( )

                               
exp ( )       

t
h t t

α γ δ
µ

α γ β δ δ
+ ≤⎧⎪= ⎨ + − >⎪⎩

 (4.4) 

where 2~ (1, )hh N σ  is the random effect; β  is the slope parameter; δ is the dose threshold;  and 

t is total dose.  This proposed fixed effects model is fit to the five pyrethroid (reference/reduced) 

mixture data set and can be thought of as a mixed effects model where the random effect, h, has 

a mean of 1 and 2 0hσ = .  When the variance of the random effect is zero, the random effect 

model reduces to the fixed effects model.  Conditional on and α γ , the model is reparameterized 

in two dimensions as functions of the model parameters in terms of the ED(20) and ED(50).  For 

example, the ED(20) has the following form  

 

20

20

log
( )ED

µ α
γ

µ δ
β

⎛ ⎞−
⎜ ⎟
⎝ ⎠= + . (4.5) 

The resulting parameter estimates for the fitted model and the ED(20) and ED(50) are in Table 

4.5 below. 
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Table 4.5.  Parameter estimates from the fixed effects exponential threshold model for the 
simulated reference mixture dose-response data. 

Parameter 
Parameter 
Estimate 

Standard 
Error  P‐value 

β   ‐0.1113  0.02437  <.0001 

δ   1.845  1.091  0.0941 

Additional Estimates 

ED(20)  3.8494  0.8803  <.0001 

ED(50)  8.0714  1.0767  <.0001 

 

For the purpose of this example it was assumed that through expert judgment biologically 

negligible shifts are 65% shifts in both the ED(20) and ED(50).  The resulting similarity bounds 

(region) are 
( )
( )
1.35,6.35

2.82,13.32

⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦

for the 
(20)
(50)

ED
ED
⎡ ⎤
⎢ ⎥
⎣ ⎦

.  Utilizing Postulate 1 (Chapter 3), the bounds, 

( ),L Uh h  on the similarity measure, h, were determined to be (0.35,1.65). 
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  Figure 4.1.  Plot of observed simulated dose response data (dots) overlayed with the predicted 
curve (solid line) and the upper (broken/dashed line) and lower (dotted line) similarity bounds 
(resulting from 65% shifts in the ED(20) and ED(50). 

Recall the example and the two cases of interest, where resmethrin was present (added) at 

20, 50, 65, and 78.5 percent of the generated candidate mixtures and λ-cyhalothrin was present 

(added) at 2 and 7 percent of the generated candidate mixtures.  Given the chemicals that are 

added to the generated candidate mixtures and their characteristics (below threshold or beyond 

threshold) it is decided that the following similarity measures (Table 4.6) will be used to evaluate 

sufficient similarity in the different chemical/proportion scenarios for the two cases of interest. 
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Table 4.6.  Proportion of resmethrin added to the candidate mixture and the distance measure 

used to test for sufficient similarity using the similarity measure of 1 d
t

+ . 

Proportion of Resmethrin Distance Measure 

0, 0.2 Unadjusted  

Adjusted Unweighted 

0.50 Unadjusted                

Adjsuted Unweighted 

0.65 Unadjusted                    

 Adjusted Unweighted                

 Adjusted Weighted 

0.785 Unadjusted                

 Adjusted Unweighted 

Adjusted Weighted 
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Table 4.7. Proportion of λ-cyhalothrin added to the candidate mixture and the distance measure 

used to test for sufficient similarity using the similarity measure of 1 d
t

+ . 

Proportion of λ-cyhalothrin Distance Measure 

0, 0.02 Unadjusted                              

Unadjusted Weighted 

0.07 Unadjusted                             

Unadjsuted  Weighted 

   

Following the processes described in Sections 4.2.1, 4.2.2, and 4.2.3, 1000 simulation 

studies were conducted for the  generated candidate mixtures of dimension c=5, where under the 

assumption of additivity eq. (4.3) becomes 

 1

1 1

                                , 

exp   , 

c

i i
i

c c

i i i i
i i

t a

t a t a

α γ β δ
µ

α γ β δ β δ

=

= =

⎧
+ ≥⎪

⎪= ⎨
⎧ ⎫⎪ + − <⎨ ⎬⎪ ⎩ ⎭⎩

∑

∑ ∑
  

   

where c=5 and ia are the mixing ratios from the  1000 simulated candidate mixtures.  Values for 

the slopes for each proportion (β ) and the common threshold (δ ) were obtained from Wolansky 

et al (2005) (Table 4.3).  Resmethrin was then added at 20, 50, 65, and 78.5 percent of the 

simulated candidate mixtures and λ-cyhalothrin was added at 2 and 7 percent of the simulated 

candidate mixtures which implies that c=6 , t is defined in eq. (4.2), and the candidate mixtures 
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now assume the label full mixture.  For each of the six chemical/proportion combinations, 1000 

simulation studies were conducted following the steps outlined in Sections 4.2.1, 4.2.2, and 

4.2.3.  Including the case when the simulated candidate mixtures have only the original five 

pyrethroids, seven simulations were conducted with 1000 studies in each simulation. 

 For each unique study in the seven simulations, the similarity measure, h, was 

calculated; if the measure was contained in the similarity bounds then the simulated candidate 

and reference mixtures were concluded to be sufficiently similar in dose-response.  The gold 

standard test was also performed: the associated 95% confidence ellipse was calculated and 

compared to the similarity region.  If the ellipse was completely contained in the similarity 

region then it was concluded that the candidate and reference or full and reduced mixtures were 

sufficiently similar in dose-response.  The conclusion of the “gold standard” test was viewed as 

the ‘truth’.  The results from the gold standard test and the proposed test were compared using 

sensitivity.  The sensitivity and specificity for the proposed similarity measure when the 

reference and candidate mixtures had the same five chemicals was computed and compared to 

the method of Stork et al. (2008) (Table 4.8).  Recall that the method of Stork constructs 

intervals around the mixing ratios (Table 4.1) and if each mixing ratio of the candidate mixture is 

contained in their respective intervals then the reference and candidate mixtures are concluded to 

be sufficiently similar. The unweighted similarity measure (UUD) was used and the sensitivity 

was determined to be 0.70 whereas the sensitivity for the method provided by Stork et al. (2008) 

was 0.10 (Table 4.8).  The proposed similarity measure out performs the method of Stork et al. 

(2008) with respect to sensitivity, illustrating an improvement in the proposed similarity 

measure. 
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Table 4.8.  Sensitivity and specificity estimates (95% confidence intervals) for the method 
proposed by Stork et al. (2008) and for the proposed method using UUD with data simulated 
using parameter values in Table 4.3. 

Distance 
Measure  Sensitivity  Specificity

Unadjusted 
Unweighted 

0.7  
(0.64,0.76) 

0.34   
(0.31,0.38)

Stork et al. (2008) 
0.1 

(0.06,0.13) 
1 

(1.00,1.00)

 

Section 4.3.1 Analysis of Mixture with Resmethrin 

The sensitivity and specificity for the proposed similarity measures for each of the six 

chemical/proportion combinations were calculated for the suggested similarity measures (Tables 

4.9 and 4.10).  When resmethrin was added to the candidate mixtures at 20 percent, using the 

unadjusted unweighted similarity measure (UUD) the sensitivity was 0.68.  When the dose scale 

was adjusted (AUD) due to the additional chemical in the reference mixture being in a 

subthreshold range the sensitivity increased to 0.86 demonstrating that adjusting for differences 

in total dose scales (or subsets) improves the performance of the test.  When adding resmethrin 

to the candidate mixtures at 50 percent using the unadjusted unweighted similarity measure 

(UUD), the sensitivity was 0.13.  Again, adjusting the total dose scale (AUD) demonstrates an 

increase in sensitivity from 0.13 to 0.93. 

Adding resmethrin to the candidate mixtures at 65 percent and using the unadjusted 

unweighted similarity measure (UUD) the sensitivity was 0.  When the dose scale was adjusted 

(AUD) because the additional chemical in the reference mixture was in a subthreshold range did 
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not improve sensitivity, however, utilizing the adjusted weighted similarity measure (AWD) with 

the specified weight matrix  

1.01    0    0    0    0    0 w(p
0    1.01    0    0    0    0
0    0    1.01    0    0    0
0    0    0    1.01    0    0
0    0    0    0    1.01    0
0    0    0    0    0    0.95

W

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

ermethrin)    0    0    0    0    0
0    w(cypermethrin)    0    0    0    0
0    0    w( -cyfluthrin)    0    0    0
0    0    0   w(deltamethrin)    0    0
0    0    0    0    w(esfenvelerate)    0
0    

β

0    0    0    0    w(resmethrin)

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

where w( ) are the 

weights of the given chemicals, sensitivity improved to 0.61.  The weights were chosen with the 

constraint of summing to six (the number of chemicals in the full mixture) and to down weight 

resmethrin.  While the weights are subjective in nature, through practice and expert judgment 

identifying weights will become less subjective.  Adding resmethrin to the candidate mixtures at 

78.5 percent and using the unadjusted unweighted similarity measure the sensitivity was 0.  

Adjusting the dose scale and utilizing the adjusted weighted similarity measure  the weight 

matrix, W, specified did not improve the sensitivity.  If the proportion of the chemical becomes 

“too” large it is possible that a sensible weighting scheme will not exist. 

Section 4.3.2 Analysis of Mixture with λcyhalothrin 

When λ-cyhalothrin was added to the candidate mixture at 2 percent and using the 

unadjusted unweighted similarity measure (UUD) the sensitivity was 0.74.  Utilizing the 

unadjusted weighted similarity measure (UWD) with the specified weight matrix  
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0.8    0    0    0    0    0 w(permeth
0    0.8    0    0    0    0
0    0    0.8    0    0    0
0    0    0    0.8    0    0
0    0    0    0    0.8    0
0    0    0    0    0    2.0

W

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟

= =⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

rin)    0    0    0    0    0
0    w(cypermethrin)    0    0    0    0
0    0    w( -cyfluthrin)    0    0    0
0    0    0   w(deltamethrin)    0    0
0    0    0    0    w(esfenvelerate)    0
0    0    0

β

   0    0    w( -cyhalothrin)λ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

 where w( ) are the 

weights of the given chemicals, sensitivity improved to 0.89.  The weights were chosen with the 

constraint of summing to six (the number of chemicals in the full mixture) and to up-weight λ-

cyhalothrin.  Similar to the case with resmethrin the weights are subjective in nature, however, 

through practice and expert judgment identifying weights will become less subjective.  When λ-

cyhalothrin is added to the candidate mixture at 7 percent and using the unadjusted unweighted 

(UUD) similarity measure the sensitivity was 0.67.  Utilizing the unadjusted weighted similarity 

measure (UWD) with the specified weight matrix the sensitivity improved to 0.87. 
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Table 4.9.  Sensitivity and specificity for the proposed similarity measures when resmethrin is 
added to the simulated candidate mixtures and the associated 95% CI. 

Proportion 

Resmethrin 

Distance 

Measure  Sensitivity  Specificity 

0.2  Unadjusted 

0.68 

(0.61,0.74) 

0.26 

(0.23,.30) 

   Adjusted 

0.86 

(0.82,0.91) 

0.24 

(0.20,0.27)

0.5  Unadjusted 

0.13 

(0.07,0.19) 

0.43 

(0.40,0.47)

   Adjusted 

0.93 

(0.89,0.96) 

0.16 

(0.13,0.19)

0.65  Unadjusted*  0  1 

  Adjusted*  0  1 

  

Adjusted 

Weighted 

0.61 

(0.55,0.67) 

0.41 

(0.38,0.45)

0.785  Unadjusted*  0  1 

  Adjusted*  0  1 

  

Adjusted 

Weighted*  0  1 
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Table 4.10.  Sensitivity and specificity for the proposed similarity measures when λ-cyhalothrin 
is added to the simulated candidate mixtures. 

Proportion λ‐

cyhalothrin  

Distance 

Measure  Sensitivity Specificity 

0.02  Unadjusted 

0.74      

(0.69,0.79)

0.24 

(0.21,0.27)

  

Unadjusted 

Weighted 

0.89 

(0.86,0.93)

0.14 

(0.12,0.17)

0.07  Unadjusted 

0.67 

(0.63,0.72)

0.16 

(0.13,0.19)

  

Unadjusted 

Weighted 

0.87 

(0.84,0.90)

0.10 

(0.07,0.12)

 

Section 4.4 Discussion 
It was demonstrated that adding a chemical or even a subset of chemicals that are at or 

below the threshold and not making the appropriate adjustment to the dose scale can have a 

noticeable impact on the performance (sensitivity) of the proposed similarity measure.  As the 

proportion of chemical(s) that are at or below their threshold increases in the mixture it is 

important to adjust the dose scale and to utilize the adjusted unweighted similarity measure.  If 

the proportion is large enough it will become necessary to utilize the adjusted weighted similarity 
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measure.  In some instances, such as in this example, the selected weighting scheme might not be 

adequate. 

It was expected that when adding a more potent chemical (λ-cyhalothrin) to the candidate 

mixture, even in small amounts, that the gold standard test would fail to conclude sufficient 

similarity more often than it would conclude sufficient similarity, which occurred in both cases.  

It was not expected that as the proportion of λ-cyhalothrin added to the candidate mixture 

increased the number of curves concluded to be sufficiently similar would increase, however, 

this is what we observed.  We believe that this was due to the similarity region that was chosen 

and as part of the random variation of the simulation. 

The simulation studies reveal important properties of the different proposed similarity 

measures.  To evaluate the properties of the proposed test, sensitivity and specificity were used 

where sensitivity is analogous to the power of the proposed test.  While we report both 

sensitivity and specificity we are more concerned with sensitivity than specificity for the 

following reason.  The measures of sensitivity and specificity are calculated by using the gold 

standard test as the “truth”.  Recall that the gold standard test is designed to reject the null 

hypothesis in favor of the alternative hypothesis of similarity.  Failing to reject the null 

hypothesis that the two dose-response curves are different with respect to the specified similarity 

region is not the same as rejecting the null hypothesis and concluding that the two curves are 

different, as in the traditional hypothesis testing framework.  This is to say that using the gold 

standard test as the truth for calculating specificity is not technically correct as we are only 

failing to conclude similarity and not concluding that the two curves are different.  Given the 
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specified similarity region, failure to conclude similarity using the gold standard test could be 

due to sample size/power issues or study design.  These types of issues are addressed in Chapter 

5. 

To gain perspective on the performance of the proposed similarity measure, UUD, when 

the reference and candidate mixtures have the same number of components, we compared its 

performance to the method described by Stork et al. (2008).  The sensitivity for the unadjusted 

unweighted similarity measure is 0.70 whereas the sensitivity for the method provided by Stork 

et al. (2008) is 0.10.  The proposed similarity measure out performs the method of Stork et al. 

(2008) with respect to sensitivity, illustrating an improvement in the proposed similarity 

measure. 

Recall that the purpose of the simulation studies was to assess the performance of the 

proposed similarity measures for the different chemical/proportion situations.  Given the original 

reference mixture of five pyrethroids (Table 4.1) and adding resmethrin to it and making the 

appropriate adjustments as described in Section 4.2 (creating four candidate mixtures; Table 

4.11), the similarity measure was calculated for the different distance measures (Table 4.12).  

This attempts to summarize how well the measures perform as a whole and to demonstrate that 

even when a measure indicates sufficient similarity, it does not necessarily indicate the test 

performs well with respect to sensitivity.   
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Table 4.11  Reference mixture and the four candidate mixtures obtained from different regions. 

Chemical 
Reference 

Mixture(Red) 
Candidate 

Mixture 1 (full)
Candidate 

Mixture 2 (full)
Candidate 

Mixture 3 (full) 
Candidate 

Mixture 4 (full)

Permethrin  0.522  0.418  0.261  0.183  0.112 

Cypermethrin  0.288  0.230  0.144  0.101  0.062 

β‐Cyfluthrin  0.129  0.103  0.065  0.045  0.028 

Deltamethrin  0.034  0.027  0.017  0.012  0.007 

Esfenvalerate  0.027  0.022  0.014  0.009  0.006 

Generic Set  0.000  0.200  0.500  0.650  0.785 
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Table 4.12  Proportion of subthreshold chemicals added to the candidate mixture, distance 
measure and calculated similarity measure. 

Proportion 
Distance 
Measure 

Similarity 
Measure 

Sufficiently 
Similar 

0.2 
Unadjsuted 
Unweighted  1.23  YES 

 
Adjusted 

Unweighted  1.2  YES 

0.5 
Unadjsuted 
Unweighted  1.59  YES 

 
Adjusted 

Unweighted  1.5  YES 

0.65 
Unadjsuted 
Unweighted  1.76  NO 

 
Adjusted 

Unweighted  1.65  YES 

 
Adjusted 
Weighted  1.62  YES 

0.785 
Unadjsuted 
Unweighted  1.92  NO 

 
Adjusted 

Unweighted  1.79  NO 

  
Adjusted 
Weighted  1.62  YES 

Note: The similarity bounds for h are (0.35, 1.65) 

When the proportion of subthreshold chemicals added to the candidate mixture is 20 and 

50 percent the unadjusted unweighted distance measure produces a similarity measure that is 

within the similarity bounds and thus it is concluded that the reference mixture and candidate 
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mixture are sufficiently similar in dose-response.  As the proportion of subthreshold chemicals 

increases to 65 and 78.5 percent the adjusted weighted distance measure is needed to produce a 

similarity measure that is within the similarity bounds.  We would like to know how often our 

test reveals sufficient similarity when in fact the reference and candidate dose-response curves 

are sufficiently similar.  This was essentially evaluated through the sensitivity values calculated 

from the simulation studies.  For candidate mixture 1 both distance measures (unadjusted and 

adjusted) perform well.  The unadjusted unweighted distance measure yields a sensitivity of 

0.68, while the adjusted unweighted distance measure shows a significant increase in sensitivity 

to 0.86.  In candidate mixture 2, while both distance measures produce similarity measures 

within the bounds the adjusted unweighted distance measure has a drastically higher sensitivity 

(sensitivity=0.93) than the unadjusted unweighted distance measure (sensitivity=0.13).  For 

candidate mixture 3 the adjusted weighted distance measure produced a similarity measure that 

was within the bounds and its associated sensitivity was 0.61.  Although in candidate mixture 3 

the adjusted unweighted distance measure produced a similarity measure within the bounds, 

utilizing the specified weighting scheme no measure of sensitivity was able to be obtained. 

This example demonstrates that when the specified similarity measures indicate the 

reference and candidate mixtures are sufficiently similar in dose-response, the associated 

sensitivity is acceptable.  Overall, the selected similarity measures perform well. 
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Chapter 5:  Sufficient Similarity: Addressing the Technical Issues 
 

 

Section 5.1 Introduction 
In Chapters 3 and 4 we have presented a new method that consists of four similarity 

measures that are a function of Euclidean distance and multiple simulation studies that were 

conducted for the purpose of assessing how well the proposed similarity measures perform with 

respect to sensitivity and specificity.  While these chapters contain detail on how to both utilize 

the similarity measure in practice (Chapter 3) and how to conduct simulation studies to assess 

performance (Chapter 4), many of the technical issues that one may encounter have not been 

addressed.  In this chapter we will address: 

• issues that may be present in the original data set, such as departure from 
additivity, and how to adjust for this problem with respect to simulating data  

• problems that may be encountered when attempting to simulate candidate mixture 
mixing ratios and dose-response data, and  

• technical issues that arise when fitting a non-linear mixed effects model will be 
addressed 

For many of these problems there is most likely more than one plausible solution, however, in 

most instances we will provide suggestions that at the very least will provide a starting point 

given the problem/issue encountered.   
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Section 5.2 Technical Issues 
 Recall the original complex chemical mixture of five pyrethroids (permethrin, 

cypermethrin, β-cyfluthrin, deltamethrin, esfenvelerate) with complete dose-response data 

(Figure 3.4) and the following mixing ratios and total dose groups (Tables 3.2 and 3.3) as well as 

the simulated reference dose-response data set (generated under the assumption of additivity; 

Figure 3.6) that was used in both Chapters 3 and 4.  For the purposes of demonstrating how to 

deal with certain technical issues, these dose-response data will be used and referred to as the 

‘reference mixture’ or ‘reference dose-response data’ and ‘simulated reference dose-response 

data’.  Similar to Chapters 3 and 4 the similarity region was defined as 65% shifts in either 

direction for the both the ED(20) and ED(50).   

Section 5.2.1 Dealing With the Assumption of Additivity With Respect to 
Simulations 

 In both Chapters 3 and 4 all the simulations are conducted under the assumption of 

additivity.  To be able to generate dose-response data that is the result of utilizing individual 

mixing ratios from a (candidate) mixture, it is necessary to impose the assumption of additivity 

based on single chemical dose-response curves.  Further recall that in Chapters 3 and 4 it is 

necessary to simulate dose-response data for the generated candidate mixtures that is 

subsequently compared to the reference dose-response data.  Because we are comparing data that 

were generated under the assumption of additivity to the original reference dose-response data, 

for the purposes of making an accurate comparison, it is necessary to investigate whether there is 

departure from additivity in the reference dose-response data.  If single chemical data are 

available on all of the chemicals of concern, the single chemical required (SCR) approach 
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described by Casey et al. (2004) can be used.  In this case, the SCR approach was implemented 

(data not shown) and indicated that there was evidence of departure from additivity in the 

reference dose-response data set.  If single chemical data are not available on all the chemicals in 

the reference mixture, but the respective slope estimates are available in the literature, etc., 

performing the following steps can act as a surrogate for assessing additivity. 

1. Using the individual slope estimates for the chemicals and the common variance estimate 

of the reference dose-response data, simulate 1000 reference mixture dose-response data 

sets under the assumption of additivity using the original mixing ratios (Table 3.2). 

2. Perform the “gold standard” test for sufficient similarity given the specified similarity 

bounds on the reference dose-response data and the simulated reference dose-response 

data sets 

3. Calculate the percent of the time that the simulated reference mixture data were 

sufficiently similar to the reference dose-response data. 

If additivity is a valid assumption then one would expect that the reference mixture data and 

simulated reference mixture data would be sufficiently similar a significant percentage of the 

time.  Keep in mind that this is only a rule-of-thumb test in that there is no particular percent for 

which the researcher is looking.  Intuition suggests that if the curves are not sufficiently similar 

at least 50%  of the time (as this is representative of flipping a coin to determine additivity) then 

additivity is most likely not a suitable assumption.  For the examples presented in Chapters 3 and 

4, the simulated reference dose-response data were used and therefore any examples used to 

illustrate any points of interest will also use the simulated reference dose-response data set. 
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Section 5.2.2 Study Design 

Another technical issue often encountered that was not addressed in the preceding 

chapters is the concept of study design for the reference mixture dose-response data of concern 

(recall that we are using the simulated reference dose-response data).  Given the simulated 

reference mixture described in this example, it is of interest to determine how often this mixture 

is sufficiently similar to itself given the specified similarity bounds.  If this mixture study were 

repeated 1000 times, it would be expected that the resulting dose-response curves should be 

sufficiently similar in dose-response at least 50% of the time if the study was designed well, 

however, as this is an indication of the power of the gold standard test it may be desired to 

conclude sufficient similarity at least 80% of the time.  This is an integral step in testing for 

sufficient similarity in the data poor case because if it cannot be concluded that a mixture is 

sufficiently similar to itself, given the design of the study, then it does not make sense to think 

that it would be sufficiently similar to another comparable mixture with additional components.   

In essence the method evaluates the power of the “gold standard” test for sufficient similarity, as 

described in chapter 2.  In order to assess the power of the equivalence test for sufficient 

similarity in the case when complete data are available, Monte Carlo simulation studies are 

conducted.  In each simulation study, two data sets are created that contain dose-response data 

for two dose-response curves.  The dose-response curves are generated using an appropriate 

nonlinear dose-response model for additivity  
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Appropriate parameter and variance estimates are obtained from an existing data set or from a 

comparable study.  For this example the slope and common threshold estimates were obtained 

from Wolansky et al (2005).  For each i=1,…,N simulation studies two curves are generated 

under the assumed model.  For purposes of this example, N=1000 simulation studies were 

conducted.  A normal random deviate, e, where ( )2~ 0,e N σ  is added to the predicted values at 

each dose group, such that each curve has the same common variance, 2σ .  The appropriate 

nonlinear mixed effects dose response model 

 
( )

                               
exp ( )       

t
h t t

α γ δ
µ

α γ β δ δ
+ ≤⎧⎪= ⎨ + − >⎪⎩

 (5.2) 

is fit to the two curves in each of the N studies.  The appropriate confidence ellipse is plotted and 

if the ellipse is contained in the similarity region, then it is concluded that the two curves are 

sufficiently similar in dose-response with respect to the designated shifts.  The number of times 

that the ellipse generated for each data set is counted.  Power is calculated as 

#   sconcluded sufficiently imilarPower
N

= . 

To assess the relationship between power and study design, simulations should be conducted at 

different combinations of sample size per dose group, number of dose groups, and size of 

similarity region.  For each of the simulation studies conducted, a data set that produces an 

ellipse contained in the similarity region is given a 1 and a 0 otherwise.   This is to say 
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1        if ellipse contained in similarity region
0        if ellipse contained in similarity region ix
⎧

= ⎨
⎩

. 

Let 
1

N

i
i

y x
=

= ∑ ,where:  

~ (1, )ix Bernoulli p  with variance, 2 (1 )p pσ = −  

~ ( , )y Binomial N p with variance, 2 (1 )Np pσ = − . 

Now, yPower
N

=  and has asymptotic variance 2 (1 )p p
N

σ −
=  which is obtained using the Delta 

Method (Casella and Berger, 2002; Agresti, 2002). 

The results for the example with the simulated dose-response data are in Table 5.2.  (The 

results for the original five pyrethroid mixture are in Appendix A.5.)   The original study design 

is adequate as the power of the gold standard procedure is 90%.  This is to say that 90% of the 

time the original dose-response study was sufficiently similar to itself.  It is demonstrated (Table 

5.2) that as sample size and similarity region decrease, power decreases. 
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Table 5.1.  Number of dose groups and the specified dose levels for the proposed mixture studies 
in table 4.3. 

  Dose Group 

  1  2  3  4  5  6  7  8 

Mixture  Dose Level 

1  0.000  0.275  1.096  2.740  9.042  13.700  18.084  27.400 

2  0.000  1.096  13.700  27.400         

3  0.000  9.042  18.084  27.400         
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Table 5.2 Power values for the “new” reference mixture data set with 65% and 55% shifts in 
either direction for the ED(20) and ED(50), respectively. 

Power With 65% Shifts in the ED(20) and ED(50) 

Mixture Dose Groups n/Group Power Variance
Standard 
Error 

# not 
converging/1000

1a  8  12  90.49  0.00009 0.0093  1 

1b  8  6  47.50  0.00025 0.0158  0 

2a  4  12  42.40  0.00024 0.0156  7 

2b  4  6  10.62  0.00009 0.0097  21 

3a  4  12  20.30  0.00016 0.0127  0 

3b  4  6  9.80  0.00009 0.0094  0 

Power With 55% Shifts in the ED(20) and ED(50) 

Mixture Dose Groups n/Group Power Variance
Standard 
Error 

# not 
converging/1000

1a  8  12  69.47  0.00021 0.0146  1 

1b  8  6  22.60  0.00017 0.0132  0 

2a  4  12  21.65  0.00017 0.0130  7 

2b  4  6  4.29  0.00004 0.0064  21 

3a  4  12  14.00  0.00012 0.0110  0 

3b  4  6  1.10  0.00001 0.0033  0 
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Section 5.2.3 Generating Candidate Mixture Mixing Ratios 

Perhaps one of the most challenging aspects in the process of evaluating sufficient similarity 

is coming up with methods to generate possible candidate mixtures (i.e. generating 'ia s ), which 

are needed to simulate candidate dose-response data for the purposes of risk assessment as in 

Chapter 3 or to evaluate the sensitivity of the proposed similarity measure as in Chapter 4.  In the 

best case scenario, as is the case in the example presented in Chapter 3, there would be some 

form of exposure data available for the chemicals of concern.  For the example in Chapter 4, it 

was assumed that the log transform of the available exposure data followed a multivariate normal 

distribution for ease of simulation.  (See Appendix A.4 for the marginal distributions for the 

exposure data for the five chemicals in the original pyrethroid study.)  Making the assumption of 

multivariate normality, was the naïve approach, however, in the absence of being able to identify 

the appropriate multivariate distribution this is a logical choice.   

When exposure data are available, another possible option to generate candidate mixtures is 

to utilize bootstrap methodology.  For the observed data presented in Chapter 4, 126 observations 

could be drawn with replacement and the average proportions could be calculated following the 

logic described in Section 4.2 of Chapter 4.  This process could then be repeated 1000 times to 

create 1000 possible candidate mixtures.  In the event that there are no raw exposure data 

available and no known distributional information available for the chemicals in the reference 

mixture, then one might use the Dirichlet distribution, denoted Dir(α) (Wikipedia, 2009).  Named 

after Johann Peter Gustav Lejeune Dirichlet, this is a family of continuous multivariate 

probability distributions with parameter vector α  where 0α ≥ .  The Dirichlet distribution is the 

multivariate generalization of the beta distribution and is the conjugate prior to the multinomial 
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distribution (Wikipedia, 2009).  There also exists a very close relationship between the Dirichlet 

distribution and the joint distribution of K gamma distributions.  Utilizing this relationship, K 

proportions, ia , can be generated with the constraint that 
1

1
K

i
i

a
=

=∑ .  In order to generate these 

proportions for the example presented here let K=5 (representing the five pyrethorids) and use 

the following algorithm 

1. Draw five independent samples, iy , from gamma distributions with densities 

1

( , 1)
( )

i iy
i

i
i

y eα

α β
α

− −

Γ = =
Γ

 [ 1 5( ,..., )α α  are from the 5-dimensional Dirichlet distribution]. 

2. Now set 5
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j

ya
y

=

=

∑
 

Using this algorithm we can generate five proportions that sum to one and are centered around 

the proportions in table 5.1.  One of the drawbacks to using the Dirichlet distribution or the 

bootstrap methodology is that both of these approaches, as presented, generate mixtures that are 

centered around the original mixture in Table 5.1.  In centering around the proportions in the 

reference mixture, these two approaches tend to exclude extreme observations from the 

population and may thus yield results that are not representative of the entire population.  In 

order to generate more extreme candidate mixtures, the scaling parameter, β , can be utilized in 

the Dirichlet distribution.     
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Section 5.2.4 Model Parameterization 

Another important issue to consider when conducting the test for sufficient similarity, is 

the parameterization of the model as this parameterization is used in conducting the “gold 

standard” test when assessing the performance of the similarity measure.  When conducting 

many simulations, problems that arise from parameterization can become tedious to deal with.  

Therefore, the parameterization of the model should be chosen with this in mind.  In chapter 3 

we chose to parameterize the model as in eq. (5.2) 

( )
                               
exp ( )       

t
h t t

α γ δ
µ

α γ β δ δ
+ ≤⎧⎪= ⎨ + − >⎪⎩

. 

We could have just as easily parameterized the model in the following manner 

 
( )

                               
exp         

t
ht t

α γ δ
µ

α γ β δ δ
+ ≥⎧⎪= ⎨ + − <⎪⎩

 (5.4) 

However, in our work this parameterization (eq. 5.4) had a tendency to produce variance-

covariance matrices with unstable estimates.  This parameterization (eq. 5.4) also had a tendency 

to produce problems with convergence and optimization when running the required simulations.  

This problem could potentially be the result of identifiability which stems from the structure of 

the model and the method of parameterization (Seber and Wild, 1989).  This identifiability 

problem is signaled by the information matrix being singular or nearly singular (Seber and Wild, 

1989).  When deciding on the appropriate non-linear model it is of value to explore the different 

parameterizations to avoid these issues.  Seber and Wild (1989) point out that many issues 

arising in non-linear models could be due to approximate nonidentifiability, correlated estimates, 
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and poor precision of estimation in certain directions (Seber and Wild, 1989).  According to 

Seber and Wild (1989) these problems are not clearly distinguished and use the term “ill 

conditioning” to describe these problems on the grounds that a major symptom of the problem is 

an ill-conditioned information matrix. 

Section 5.3 Summary 
The purpose of this chapter is to identify some of the technical issues related to the 

process of evaluating sufficient similarity.  It was demonstrated that assessing the assumption of 

additivity and the given study design are essential to performing a sound evaluation of sufficient 

similarity.  In some instances information might exist a priori that suggests there is evidence of 

departure from additivity, however, as long as there are single chemical information available 

such as parameter estimates for single chemical data, additivity can be assessed through 

simulation.  Being able to make the assumption of additivity is essential to simulating dose-

response data based on the mixing ratios, ia , of the candidate mixtures.  If the assumption of 

additvity is violated or in question in the reference dose-response data set then it does not make 

sense to compare it to any data set simulated under the assumption of additivity, such as a 

candidate dose-response data set.  To avoid this issue, when there is evidence of departure from 

additivity in the reference dose-response data set, the reference dose-response data should be 

simulated under the assumption of additivity.  It is essential to mention that in order to simulate 

any dose-response data under the assumption of additivity, it is necessary to have single 

chemical slope estimates at the very least.  In the absence of single chemical data/slope estimates 

it will be difficult to evaluate the process.  



 

128 

 

Being able to generate candidate mixing ratios ( 'ia s ) is a key component to simulating 

dose-response data and to evaluating the performance of the similarity measure.  However, it 

should be noted that no generated candidate mixtures are needed to evaluate sufficient similarity 

in dose-response.  In the example presented in Chapter 4, raw exposure data were available 

which provided distributional information, although it was somewhat of a naïve assumption to 

assume multivariate normality of the log transform of the data.  If the user is not comfortable 

with making this assumption when data are available, the bootstrap method is another option.  In 

the case where there are no data, utilization of the relationship between the gamma and Dirichlet 

distribution can generate proportions.   

Technical issues such as identifiability and the concept of reparameterizing the non-linear 

model were addressed as well.  As Seber and Wild (1989) suggest, many of the problems that 

arise in non-linear models are not clearly distinguished and use the term “ill conditioning” to 

describe these problems on the grounds that a major symptom of the problem is an ill-

conditioned information matrix. 
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Chapter 6 Summary and Extensions 
 

 

Section 6.1 Summary 
It is safe to say that the work of Stork et al. (2008) concerning the concept of sufficient 

similarity in dose-response was truly a significant advance with respect to introducing an 

empirical approach to the evaluation of sufficient similarity in chemical mixtures in that it 

utilized empirical dose-response data and not solely exposure data.  While Feder et al. (2009) 

have introduced novel concepts for evaluating sufficient similarity employing accepted 

multivariate techniques, the proposed method does not make a connection between exposure and 

risk.  The methodology developed by Stork et al. (2008) concerning sufficient similarity in dose-

response motivated the methods and research contained in the chapters of this dissertation. 

Stork et al. (2008) suggest using mixed model theory, equivalence testing logic, and the 

principle of confidence region inclusion to test for sufficient similarity in the data rich situation.  

The data rich situation exists when there are complete dose-response data on both the reference 

and candidate mixtures.  In Chapter 2, an example is presented where there are complete dose-

response data on both of the mixtures in the study; however, one mixture contains an additional 

chemical component, malathion, which is relatively inactive in this study design but constitutes a 

large portion (82.5%) of the mixture.  Essentially at each dose group 82.5% of the mass is 

inactive.  It does not make sense to test to see if these curves are sufficiently similar in dose-
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response when the dose scales are so drastically different.  This situation along with the work of 

Casey et al. (2004) motivated adding a dose adjustment factor.  In the example presented in 

Chapter 2, utilizing the dose adjustment factor produced dose scales that were identical and more 

importantly had an effect on the conclusion of the test for sufficient similarity.  When the dose 

adjustment factor was used it was concluded that the two curves were sufficiently similar in 

dose-response, and without using this factor, it could not be concluded that the two curves were 

sufficiently similar in dose-response.  It was also determined, in a separate analysis, that there 

existed an interaction among the chemicals.  Even in the presence of a statistically significant 

interaction, sufficient similarity can still be concluded.  The important concepts to garnish from 

Chapter 2 are that dose scale matters and even in the presence of a statistically significant 

interaction sufficient similarity can be concluded. 

The work of Stork et al. (2008) was the first empirical approach to evaluating sufficient 

similarity in dose-response.  Chapter 3 addresses the major limitation in the method provided by 

Stork et al.  In the method presented by Stork et al. (2008) if the reference and candidate mixture 

do not contain the same chemicals then the method cannot be applied.  In Chapter 3 we suggest 

an extension to the method that allows for either the reference or candidate mixture to be a subset 

of the either.  Four similarity measures based on Euclidean distance are presented.  The 

associated similarity measures, h, are functions of the proposed distance measures.   

The research presented in Chapter 3 proposed computing bounds on the similarity 

measure/random effect, h , in the data poor situation.  If the computed similarity measure falls in 

the similarity bounds then the reference and candidate mixtures are considered to be sufficiently 
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similar in dose-response.  An example was presented that demonstrates the applicability of the 

method in risk assessment. 

  In Chapter 4 simulation studies were conducted to evaluate the performance of the 

measure in different scenarios.  Simulation studies revealed that when properly chosen, the 

methods perform very well with respect to sensitivity. 

Chapter 5 addresses some of the technical issues that are encountered when implementing 

the methods proposed in Chapter 3.  This chapter handles issues regarding departure from 

additivity, generating possible candidate mixtures, and evaluating study design.   

Section 6.2 Extensions 
Up to this point in the research, it has been assumed that the additional chemical(s) in the 

full mixture are present either in an inactive range but present in large amounts, or the additional 

chemicals are present in an active range but present in negligible amounts.  The methods 

presented in Chapter 3 can handle these two types of situations.  Assume that the additional 

chemicals in the full mixture are a combination of chemicals in active and inactive ranges.  As of 

now, the capabilities of the proposed method to handle this situation have not been explored.  

Also, the issue of having a mixture that is comprised of different types of chemicals has not been 

addressed.  The possibility of utilizing the weight matrix, W, to deal with these issues needs to be 

explored further as the full capabilities of the weight matrix are not utilized when its use is 

constrained to the diagonal elements. 

The similarity regions defined in this work were defined as rectangles in two dimensions 

and hyper-rectangles in higher dimensions.  However, the similarity region could be defined in 
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any geometric shape.  The region could account for relationships among the model parameters.  

For example, the similarity region could require the lower bound of the ED(50) to be greater than 

the lower bound of the ED(20). 

In the simulation studies presented in Chapter 4, regarding the issues of power and 

sample size, we the users are constrained to the initial study design.  For example, if an expert 

toxicologist determined that 50% shifts in either direction of the ED(20) and ED(50) constituted 

a biologically significant region of similarity for the dose-response curve of the reference 

mixture but the associated 95% confidence region for the ED(20) and ED(50) is not contained 

within the similarity region, it is like saying the mixture is not similar to itself.  It does not seem 

unlikely for a situation like this to arise in practice.  Work needs to be done in the area of initial 

study design with respect to determined acceptable shifts.  This is to say that an expert should be 

able to specify acceptable shifts in say, an ED(20) and ED(50) and the study is designed such 

that if the study were repeated numerous times, an acceptable number of these  studies (e.g. 80% 

of the studies) would be considered sufficiently similar. 

Lastly, use of the proposed similarity measures outside of environmental risk assessment 

needs to be explored, as this represents a tool for use in data reduction.  Applications in the area 

of monitoring health and developing health indices is a possible interesting application. 
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Appendix A: Additional Chapter Information 

Appendix A.2: Additional Tables and Figures for Chapter 2 
 

 

Table A.2.1.  Number with abnormal gait by dose group and Mixture. 

Mixture  

Total 
Dose 

(mg/kg) 
Sample 
Size 

Number 
with 

Abnormal 
Gait 

Proportion 
with 

Abnormal 
Gait 

1  0  14  0  0.00 

1  10  12  3  0.25 

1  55  12  3  0.25 

1  100  12  8  0.67 

1  200  12  10  0.83 

1  300  12  11  0.92 

1  450  12  12  1.00 

2  0  8  0  0.00 

2  1.75  12  0  0.00 

2  9.6  12  2  0.17 

2  17.5  12  2  0.17 

2  35  12  6  0.50 

2  52.5  12  12  1.00 

2  78.8  12  11  0.92 
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Table A.2.2  Composition by Mixture. 

  Mixture Composition 

Mixture  Acephate Chlorpyrifos Diazinon Dimethoate Malathion

1  0.04  0.031  0.002  0.102  0.825 

2  0.229  0.177  0.011  0.583  0 

 

 

Figure A.2.1.  Observed probability of abnormal gait for the associated dose groups in Mixtures 
1 and 2. 
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Figure A.2.2.  Observed probability of abnormal gait for the associated adjusted (rescaled) dose 
groups in Mixtures 1 and 2. 
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Table A.2.3. Estimate of the (mean) random effect for the two mixtures on the original dose 
scales. 

  
Estimate: Random 

Effect(h) 

Mixture 1  0.45 

Mixture 2  1.52 

 

Table A.2.4. Estimate of the (mean) random effect for the two mixtures on the adjusted 
(rescaled) dose scale. 

  
Estimate: Random 

Effect(h) 

Mixture 1  1.14 

Mixture 2  0.84 
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Transformation to Polar Coordinates 

Following the logic of Carter (1986) to calculate the bounds of the confidence region, it is first 

necessary to identify the points on the boundary C.  Anderson (1958) gives a transformation 

from rectangular coordinates to polar coordinates that permits identification of points on the 

boundary of C which expedites this search in D dimensions: 

( ) ( )

( ) ( )

( ) ( )

1

1

2 1
1 ,

1

ˆLet  be the  orthogonal matrix for which 
ˆwhere  is the diagonal matrix of the eigenvalues of .  Then, 

ˆˆ ˆ

ˆˆ ˆ         

ˆ ˆ         
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ω ω ω ω

ω ω ω ω
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The confidence region about ω has been transformed to a D-dimensional hyper-sphere of radius 

2 1/2
1 ,( )Dr αχ −= .  The search for elements on the boundary of C can be restricted to this hyper-

sphere.  Anderson (1958) gives a transformation from rectangular coordinates that expedites this 

search in D-dimensions: 

1 1

2 1 2
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By considering values of r in 2 1/2
1 ,0 ( )Dr αχ −< ≤  and iψ  in 

1 1/ 2 / 2 ( 1,2, , 2),  in ,i D Di Dπ ψ π ψ π ψ π− −− ≤ ≤ = − − ≤ ≤K any number of points of the 

boundary of C can be determined by 1/2ˆ .P zω ω −= − Λ   Once the elements of C have been 

determined in this manner, the confidence region about ω can be found in general by evaluating 

( ) ( ){ }1 2
1 ,

ˆˆ ˆ: .DC αω ω ω ω ω χ−
−

′= − Ω − ≤  

Appendix A.4: Additional Tables and Figures for Chapter 4 
 

 

Figure A.4.1. Histogram of the log-transform of total loading for permethrin. 
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Figure A.4.2. Histogram of the log-transform of total loading for β-cyfluthrin. 
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Figure A.4.3. Histogram of the log-transform of total loading for permethrin. 
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Figure A.4.4. Histogram of the log-transform of total loading for deltamethrin. 
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Figure A.4.5. Histogram of the log-transform of total loading for esfenvelerate. 
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Appendix A.5: Additional Tables and Figures for Chapter 5 
 

 

Table A.5.1. Number of dose groups and the specified dose levels (mg/kg) for the proposed 
mixture studies in table 4.3. 

  Dose Group 

  1  2  3  4  5  6  7  8 

Mixture  Dose Level (mg/kg) 

1  0.000  0.275  1.096  2.740  9.042  13.700  18.084  27.400 

2  0.000  1.096  13.700  24.000         

3  0.000  9.042  18.084  27.400         
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Table A.5.2. Power values for the “new” reference mixture data set with 65% and 55% shifts in 
either direction for the ED(20) and ED(50). 

Power With 50% Shifts in the ED(20) and ED(50) 

Mixture Dose Groups n/Group Power Variance
Standard 
Error 

# not 
converging/1000

1a  8  12  99.8  2E‐06  0.001413 0 

1b  8  6  91.39  7.87E‐05 0.008871 1 

2a  4  12  92.25  7.15E‐05 0.008455 7 

2b  4  6  70.67 0.000207 0.014397 25 

3a  4  12  77.8  0.000173 0.013142 0 

3b  4  6  43.4  0.000246 0.015673 0 

             

Power With 30% Shifts in the ED(20) and ED(50) 

Mixture Dose Groups n/Group Power Variance
Standard 
Error 

# not 
converging/1000

1a  8  12  85.4  0.000125 0.011166 0 

1b  8  6  51.45  0.00025 0.015805 1 

2a  4  12  65.16 0.000227 0.015067 7 

2b  4  6  28.21 0.000203 0.014231 25 

3a  4  12  21.9  0.000171 0.013078 0 

3b  4  6  8.6  7.86E‐05 0.008866 0 
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Appendix B: SAS Code 

Appendix B.2: SAS Code for Chapter 2 

Appendix B.2.1: SAS Code Used to Rescale Total Dose and Perform Test of 
Sufficient Similarity 

 

 

goptions colors=(black) htext=1.5 ftext=swiss; 
/*This reads in the raw data and creates a  
reference cell type coding for the two mixture rays*/ 
data mix; 
set sasuser.response; 
if mixture_ray=1 then do;ref=1;total_dose__mg_kg_ =total_dose__mg_kg_*.175; 
end; 
*if mixture_ray=2 then do;ref=2;*total_dose__mg_kg_ 
=total_dose__mg_kg_/.175;end; 
run; 
 
proc print data=mix; 
run; 
quit; 
 
data mix1(keep=Sample_Size Number_with_Abnormal_Gait total_dose__mg_kg_ 
mixture_ray ref proportion_with_abnormal_gait); 
set mix;  
run; 
 
/*produces the plot of the observed data*/ 
symbol1 v=dot i=none c=blue; 
symbol2 v=triangle i=none c=red; 
axis1 label=(a=90 "Probability of Abnormal Gait"); 
axis2 label=("Total Dose(mg/kg)"); 
proc gplot data=mix1; 
plot proportion_with_abnormal_gait*total_dose__mg_kg_=ref/vaxis=axis1 
haxis=axis2; 
run; 
quit; 
 
data forplot1; 
do total_dose__mg_kg_ =0 to 450 by 1; 
ref=2; 
output;
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end; 
run; 
 
data forplot2; 
do total_dose__mg_kg_ =0 to 450 by 1; 
ref=1; 
output; 
end; 
run; 
 
data forplot; 
set forplot1 forplot2; 
run; 
 
data mixanal; 
set mix1 forplot; 
if ref=2 then prop2=proportion_with_abnormal_gait; 
if ref=1 then prop1=proportion_with_abnormal_gait; 
run; 
 
/*sorts the data to be prepared for analysis*/ 
proc sort data=mixanal; 
by ref; 
run; 
 
 
/*Used to obtain estimates of initial starting values*/ 
/* 
data start_value; 
set mix; 
if mixture_ray=1; 
run; 
 
proc logistic data=start_value; 
model Number_with_Abnormal_Gait/Sample_Size=Total_Dose__mg_kg_/link=logit; 
run; 
quit; 
*/ 
 
/*Fits the fixed effects model*/ 
proc nlmixed data=mixanal cov  hess; 
parms b0=-1.9 b1=.03  s2u=0.49; 
*s2u=su*su; 
mu=1/(1+exp(-(b0+b1*(u+1)*Total_Dose__mg_kg_))); 
estimate 'ED(20)' (log(.25)-b0)/b1; 
estimate 'ED(50)' (log(1)-b0)/b1; 
random u ~ normal(0,s2u) subject=ref out=randomeff; 
model Number_with_Abnormal_Gait~binomial(sample_size,mu); 
predict mu out=pred1; 
ods output parameterestimates=vars1 covmatparmest=covs; 
run; 
quit; 
 
proc sort data=pred1; 
by dose ref; 
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run; 
 
data pred1; 
set pred1; 
if ref=2 then do; pred2=pred;end; 
if ref=1 then do; pred1=pred;end; 
run; 
 
/*produces the plots of observed with predicted overlayed*/ 
 
symbol1 v=dot  c=blue; 
symbol2 v=triangle  c=red ; 
symbol3 v=dot i=none  c=green; 
symbol4 v=dot  i=none c=purple; 
axis1 label=(a=90 "Probability of Abnormal Gait"); 
axis2 label=("Total Dose(mg/kg)"); 
proc gplot data=pred1; 
plot (prop1 prop2 pred1 pred2)*Total_Dose__mg_kg_/ overlay legend vaxis=axis1 
haxis=axis2; 
label prop1='Prob. of Abnormal Gait: Mix. 1'; 
label prop2='Prob. of Abnormal Gait: Mix. 2'; 
label pred1='Pred. Prob. Ab. Gait: Mix. 1'; 
label pred2='Pred. Prob. Ab. Gait: Mix. 2'; 
run; 
quit; 
 
 
/*produces the confidence ellipse*/ 
proc iml; 
use vars1; 
read all var{estimate} where (parameter='b0') into b0; 
use vars1; 
read all var{estimate} where (parameter='b1') into b1; 
g=b0//b1; 
use covs; 
read all var{b0} where (parameter='b0') into vb0; 
use covs; 
read all var{b1} where (parameter='b1') into vb1; 
use covs; 
read all var{b0} where (parameter='b1') into covb0b1; 
var_asy=(vb0||covb0b1)//(covb0b1||vb1); 
varinv=inv(var_asy); 
s=nrow(g); 
** transformations to polar coordinates; 
call eigen(eval,p,varinv); 
lambda=diag(eval); 
lambdahalf=root(lambda); 
lamhalfinv=inv(lambdahalf); 
check=lambdahalf*lambdahalf; 
test=p`*varinv*p;   
test2=p*p`; 
type1 = 0.05; 
bign=14; 
totp=2; 
f=cinv(1-type1,s);*,bign-totp); 
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r = (f)**(1/2); 
pi=constant('pi'); 
twopie=2*pi; 
znew=j(2,1,0); 
gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 znew=znew||z; 
 gw=gw||(g-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
label={"gw1" "gw2"}; 
create gw1 from gw[colname=label];append from gw; 
quit; 
 
/*produces the plot of the confidence ellipse*/ 
symbol1 v=none i=join c=blue; 
axis1 label=(a=90); 
 
data plotter; 
set gw1; 
run; 
 
data plot_adj; 
set plotter; 
if _n_=1; 
run; 
 
data plot_region; 
set plotter plot_adj; 
run; 
 
proc gplot data=plot_region; 
plot gw2*gw1/noframe vaxis=axis1; 
label gw1='B0(beta not)'; 
label gw2='B1(beta one)'; 
run;  
quit; 
 
/*********Confidence Region in terms of ED's********************/ 
proc iml; 
use vars1; 
read all var{estimate} where (parameter='b0') into b0; 
use vars1; 
read all var{estimate} where (parameter='b1') into b1; 
use covs; 
read all var{b0} where (parameter='b0') into vb0; 
use covs; 
read all var{b1} where (parameter='b1') into vb1; 
use covs; 
read all var{b0} where (parameter='b1') into covb0b1; 
var_asy=(vb0||covb0b1)//(covb0b1||vb1); 
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omega=var_asy; 
mu20=.20 ; 
mu50=.50 ; 
ed20=(log(mu20/(1-mu20)))/b1 - b0/b1; 
ed50=(log(mu50/(1-mu50)))/b1 - b0/b1; 
print ed20 ed50; 
gomega=ed20//ed50; 
big_g=(-1/b1||-log(mu20/(1-mu20))*b1**-2 + b0*b1**-2)//(-1/b1||-log(mu50/(1-
mu50))*b1**-2 + b0*b1**-2); 
cov_gomega=big_g*omega*big_g`; 
se_gomega = sqrt(vecdiag(cov_gomega)); 
var=cov_gomega; 
s=nrow(gomega); 
varinv=inv(var); 
** transformations to polar coordinates; 
call eigen(eval,p,varinv); 
lambda=diag(eval); 
lambdahalf=root(lambda); 
lamhalfinv=inv(lambdahalf); 
check=lambdahalf*lambdahalf; 
test=p`*varinv*p;   
test2=p*p`; 
type1 = 0.05; 
bign=14; 
totp=2; 
f=cinv(1-type1,s);*,bign-totp); 
r = (f)**(1/2); 
pi=constant('pi'); 
twopie=2*pi; 
znew=j(2,1,0); 
gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
label={"gw1" "gw2"}; 
create gw1_ed from gw[colname=label];append from gw; 
quit; 
 
/*produces the plot of the confidence ellipse*/ 
symbol1 v=none i=join c=red; 
axis1 label=(a=90); 
 
data box; 
boxgw1=5.7; boxgw2=210.54; output; 
boxgw1=108.3; output; 
boxgw2=70.18; output; 
boxgw1=5.7; output; 
boxgw2=210.54; output; 
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proc gplot data=box; 
plot boxgw2*boxgw1/noframe vaxis=axis1; 
label boxgw1='ED20:Similarity Bounds'; 
label boxgw2='ED50:Similarity Bounds'; 
run;  
quit; 
 
data plotter_ed; 
set gw1_ed box; 
run; 
 
data plot_adj_ed; 
set plotter_ed; 
if _n_=1; 
run; 
 
data plot_region_ed; 
set plotter_ed plot_adj_ed; 
run; 
 
symbol1 v=none i=join c=blue; 
proc gplot data=plot_region_ed; 
plot gw2*gw1/overlay noframe vaxis=axis1; 
label gw1='ED20'; 
label gw2='ED50'; 
run;  
quit; 
 
symbol1 v=none i=join c=blue; 
symbol2 v=none i=join c=red; 
proc gplot data=plot_region_ed; 
plot gw2*gw1 boxgw2*boxgw1/overlay noframe vaxis=axis1; 
label gw1='ED20'; 
label gw2='ED50'; 
run;  
quit; 
 

Appendix B.2.2: SAS Code Used Perform Test of Sufficient Similarity on 
Original Total Dose Scale 

 

 

 
goptions colors=(black) htext=1.5 ftext=swiss; 
/*This reads in the raw data and creates a  
reference cell type coding for the two mixture rays*/ 
data mix; 
set sasuser.response; 
if mixture_ray=1 then do;ref=1;end; 
if mixture_ray=2 then do;ref=2;end; 
run; 
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proc print data=mix; 
run; 
quit; 
 
data mix1(keep=Sample_Size Number_with_Abnormal_Gait total_dose__mg_kg_ 
mixture_ray ref proportion_with_abnormal_gait); 
set mix;  
run; 
 
/*produces the plot of the observed data*/ 
symbol1 v=dot i=none c=blue; 
symbol2 v=triangle i=none c=red; 
axis1 label=(a=90 "Probability of Abnormal Gait"); 
axis2 label=("Total Dose(mg/kg)"); 
 
proc gplot data=mix1; 
plot proportion_with_abnormal_gait*total_dose__mg_kg_=ref/legend vaxis=axis1 
haxis=axis2; 
label ref='Mixture Ray'; 
 
run; 
quit; 
 
data forplot1; 
do total_dose__mg_kg_ =0 to 450 by 1; 
ref=2; 
output; 
end; 
run; 
 
data forplot2; 
do total_dose__mg_kg_ =0 to 450 by 1; 
ref=1; 
output; 
end; 
run; 
 
data forplot; 
set forplot1 forplot2; 
run; 
 
data mixanal; 
set mix1 forplot; 
if ref=2 then prop2=proportion_with_abnormal_gait; 
if ref=1 then prop1=proportion_with_abnormal_gait; 
run; 
 
/*sorts the data to be prepared for analysis*/ 
proc sort data=mixanal; 
by ref; 
run; 
 
/*Used to obtain estimates of initial starting values*/ 
/* 
data start_value; 
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set mix; 
if mixture_ray=1; 
run; 
 
proc logistic data=start_value; 
model Number_with_Abnormal_Gait/Sample_Size=Total_Dose__mg_kg_/link=logit; 
run; 
quit; 
*/ 
 
/*Fits the mixed-effects model*/ 
proc nlmixed data=mixanal cov  hess; 
parms b0=-1.9 b1=.03  s2u=0.49; 
*s2u=su*su; 
mu=1/(1+exp(-(b0+b1*(u+1)*Total_Dose__mg_kg_))); 
estimate 'ED(20)' (log(.25)-b0)/b1; 
estimate 'ED(50)' (log(1)-b0)/b1; 
random u ~ normal(0,s2u) subject=ref out=randomeff; 
model Number_with_Abnormal_Gait~binomial(sample_size,mu); 
predict mu out=pred1; 
ods output parameterestimates=vars1 covmatparmest=covs; 
run; 
quit; 
 
proc sort data=pred1; 
by ref dose; 
run; 
 
data pred1; 
set pred1; 
if ref=2 then do; pred2=pred;end; 
if ref=1 then do; pred1=pred;end; 
run; 
 
/*produces the plots of observed with predicted overlayed*/ 
 
symbol1 v=dot  c=blue; 
symbol2 v=triangle  c=red ; 
symbol3 v=dot i=none  c=green; 
symbol4 v=dot  i=none c=purple; 
axis1 label=(a=90 "Probability of Abnormal Gait"); 
axis2 label=("Total Dose(mg/kg)"); 
proc gplot data=pred1; 
plot (prop1 prop2 pred1 pred2)*Total_Dose__mg_kg_/ overlay legend vaxis=axis1 
haxis=axis2; 
label prop1='Prob. of Abnormal Gait: Mix. 1'; 
label prop2='Prob. of Abnormal Gait: Mix. 2'; 
label pred1='Pred. Prob. Ab. Gait: Mix. 1'; 
label pred2='Pred. Prob. Ab. Gait: Mix. 2'; 
run; 
quit; 
 
 
/*produces the confidence ellipse in terms of the parameters*/ 
proc iml; 
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use vars1; 
read all var{estimate} where (parameter='b0') into b0; 
use vars1; 
read all var{estimate} where (parameter='b1') into b1; 
g=b0//b1; 
use covs; 
read all var{b0} where (parameter='b0') into vb0; 
use covs; 
read all var{b1} where (parameter='b1') into vb1; 
use covs; 
read all var{b0} where (parameter='b1') into covb0b1; 
var_asy=(vb0||covb0b1)//(covb0b1||vb1); 
varinv=inv(var_asy); 
s=nrow(g); 
** transformations to polar coordinates; 
call eigen(eval,p,varinv); 
lambda=diag(eval); 
lambdahalf=root(lambda); 
lamhalfinv=inv(lambdahalf); 
check=lambdahalf*lambdahalf; 
test=p`*varinv*p;   
test2=p*p`; 
type1 = 0.05; 
bign=14; 
totp=2; 
f=cinv(1-type1,s);*,bign-totp); 
r = (f)**(1/2); 
pi=constant('pi'); 
twopie=2*pi; 
znew=j(2,1,0); 
gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 znew=znew||z; 
 gw=gw||(g-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
label={"gw1" "gw2"}; 
create gw1 from gw[colname=label];append from gw; 
quit; 
 
/*produces the plot of the confidence ellipse*/ 
symbol1 v=none i=join c=blue; 
symbol2 l=1; 
symbol3 l=2; 
axis1 label=(a=90); 
 
data plotter; 
set gw1; 
run; 
 
data plot_adj; 
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set plotter; 
if _n_=1; 
run; 
 
data plot_region; 
set plotter plot_adj; 
run; 
 
proc gplot data=plot_region; 
plot gw2*gw1/noframe vaxis=axis1; 
label gw1='B0(beta not)'; 
label gw2='B1(beta one)'; 
run;  
quit; 
 
/*********Confidence Region in terms of ED's********************/ 
proc iml; 
use vars1; 
read all var{estimate} where (parameter='b0') into b0; 
use vars1; 
read all var{estimate} where (parameter='b1') into b1; 
use covs; 
read all var{b0} where (parameter='b0') into vb0; 
use covs; 
read all var{b1} where (parameter='b1') into vb1; 
use covs; 
read all var{b0} where (parameter='b1') into covb0b1; 
var_asy=(vb0||covb0b1)//(covb0b1||vb1); 
omega=var_asy; 
mu20=.20 ; 
mu50=.50 ; 
ed20=(log(mu20/(1-mu20)))/b1 - b0/b1; 
ed50=(log(mu50/(1-mu50)))/b1 - b0/b1; 
print ed20 ed50; 
gomega=ed20//ed50; 
big_g=(-1/b1||-log(mu20/(1-mu20))*b1**-2 + b0*b1**-2)//(-1/b1||-log(mu50/(1-
mu50))*b1**-2 + b0*b1**-2); 
cov_gomega=big_g*omega*big_g`; 
se_gomega = sqrt(vecdiag(cov_gomega)); 
var=cov_gomega; 
s=nrow(gomega); 
varinv=inv(var); 
** transformations to polar coordinates; 
call eigen(eval,p,varinv); 
lambda=diag(eval); 
lambdahalf=root(lambda); 
lamhalfinv=inv(lambdahalf); 
check=lambdahalf*lambdahalf; 
test=p`*varinv*p;   
test2=p*p`; 
type1 = 0.05; 
bign=14; 
totp=2; 
f=cinv(1-type1,s);*,bign-totp); 
r = (f)**(1/2); 
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pi=constant('pi'); 
twopie=2*pi; 
znew=j(2,1,0); 
gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
label={"gw1" "gw2"}; 
create gw1_ed from gw[colname=label];append from gw; 
quit; 
 
/*produces the plot of the confidence ellipse*/ 
 
data box; 
boxgw1=2.00; boxgw2=73.97; output; 
boxgw1=37.94; output; 
boxgw2=24.66; output; 
boxgw1=2.00; output; 
boxgw2=73.97; output; 
 
symbol1 v=none i=join c=red; 
axis1 label=(a=90); 
proc gplot data=box; 
plot boxgw2*boxgw1/noframe vaxis=axis1; 
label boxgw1='ED(20):Similarity Bounds'; 
label boxgw2='ED(50):Similarity Bounds'; 
run;  
quit; 
 
data plotter_ed; 
set gw1_ed box; 
run; 
 
data plot_adj_ed; 
set plotter_ed; 
if _n_=1; 
run; 
 
data plot_region_ed; 
set plotter_ed plot_adj_ed; 
run; 
 
symbol1 v=none i=join c=blue; 
proc gplot data=plot_region_ed; 
plot gw2*gw1/noframe vaxis=axis1; 
label gw1='ED(20)'; 
label gw2='ED(50)'; 
run;  
quit; 
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data box1; 
boxgw1=2.00; boxgw2=73.97; output; 
boxgw1=37.94; output; 
boxgw2=24.66; output; 
boxgw1=2.00; output; 
boxgw2=73.97; output; 
 
data plotter_ed1; 
set gw1_ed box1; 
run; 
 
data plot_adj_ed1; 
set plotter_ed1; 
if _n_=1; 
run; 
 
data plot_region_ed1; 
set plotter_ed1 plot_adj_ed1; 
run; 
 
symbol1 v=none i=join c=blue; 
symbol2 v=none i=join c=red; 
proc gplot data=plot_region_ed1; 
plot gw2*gw1 boxgw2*boxgw1/overlay noframe vaxis=axis1; 
label gw1='ED(20)'; 
label gw2='ED(50)'; 
run;  
quit; 
 
data box1; 
boxgw1=-10; boxgw2=110; output; 
boxgw1=50; output; 
boxgw2=-10; output; 
boxgw1=-10; output; 
boxgw2=110; output; 
 
axis1 label=(a=90); 
proc gplot data=box1; 
plot boxgw2*boxgw1/noframe vaxis=axis1; 
label boxgw1='ED(20):Similarity Bounds'; 
label boxgw2='ED(50):Similarity Bounds'; 
run;  
quit; 
 
data plotter_ed_sim; 
set gw1_ed box1; 
run; 
 
data plot_adj_ed_sim; 
set plotter_ed_sim; 
if _n_=1; 
run; 
 
data plot_region_ed_sim; 
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set plotter_ed_sim plot_adj_ed_sim; 
run; 
 
symbol1 v=none i=join c=blue; 
symbol2 v=none i=join c=red; 
axis1 label=(a=90); 
proc gplot data=plot_region_ed_sim; 
plot gw2*gw1 boxgw2*boxgw1/overlay  vaxis=axis1 noframe; 
label gw1='ED(20)'; 
label gw2='ED(50)'; 
run;  
quit; 
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Appendix B.3:  SAS Code for Chapter 3 

Appendix B.3.1: SAS Code for Example Part I 

 

 

libname ver 'C:\Sufficient Similarity Research\verification_code'; 
libname pyr 'C:\Sufficient Similarity Research\verification'; 
libname perm 'C:\Sufficient Similarity 
Research\verification_code\sens_spec_data'; 
goptions colors=(black) htext=1.8 ftext=swiss; 
 
data fivechem; 
set ver.newmix; 
ptotal1=ptotal/100; 
constant=1; 
run; 
 
proc sort data=fivechem; 
by dose; 
run; 
 
proc print data=fivechem; 
run; 
 
proc means data=fivechem; 
var ptotal1; 
by dose; 
run; 
 
/*calculates the benchmark response of interest*/ 
proc iml; 
control_mean=1.00; 
constrol_std_dev=0.199; 
bench_response=1.00-2*0.199; 
print bench_response; 
quit; 
 
proc gplot data=fivechem; 
plot ptotal*dose; 
run; 
quit; 
 
proc print data=fivechem; 
run; 
 
/*calculates the adjusted total dose*/ 
proc iml; 
    rel_pot={.059 .235 1.136 1 2.092}; 
   * rel_pot={.059 .235 1.136 1 2.092 0.009}; /*use when doing the weighted 
analysis*/ 
    numchem=ncol(rel_pot); 



 

163 

 

*** 3 cases of weights; 
 
*************** relative potencies define weight; 
  *  w=numchem#rel_pot`/sum(rel_pot); 
 
*************** unweighted analysis ; 
    w= j(numchem,1,1); 
*************** adjusted total dose; 
  *  w= j(numchem,1,1); 
 
***************  downweighted resmethrin; 
  *  w= j(numchem,1,1); 
  *  w[6]=.009; 
  * wi=(numchem-w[6])/(numchem-1); 
  * w=wi//wi//wi//wi//wi//w[6]; 
******; 
 
 sum_w=sum(w); 
 print w sum_w; 
     a={0.522 0.288 0.129 0.034 0.027}; ** relative proportions in reference 
mixture; 
  *a={0.28188 0.15552 0.06966 0.01836 0.01458 0}; ** 
relative proportion in candidate mixture; 
 
     aw=a*w || 1; 
    label={"aw" "constant"}; 
    print aw; 
    create aw from aw[colname=label]; append from aw; 
quit; 
 
data fivechem; 
   merge aw fivechem ; by constant;  
   drop constant; 
 
data forplot; 
set aw; drop constant; 
do dose=0 to 30 by 0.5;output;end; 
run; 
 
data fivechem_anal; 
set fivechem forplot; 
adose=aw*dose; 
run; 
 
/*this is the fixed effects model using adjusted total dose*/ 
data initparms; 
   set aw; 
   keep b del s2; 
   b=-0.07/aw; 
   del=10*aw; 
   *s2=650; 
   s2=.0650; 
 
/* 
proc print data=fivechem; 



 

164 

 

run; 
*/ 
 
 
/* 
data fivechem_start; 
set fivechem; 
new_ptotal=log((ptotal-20)/(100-20)); 
run; 
 
proc reg data=fivechem_start; 
model new_ptotal=dose; 
run; 
*/ 
 
 
proc nlin data=fivechem_anal ; 
parms b=-0.07 del=10; 
a=20; 
g=100-a; 
mu = a+g*exp(b*(adose-del)*(adose>del)); 
y=ptotal; 
model y=mu; 
output out=pred p=pred; 
run; 
quit; 
 
/*fits the fixed effects non-linear exponential threshold model and 
calculates 
BMD's and other estimates of interest*/ 
proc nlmixed data=fivechem_anal cov; 
    parms /data=initparms;/* b=-.07 del=10 s2=650;*/ 
    a=.25; 
    g=1-a; 
    mu = a+g*exp(b*(adose-del)*(adose>del)); 
    model ptotal1 ~ normal(mu,s2); 
    mu20= a + g*0.8; *85.3; 
    mu50= a + g*0.5; *63.3; 
 mu_bench= a + g*0.60; 
    ed20=((log((mu20-a)/g))/b)+del; 
    ed50=((log((mu50-a)/g))/b)+del; 
 ed_bench=((log((mu_bench-a)/g))/b)+del; 
 
    estimate "ED20" ((log((mu20-a)/g))/b)+del   alpha=0.001; 
    estimate "ED50" ((log((mu50-a)/g))/b)+del   alpha=0.001; 
 estimate "ED_Bench" ((log((mu_bench-a)/g))/b)+del   alpha=0.10; 
 
 
  
    ED20low=0.5*ed20;  *********************sets bounds based on percentages 
of ED20 amd ED50 estimates; 
    ED20high=1.5*ed20; 
    ED50low=.5*ed50; 
    ED50high=1.5*ed50; 
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    /* 
    ED20low=0.70*ed20;  *********************sets bounds based on percentages 
of ED20 amd ED50 estimates; 
    ED20high=1.30*ed20; 
    ED50low=.70*ed50; 
    ED50high=1.30*ed50; 
    */ 
 
    logmu20=log((mu20-a)/g); 
    logmu50=log((mu50-a)/g); 
    quot=logmu50/logmu20; 
    denom_l=ed20low-(ed50low-quot*ed20low)/(1-quot); 
    blow=logmu20/denom_l; 
    dellow=(ed50low-quot*ed20low)/(1-quot); 
    denom_h=ed20high-(ed50high-quot*ed20high)/(1-quot); 
    bhigh=logmu20/denom_h; 
    delhigh=(ed50high-quot*ed20high)/(1-quot); 
    mulow=a+g*exp(blow*(dose-dellow)*(dose>dellow)); 
    muhigh=a+g*exp(bhigh*(dose-delhigh)*(dose>delhigh)); 
    id quot mulow muhigh ed20low ed20high ed50low ed50high; 
 
    predict  mu out=pred; 
    ods output parameterestimates=vars covmatparmest=covs; 
*proc print data=pred; 
run; 
quit; 
 
/*calculates the individual benchmark doses*/ 
proc iml; 
mix_ratios={0.522 0.288 0.129 0.034 0.027}; 
bench_dose=14.35; 
ind_bench_dose=bench_dose*mix_ratios; 
print ind_bench_dose; 
quit; 
 
 
********************************************** 
 * Compute minimum and maximum mixing ratios, * 
 * ai_l (5.9.2) and ai_u (5.9.3)              * 
 **********************************************; 
proc iml; 
 a={0.522, 0.288, 0.129, 0.034, 0.027};  
 print a;  
 c=nrow(a);  *c=number of chemicals*; 
 print c; 
 ai_l=j(c,1,0); 
 ai_u=j(c,1,0); 
 i_c=j(c,1,0); 
 do i=1 to c; 
     ai=a[i,1]; 
  i_c[i,1]=i; 
  *ai_l[i,1]=(ai*hlf)/(ai*hlf+(1-ai)*huf); 
  *ai_u[i,1]=(ai*huf)/(ai*huf+(1-ai)*hlf); 
  ai_l[i,1]=(ai*0.35)/(ai*0.35+(1-ai)*1.65); 
  ai_u[i,1]=(ai*1.65)/(ai*1.65+(1-ai)*0.35); 
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 end; 
 ** Candidate mixing ratios for Cl mixture **; 
 *cand_a={0.03, 0.30, 0.26, 0.06, 0.03, 0.02, 0.12, 0.04, 0.14}; 
 *ais = i_c ||a||ai_l||ai_u||cand_a; 
 ais = i_c ||a||ai_l||ai_u; 
 *aislab = {"Chemical_i" "a" "a_low" "a_up" "cand_a"}; 
 aislab = {"Chemical_i" "a" "a_low" "a_up"}; 
 print ais[colname=aislab]; 
 create ais from ais[colname=aislab]; 
 append from ais; 
quit; 
 
proc print data=ais; 
run; 

Appendix B.3.2: SAS Code for Example Part II 

 

 

libname ver 'C:\Sufficient Similarity Research\verification_code'; 
libname pyr 'C:\Sufficient Similarity Research\verification'; 
libname perm 'C:\Sufficient Similarity 
Research\verification_code\sens_spec_data'; 
goptions colors=(black) htext=1.8 ftext=swiss; 
 
/*creates the dose groups*/ 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
0.275 
1.096 
2.740 
9.042 
13.70 
18.084 
27.400 
; 
run; 
quit; 
 
/*creates the reference data set under the assumption of additivity*/ 
%macro refdata; 
 %do _i_=1 %to 1; 
 
data ref_ais; 
 constant=0; 
 a1=0.522; 
 a2=0.288; 
 a3=0.129; 
 a4=0.034; 
 a5=0.027; 
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run;  
  
data ref_data; 
 merge ref_ais dose; 
 by constant; 
    seed=102679; 
 aa=0.2521; 
 b1= -0.0139; 
 b2= -0.0554; 
 b3= -0.2686; 
 b4= -0.2364; 
 b5= -0.4959; 
 del= -0.2359; 
 drop b1 b2 b3 b4 b5 constant; 
 ba=b1*a1+b2*a2+b3*a3+b4*a4+b5*a5; 
 put ba; 
 curve=1; 
  do k=1 to 12; 
           term=ba*dose; 
     mu = aa+(1-aa)*exp((term-del)*(term<del));  
        pact=mu+sqrt(0.0648)*rannor(seed); 
     if pact<0 then do;pact=mu;end; 
     output; 
  end; 
run; 
 
%end; 
%mend refdata; 
 
%refdata; 
 
/*calculates the benchmark response*/ 
proc means data=ref_data; 
by dose; 
var pact; 
run; 
 
proc iml; 
control_mean=1; 
bench_mark_response=1-2*0.22; 
print bench_mark_response; 
quit; 
 
/* this is fitting the non-linear exponential threshold model to the 
generated  
   reference data set and plotting the ellipse with random effect variance of 
0  
   and with random effect variance increasing, as well as calculating the hl 
and hu*/ 
ods trace off; 
proc nlmixed data=ref_data cov ecov; 
    parms b=-.02 to -.10 by -.02 delta=1 to 5 by 1 s2=0.0648; 
a= 0.25;  
g=1-a; 
    y = a+g*exp(b*(dose-delta)*(dose>delta)); 
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    model pact ~ normal(y,s2); 
    mu20= a + g*0.8; *85.3; 
    mu50= a + g*0.5; *63.3; 
 mu_bench= a + g*0.56; 
    ed20=((log((mu20-a)/g))/b)+delta; 
    ed50=((log((mu50-a)/g))/b)+delta; 
 ed_bench=((log((mu_bench-a)/g))/b)+delta; 
 
    estimate "ED20" ((log((mu20-a)/g))/b)+delta   alpha=0.001; 
    estimate "ED50" ((log((mu50-a)/g))/b)+delta   alpha=0.001; 
 estimate "ED_Bench" ((log((mu_bench-a)/g))/b)+delta   alpha=0.10; 
 
  
     ED20low=0.35*ed20;  *********************sets bounds based on 
percentages of ED20 amd ED50 estimates; 
    ED20high=1.65*ed20; 
    ED50low=.35*ed50; 
    ED50high=1.65*ed50; 
     
    /* 
    ED20low=0.70*ed20;  *********************sets bounds based on percentages 
of ED20 amd ED50 estimates; 
    ED20high=1.30*ed20; 
    ED50low=.70*ed50; 
    ED50high=1.30*ed50; 
    */ 
 
    logmu20=log((mu20-a)/g); 
    logmu50=log((mu50-a)/g); 
    quot=logmu50/logmu20; 
    denom_l=ed20low-(ed50low-quot*ed20low)/(1-quot); 
    blow=logmu20/denom_l; 
    dellow=(ed50low-quot*ed20low)/(1-quot); 
    denom_h=ed20high-(ed50high-quot*ed20high)/(1-quot); 
    bhigh=logmu20/denom_h; 
    delhigh=(ed50high-quot*ed20high)/(1-quot); 
    mulow=a+g*exp(blow*(dose-dellow)*(dose>dellow)); 
    muhigh=a+g*exp(bhigh*(dose-delhigh)*(dose>delhigh)); 
    id quot mulow muhigh ed20low ed20high ed50low ed50high; 
 
    predict  y out=pred; 
    ods output parameterestimates=vars covmatparmest=covs  
CovMatAddEst=add_cov; 
 
run; 
quit; 
 
data pyr; 
set pyr.pyr_data; 
run; 
 
proc sort data=pyr; 
by descending total_loading ; 
run; 
quit; 
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/*calculates the mixing ratios*/ 
data ratios; 
set pyr; 
a1=cis_trans_p/total_loading;a2=cyperme/total_loading;a3=cyfluth/total_loadin
g;a4=delta_t/total_loading;a5=esfenva/total_loading; 
check=a1+a2+a3+a4+a5; 
constant=0; 
run; 
 
/*selects the top 20 candidate mixtures based on total loading*/ 
data top_ratios; 
set ratios; 
if _n_<=20; 
run; 
 
data id; 
constant=0; 
do id=1 to 20; 
output;end; 
run; 
 
data ais_final; 
merge top_ratios id; 
by constant; 
run; 
 
proc print data=ais_final; 
run; 
 
/*creates 20 data sets each having a unique candidate mixture*/ 
%macro ais; 
%do _i_=1 %to 20; 
 
data ais_&_i_; 
set ais_final; 
where id=&_i_;  
constant=0; 
run; 
 
%end; 
 
%mend ais; 
 
%ais; 
 
data dist; 
run; 
 
/*calculates the distance between the candidate mixtures and the simulated 
reference mixture*/ 
%macro distance; 
%do _i_=1 %to 20; 
 
proc iml; 
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use ais_&_i_; 
read all var {a1} into a1; 
read all var {a2} into a2; 
read all var {a3} into a3; 
read all var {a4} into a4; 
read all var {a5} into a5; 
read all var {total_loading} into total_loading; 
 
a_ref=0.522//0.288//0.129//0.034//0.027; 
a_cand=a1//a2//a3//a4//a5; 
 
diffsq=(a_ref-a_cand)`*(a_ref-a_cand); 
dist=1+sqrt(diffsq); 
 
in=(dist>=0.35)*(dist<=1.65); 
 
if in=1 then do;pow=1;end; 
if in=0 then do;pow=0;end; 
 
rank=&_i_; 
 
distances=rank||a1||a2||a3||a4||a5||pow||dist||total_loading; 
 
label={"id" "a1" "a2" "a3" "a4" "a5" "pow" "distance" "total loading"}; 
create distance from distances[colname=label];append from distances; 
 
data dist; 
set dist distance;  
run; 
 
%end; 
 
%mend distance; 
 
%distance; 
 
data dist; 
set dist; 
if id=. then delete; 
run; 
 
proc sort data=dist; 
by distance; 
run; 
 
proc print data=dist; 
run; 
 
symbol1 v=dot i=none; 
axis1 label=(a=90 "Total Loading(ng/cm^2)"); 
axis2 label=("Similarity Measure"); 
proc gplot data =dist; 
plot total_loading*distance/vaxis=axis1 haxis=axis2; 
run; 
quit; 
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/*simulates 1000 data sets for the selected candidate mixture and creates 
1000 
studies*/ 
%macro cand_data; 
 %do _i_=1 %to 1000; 
 
data cand_ais; 
 constant=0; 
 a1=0.995; 
 a2=0.0009; 
 a3=0.0009; 
 a4=0.002; 
 a5=0.0012; 
run;  
  
data cand_generate&_i_; 
 merge cand_ais dose; 
 by constant; 
    seed=102679+&_i_; 
 aa=0.2521; 
 b1= -0.0139; 
 b2= -0.0554; 
 b3= -0.2686; 
 b4= -0.2364; 
 b5= -0.4959; 
 del= -0.2359; 
 drop b1 b2 b3 b4 b5 constant; 
 ba=b1*a1+b2*a2+b3*a3+b4*a4+b5*a5; 
 put ba; 
 curve=2; 
  do k=1 to 12; 
           term=ba*dose; 
     mu = aa+(1-aa)*exp((term-del)*(term<del));  
        pact=mu+sqrt(0.0648)*rannor(seed); 
     if pact<0 then do;pact=mu;end; 
     output; 
  end; 
run; 
 
data anal&_i_; 
set ref_data cand_generate&_i_ ; 
run; 
quit; 
 
data anal&_i_; 
set anal&_i_; 
if curve=2 then do; pact2=pact;end; 
if curve=1 then do; pact1=pact;end; 
run; 
 
%end; 
%mend cand_data; 
 



 

172 

 

%cand_data; 
 
data yesno; 
run; 
 
data yesno1; 
run; 
 
data all; 
run; 
 
data all1; 
run; 
 
data powers; 
run; 
 
data outers; 
run; 
 
data benchmark_doses; 
run; 
 
data benchmark_doses_lower; 
run; 
 
data ind_benchmark_doses; 
run; 
 
data ind_benchmark_doses_lower; 
run; 
 
/*performs the gold standard test for sufficient similarity for the 1000 
simulated 
candidate mixtures and the simulated reference mixture; calculates the  
benchmark dose as well as the lower 95% CI for the benchmark dose*/ 
%macro analysis; 
%do _i_=1 %to 1000; 
 
*footnote 'sample='&_i_; 
 
proc sort data=anal&_i_; 
by curve dose; 
run; 
quit; 
 
proc nlmixed data=anal&_i_ cov hess tech=trureg method=firo; 
parms b=0 to -.16 by -.02 delta=1 to 2 by .05 s2=0.0648 su=0.0001 to .1 by 
.05; 
a= 0.25;  
g=1-a; 
s2u=su*su; 
    *y = a_term+g*exp(b*(u+1)*(dose-delta)*(dose>delta)); 
 y = a+g*exp(b*(1+u)*(dose-delta)*(dose>delta)); 
 estimate 'ed20' (log(.8)+b*delta)/(b); 
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    estimate 'ed50' (log(.5)+b*delta)/(b); 
    random u ~ normal(0,s2u) subject=curve out=randomest&_i_; 
    model pact ~ normal(y,s2); 
    predict y out=pred&_i_; 
    ods output parameterestimates=vars covmatparmest=covs 
CovMatAddEst=add_cov; 
run; 
quit; 
 
data covs; 
set covs; 
where parameter='b' or parameter='delta'; 
run; 
 
data add_cov; 
set add_cov; 
where Label='ED_Bench'; 
run; 
 
data noest; 
set vars; 
if df=. then do; 
flag=1;end; 
if df=1 then do; 
flag=0; end; 
run; 
 
/*produces box and confidence region*/ 
proc iml; 
  use vars; 
 read all var{estimate} where (parameter='b') into beta; 
 read all var{estimate} where (parameter='delta') into delta; 
 read all var{estimate} where (parameter='s2') into mse; 
 read all var{estimate} where (parameter='s2u') into sigmah; 
 
use covs; 
 read all var{b delta} into covs; 
 
 aa=.25; * 25.21; 
 g=1-aa; 
 mu20=0.8#g+aa; 
 mu50=0.5#g+aa; 
 ED20=(log((mu20-aa)/g)/beta)+delta; 
 ED50=(log((mu50-aa)/g)/beta)+delta; 
 *print ed20 ed50; 
 gomega=ed20//ed50; 
 big_g=(-(beta**-2)*log((mu20-aa)/g)||1)//(-(beta**-2)*log((mu50-
aa)/g)||1); 
 cov_gomega=big_g*covs*big_g`; 
* print covs cov_gomega; 
 varinv=inv(cov_gomega); 
 se_gomega = sqrt(vecdiag(cov_gomega)); 
 *print  cov_gomega varinv se_gomega; 
 
** transformations to polar coordinates; 
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 call eigen(eval,p,varinv); 
 lambda=diag(eval); 
 lambdahalf=root(lambda); 
 lamhalfinv=inv(lambdahalf); 
 check=lambdahalf*lambdahalf; 
 *print lambda p; 
* print lambda check;  ** should equal lambda; 
 test=p`*varinv*p;  * test should equal lambda; 
* print lambda test; 
 test2=p*p`; 
* print test2;  *test2 shoould equal the identity matrix; 
 type1 = 0.05; 
 bign=192; 
 totp=2; 
 s=nrow(gomega); 
 f=finv(1-type1,s,bign-totp);  
 r = (s*f)**(1/2); 
 pi=constant('pi'); 
 twopie=2*pi; 
 
 znew=j(2,1,0); 
 gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 *print z; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
 label={"gw1" "gw2"}; 
 create gw1 from gw[colname=label];append from gw; 
* labelz={"z1" "z2"}; 
* znew=znew`; 
* create znew from znew[colname=labelz];  
*    append from znew; 
quit; 
 
data box; 
 boxgw1=1.35; boxgw2=2.82; output; 
 boxgw1=6.35;output; 
 boxgw2=13.32;output; 
 boxgw1=1.35;output; 
 boxgw2=2.82;output; 
 
data plotrefa; 
 set gw1 box; 
 
data plotref1a; 
 set plotrefa; 
 if _n_=1; 
 run; 
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data plotref2a; 
 set plotrefa plotref1a; 
run; 
 
proc means data=plotref2a max min noprint; 
 var gw1 gw2; 
 output out=maxmin max= max1 max2 min= min1 min2; 
run; 
 
data yesno; 
 set maxmin; 
 id=&_i_; 
 yesno=0; 
 if min1>1.35 and max1<6.35 and min2>2.82 and max2<13.32 then yesno=1; 
 if min1=0 and max1=0 and min2=0 and max2=0 then noest=1; 
run; 
 
data all; 
set all yesno; 
drop _type_ _freq_; 
if yesno=. then delete; 
run; 
 
data bmd_std; 
set cand_generate&_i_; 
if dose=0; 
run; 
 
proc means data=bmd_std; 
var pact; 
output out=stand; 
run; 
 
proc iml; 
use cand_ais; 
read all var {a1} into a1_c; 
read all var {a2} into a2_c; 
read all var {a3} into a3_c; 
read all var {a4} into a4_c; 
read all var {a5} into a5_c; 
 
use noest; 
read all var {flag} into flagger; 
 
use stand; 
read all var{pact}where (_STAT_='STD')into std; 
 
use vars; 
read all var{estimate} where (parameter='b') into beta; 
 
use vars; 
read all var{estimate} where (parameter='delta') into delta; 
 
use add_cov; 
read all var{Cov3} into bench_var; 
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if flagger=1 then do; flag=1;end; 
if flagger=0 then do; flag=0;end; 
 
bench_std=sqrt(bench_var); 
 
 
a_ref=0.522//0.288//0.129//0.034//0.027; 
a_cand=a1_c//a2_c//a3_c//a4_c//a5_c; 
 
diffsq=(a_ref-a_cand)`*(a_ref-a_cand); 
dist=1+sqrt(diffsq); 
 
id=&_i_; 
 
if flag=1 then do;out=id||flag;end; 
if flag=0 then do;out=id||flag;end; 
 
in=(dist>0.35)*(dist<1.65)*(flag=0); 
 
if in=1 then do;pow=1;end; 
if in=0 then do;pow=0;end; 
 
power=id||pow||dist||flag; 
 
label={"id" "yesno" "distance" "nopt"}; 
create pows from power[colname=label];append from power; 
 
create outs from out;append from out; 
 
a=0.25; 
g=1-a; 
control_mean=1.00; 
mu_bench_response=1.00-2*std; 
mu_bench=a+g*mu_bench_response; 
bmd=(log((mu_bench-a)/g)/beta)+delta; 
bench_dose=id||bmd; 
*print bench_dose; 
 
z=1.645; 
lower_bmd=bmd-z*bench_std; 
*print lower_bmd; 
bench_dose_lower=id||lower_bmd; 
*print bench_dose_lower; 
 
ind_bmd=bmd*a_cand`; 
ind_bench_dose=id||ind_bmd; 
ind_bmd_lower=lower_bmd*a_cand`; 
ind_bench_dose_lower=id||ind_bmd_lower; 
 
label={"id" "benchmark_dose"}; 
create bench_doses from bench_dose[colname=label];append from bench_dose; 
 
label={"id" "lower_benchmark_dose"}; 
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create bench_doses_lower from bench_dose_lower[colname=label];append from 
bench_dose_lower; 
 
 
label={"id" "permethrin" "cypermethrin" "betacyfluthrin" "deltamethrin" 
"esfenvalerate"}; 
create ind_bench_doses from ind_bench_dose[colname=label];append from 
ind_bench_dose; 
 
label={"id" "permethrin" "cypermethrin" "betacyfluthrin" "deltamethrin" 
"esfenvalerate"}; 
create ind_bench_doses_lower from ind_bench_dose_lower[colname=label];append 
from ind_bench_dose_lower; 
 
quit; 
 
data benchmark_doses; 
set benchmark_doses bench_doses; 
run; 
 
data benchmark_doses_lower; 
set benchmark_doses_lower bench_doses_lower; 
run; 
 
data ind_benchmark_doses; 
set ind_benchmark_doses ind_bench_doses; 
run; 
 
data ind_benchmark_doses_lower; 
set ind_benchmark_doses_lower ind_bench_doses_lower; 
run; 
 
data powers; 
set powers pows;  
run; 
 
data outers; 
set outers outs; 
run; 
 
%end; 
%mend analysis; 
 
%analysis; 
 
/*the next data steps clean the data and calculate the power (how often the 
gold standard 
test and the proposed similarity measure agreed*/ 
data benchmark_doses_anal3; 
set benchmark_doses; 
if id=. then delete; 
run; 
 
data benchmark_doses_lower_anal3; 
set benchmark_doses_lower; 
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if id=. then delete; 
run; 
 
data ind_benchmark_doses_anal3; 
set ind_benchmark_doses; 
if id=. then delete; 
run; 
 
data ind_benchmark_doses_lower_anal3; 
set ind_benchmark_doses_lower; 
if id=. then delete; 
run; 
 
data all_anal3; 
set all; 
*if noest=1 then delete; 
run; 
 
data power_anal3(drop=yesno); 
set powers; 
if id=. then delete; 
in=yesno; 
run; 
 
data comp_power3; 
merge power_anal3 all_anal3; 
by id; 
run; 
 
data bmd_anal3; 
merge comp_power3 benchmark_doses_anal3; 
by id; 
if nopt=1 then delete; 
if noest=1 then delete; 
run; 
 
data bmd_lower_anal3; 
merge comp_power3 benchmark_doses_lower_anal3; 
by id; 
if nopt=1 then delete; 
if noest=1 then delete; 
run; 
 
data ind_bmd_anal3; 
merge comp_power3 ind_benchmark_doses_anal3; 
by id; 
if nopt=1 then delete; 
if noest=1 then delete; 
run; 
 
data ind_bmd_lower_anal3; 
merge comp_power3 ind_benchmark_doses_lower_anal3; 
by id; 
if nopt=1 then delete; 
if noest=1 then delete; 
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run; 
 
proc copy in=work out=perm; 
select  benchmark_doses_anal3 benchmark_doses_lower_anal3 
ind_benchmark_doses_anal3 ind_benchmark_doses_lower_anal3 
all_anal3 power_anal3 comp_power3 bmd_anal3 bmd_lower_anal3 ind_bmd_anal3 
ind_bmd_lower_anal3; 
run; 
 
proc print data=ind_bmd_lower_anal3; 
run; 
 
proc freq data=ind_bmd_lower_anal3; 
tables yesno; 
run; 
 
/*creates the histograms for benchmark dose for the individual chemicals*/ 
proc univariate data=ind_bmd_lower_anal3; 
histogram; 
var permethrin cypermethrin betacyfluthrin deltamethrin esfenvalerate; 
run; 
 
data tag; 
constant=0; 
do tag=1 to 963; 
output;end; 
run; 
 
data final_ind_bmd_lower_anal; 
merge tag ind_bmd_lower_anal3; 
run; 
 
/*creates data sets containing all the calculated information for the 
candidate mixtures 
that converged*/ 
%macro bench_dose; 
%do _i_=1 %to 963; 
 
data ind_bmd_lower_&_i_; 
set final_ind_bmd_lower_anal; 
where tag=&_i_;  
constant=0; 
run; 
 
%end; 
 
%mend bench_dose_sim; 
 
%bench_dose; 
 
data bmd_low; 
run; 
 
/*calculated how often the individual chemicals BMD's were within the 
proposed 
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similarity bounds for each mixture*/ 
%macro bmd_sim; 
%do _i_=1 %to 963; 
 
proc iml; 
use ind_bmd_lower_&_i_; 
read all var{permethrin} into bmd1_perm; 
read all var{cypermethrin} into bmd2_cyperm; 
read all var{betacyfluthrin} into bmd3_betacyf; 
read all var{deltamethrin} into bmd4_delta; 
read all var{esfenvalerate} into bmd5_esfen; 
 
bm_doses=bmd1_perm||bmd2_cyperm||bmd3_betacyf||bmd4_delta||bmd5_esfen; 
 
bmd1_sim=(bmd1_perm>0.999)*(bmd1_perm<4.710); 
bmd2_sim=(bmd2_cyperm>0.551)*(bmd2_cyperm<2.599); 
bmd3_sim=(bmd3_betacyf>0.247)*(bmd3_betacyf<1.164); 
bmd4_sim=(bmd4_delta>0.065)*(bmd4_delta<0.307); 
bmd5_sim=(bmd5_esfen>0.052)*(bmd5_esfen<0.244); 
bench_sim=bmd1_sim*bmd2_sim*bmd3_sim*bmd4_sim*bmd5_sim; 
if bench_sim=1 then do;bmd_sim=1;end; 
if bench_sim=0 then do;bmd_sim=0;end; 
 
if bmd1_sim=1 then do; bmd_sim1=1;end; 
if bmd1_sim=0 then do; bmd_sim1=0;end; 
if bmd2_sim=1 then do; bmd_sim2=1;end; 
if bmd2_sim=0 then do; bmd_sim2=0;end; 
if bmd3_sim=1 then do; bmd_sim3=1;end; 
if bmd3_sim=0 then do; bmd_sim3=0;end; 
if bmd4_sim=1 then do; bmd_sim4=1;end; 
if bmd4_sim=0 then do; bmd_sim4=0;end; 
if bmd5_sim=1 then do; bmd_sim5=1;end; 
if bmd5_sim=0 then do; bmd_sim5=0;end; 
ind_bench_dose=bmd1_perm||bmd2_cyperm||bmd3_betacyf||bmd4_delta||bmd5_esfen||
bmd_sim||bmd_sim1||bmd_sim2||bmd_sim3||bmd_sim4||bmd_sim5; 
 
label={"permethrin" "cypermethrin" "betacyfluthrin" "deltamethrin" 
"esfenvalerate" "bmd_sim" "bmd_sim1" "bmd_sim2" "bmd_sim3" "bmd_sim4" 
"bmd_sim5"}; 
create bench_doses from ind_bench_dose[colname=label];append from 
ind_bench_dose; 
 
quit; 
 
data bmd_low; 
set bmd_low bench_doses; 
run; 
 
%end; 
 
%mend bmd_sim; 
 
%bmd_sim; 
 
/*cleans the data and creates histogram for selected candidate mixture*/ 
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data bmd_low_anal; 
set bmd_low; 
if permethrin=. then delete; 
run; 
 
proc print data=bmd_low_anal; 
run; 
 
proc freq data=bmd_low_anal; 
tables bmd_sim bmd_sim1 bmd_sim2 bmd_sim3 bmd_sim4 bmd_sim5; 
run; 
 
data bmdl_dist1; 
set perm.bmd_lower_anal3; 
run; 
 
proc print data=bmdl_dist1; 
run; 
 
proc univariate data=bmdl_dist1; 
histogram; 
var lower_benchmark_dose; 
run; 
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Appendix B.4: SAS Code for Chapter 4 

Appendix B.4.1: SAS Code to Evaluate Sensitivity and Specificity for the 
Unadjusted Unweighted Similarity Measure and to Compare to Stork et al. 

(2008) Method 

 

 

libname pyr 'C:\Sufficient Similarity Research\verification'; 
libname ver 'C:\Sufficient Similarity Research\verification_code'; 
libname perm 'C:\Sufficient Similarity 
Research\verification_code\sens_spec_data'; 
goptions colors=(black) htext=1.8 ftext=swiss; 
 
/*reads in the original observed exposure data and takes the log 
transformation*/ 
data pyr; 
set pyr.pyr_data; 
logcyfluth=log(cyfluth); 
logcyperme=log(cyperme); 
logdelta_t=log(delta_t); 
logesfenva=log(esfenva); 
logcis_trans_p=log(cis_trans_p); 
run; 
 
proc univariate data=pyr; 
var logdelta_t logesfenva; 
histogram; 
run; 
 
proc sort data=pyr; 
by descending total_loading ; 
run; 
quit; 
 
/*selects the top 20 observations/child care centers by total loading*/ 
data pyr; 
set pyr; 
if _n_<=20; 
run; 
 
proc iml; 
use pyr; 
 
read all var{logcis_trans_p} into cistp; 
read all var{logcyperme} into cype; 
read all var{logcyfluth} into cyfl; 
read all var{logdelta_t} into deltat; 
read all var{logesfenva} into esfen; 
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x=cistp||cype||cyfl||deltat||esfen; 
Ident=I(20); 
ones=j(20,1,1); 
samp_cov=(1/(20-1))*x`*(ident-1/20*ones*ones`)*x; 
n=nrow(cistp); 
aones=j(1,n,1); 
avg_cistp=aones*cistp/n; 
avg_cype=aones*cype/n; 
avg_cyfl=aones*cyfl/n; 
avg_deltat=aones*deltat/n; 
avg_asfen=aones*esfen/n; 
print avg_cistp 
avg_cype 
avg_cyfl 
avg_deltat 
avg_asfen; 
print samp_cov; 
quit; 
 
 
/* Sample from Multivariate Normal distribution with (Mean, Cov). 
N  is the number of desired observations sampled from the 
  multivariate normal distribution. 
Mean is a 1xp vector of means. 
Cov  is a pxp symmetric positive definite variance-covariance matrix. 
 
Each row of the returned matrix is a row vector 
sampled from the multivariate normal distribution. 
*/ 
 
proc iml; 
start RANDNORMAL( N, Mean , Cov ); 
 /* Algorithm:  
 1. By a Cholesky factorization, get T such that T`T = variance. 
 2. Generate a p-vector of iid N(0,1) random variables z = (z_1, ... 
,z_p). 
 3. x = T`z + mean.  
 4. Then x follows the multivariate normal distribution with Mean, Cov.  
 
 Reference:  
 Gentle, J.E. (2003), Random Number Generation and Monte Carlo Methods,  
  New York: Springer-Verlag, Inc., 197-198. 
*/ 
 /* check parameters */ 
 if N<1 then do; 
 print "The requested number of observations should be at least 1:" N; 
stop; 
 end; 
 
 mMean = rowvec(Mean); 
 p = ncol(mMean);  
 /* Upper triangular matrix T from the Cholesky decomposition:  
  variance = symmetric positive-definite matrix. 
    This call will fail if the matrix is not sym. pos. def. */ 



 

184 

 

 T = root( Cov );  
 Z=j(N,p,.); 
 call randgen(Z,'NORMAL'); 
 outX = Z*T + repeat(mMean,N,1); 
 return(outX); 
finish; 
store module=RANDNORMAL; 
quit; 
 
/*utilizes the module randnormal to simulate observed exposure data for the  
purposes of generating possible candidate mixtures to assess performance of 
the similarity measures*/ 
proc iml; 
load module=RANDNORMAL; 
/* doc example 1: how to use a correlation matrx and vector of variances  
to create the required covariance matrix in RANDNORMAL function*/ 
call randseed(1); 
N=1000; 
Mean = {-0.03 -1.30 -3.61 -4.02 -4.27}; /*from log-normal transformation*/ 
 
Cov = {  3.6990065 -0.251427 -3.251512 -1.831635 -0.050669, 
        -0.251427 8.3298461 0.8294449 0.8971857 1.6237268, 
        -3.251512 0.8294449 8.0506249 2.3486282  -0.30063, 
        -1.831635 0.8971857 2.3486282 2.3926647 -0.081364, 
        -0.050669 1.6237268  -0.30063 -0.081364 3.2804322};/*from log-normal 
transformation*/ 
 
x = RANDNORMAL( N, Mean, Cov ); 
print x; 
 
label={"cis_trans_p" "cyperme" "cyfluth" "delta_t" "esfenva"}; 
create expose from x[colname=label]; append from x; 
quit; 
 
 
/*uses the log-normal transformation and converts back by exponentiating and  
calculates 1000 possible candidate mixtures*/ 
data expose; 
set expose; 
cis_trans_p=exp(cis_trans_p); 
cyperme=exp(cyperme); 
cyfluth=exp(cyfluth); 
delta_t=exp(delta_t); 
esfenva=exp(esfenva); 
constant=0; 
total_loading=cyfluth+cyperme+delta_t+esfenva+cis_trans_p; 
a1=cis_trans_p/total_loading;a2=cyperme/total_loading;a3=cyfluth/total_loadin
g;a4=delta_t/total_loading;a5=esfenva/total_loading; 
run; 
 
data id; 
constant=0; 
do id=1 to 1000; 
output;end; 
run; 
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data ais_final; 
merge expose id; 
by constant; 
run; 
 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
0.275 
1.096 
2.740 
9.042 
13.70 
18.084 
27.400 
; 
run; 
quit; 
 
data sample; 
run; 
 
/*creates 1000 candidate data sets using the generated candidate mixtures 
under the assumption of additivity*/ 
%macro ais; 
%do _i_=1 %to 1000; 
 
data ais_&_i_; 
set ais_final; 
where id=&_i_;  
constant=0; 
run; 
 
data new; 
merge ais_&_i_ dose; 
by constant; 
run; 
 
data generate&_i_; 
set new; 
    seed=100597+&_i_; 
    *aa=0.2521; 
 aa=0.2521; 
 b1= -0.0139; 
 b2= -0.0554; 
 b3= -0.2686; 
 b4= -0.2364; 
 b5= -0.4959; 
 del= -0.2359; 
 drop b1 b2 b3 b4 b5 constant check id; 
 ba=b1*a1+b2*a2+b3*a3+b4*a4+b5*a5; 
 put ba; 
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 curve=2; 
 group=&_i_; 
  do k=1 to 12; 
           term=ba*dose; 
     *pact = aa+(1-aa)*exp((term-del)*(term<del)); 
     mu = aa+(1-aa)*exp((term-del)*(term<del)); 
           pact=mu+sqrt(0.0648)*rannor(seed); 
     *pact=mu+sqrt(0.0348)*rannor(seed); 
     *pact=mu+sqrt(0.18)*rannor(seed);  
        if pact<0 then do;pact=mu;end; 
     output; 
  end; 
run; 
 
data sample; 
set sample generate&_i_; 
run; 
quit; 
%end; 
%mend ais; 
 
%ais; 
 
symbol1 i=none v=dot; 
proc gplot data =generate1; 
plot pact*dose; 
run; 
quit; 
 
data sasuser.sample; 
set sample; 
if dose=. then delete; 
run; 
quit; 
 
data sample; 
set sasuser.sample; 
run; 
 
/*creates the reference data set under the assumption of additivity using  
the mixing proportions from the Crofton et al. study*/ 
%macro refdata; 
 %do _i_=1 %to 1; 
 
data ref_ais; 
 constant=0; 
 a1=0.522; 
 a2=0.288; 
 a3=0.129; 
 a4=0.034; 
 a5=0.027; 
run;  
  
data ref_data; 
 merge ref_ais dose; 
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 by constant; 
    seed=102679; 
 aa=0.2521; 
 b1= -0.0139; 
 b2= -0.0554; 
 b3= -0.2686; 
 b4= -0.2364; 
 b5= -0.4959; 
 del= -0.2359; 
 drop b1 b2 b3 b4 b5 constant; 
 ba=b1*a1+b2*a2+b3*a3+b4*a4+b5*a5; 
 put ba; 
 curve=1; 
  do k=1 to 12; 
           term=ba*dose; 
     mu = aa+(1-aa)*exp((term-del)*(term<del));  
        pact=mu+sqrt(0.0648)*rannor(seed); 
     if pact<0 then do;pact=mu;end; 
     output; 
  end; 
run; 
 
%end; 
%mend refdata; 
 
%refdata; 
 
data forplot; 
do dose=0 to 30 by 0.5;output;end; 
run; 
 
data ref_data_plot; 
set ref_data forplot; 
run; 
 
 
/*this is fitting the non-linear exponential threshold model to the generated  
   reference data set and plotting the ellipse with random effect variance of 
0  
   and with random effect variance increasing, as well as calculating the hl 
and hu*/ 
 
proc nlmixed data=ref_data_plot cov; 
    parms b=-.02 to -.10 by -.02 delta=1 to 5 by 1 s2=0.0648; 
a= 0.25;  
g=1-a; 
    y = a+g*exp(b*(dose-delta)*(dose>delta)); 
    model pact ~ normal(y,s2); 
    mu20= a + g*0.8; *85.3; 
    mu50= a + g*0.5; *63.3; 
    ed20=((log((mu20-a)/g))/b)+delta; 
    ed50=((log((mu50-a)/g))/b)+delta; 
 
    estimate "ED20" ((log((mu20-a)/g))/b)+delta   alpha=0.001; 
    estimate "ED50" ((log((mu50-a)/g))/b)+delta   alpha=0.001; 
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     ED20low=0.35*ed20;  *********************sets bounds based on 
percentages of ED20 amd ED50 estimates; 
    ED20high=1.65*ed20; 
    ED50low=.35*ed50; 
    ED50high=1.65*ed50; 
     
    logmu20=log((mu20-a)/g); 
    logmu50=log((mu50-a)/g); 
    quot=logmu50/logmu20; 
    denom_l=ed20low-(ed50low-quot*ed20low)/(1-quot); 
    blow=logmu20/denom_l; 
    dellow=(ed50low-quot*ed20low)/(1-quot); 
    denom_h=ed20high-(ed50high-quot*ed20high)/(1-quot); 
    bhigh=logmu20/denom_h; 
    delhigh=(ed50high-quot*ed20high)/(1-quot); 
    mulow=a+g*exp(blow*(dose-dellow)*(dose>dellow)); 
    muhigh=a+g*exp(bhigh*(dose-delhigh)*(dose>delhigh)); 
    id quot mulow muhigh ed20low ed20high ed50low ed50high; 
 
    predict  y out=pred; 
    ods output parameterestimates=vars covmatparmest=covs; 
*proc print data=pred; 
run; 
quit; 
 
proc sort data=pred; 
by dose; 
run; 
 
symbol1 v=dot i=none; 
symbol2 v=none i=join l=1; 
symbol3 v=none i=join l=2 c=red; 
symbol4 v=none i=join l=15 c=red; 
axis1 label=(a=90 "Motor Activity(% control)"); 
axis2 label=("Total Dose(mg/kg)"); 
proc gplot data=pred; 
plot (pact pred mulow muhigh)*dose/overlay  vaxis=axis1 haxis=axis2; 
run; 
quit; 
 
proc gplot data=pred; 
plot (pact pred)*dose/overlay vaxis=axis1 haxis=axis2; 
run; 
quit; 
 
data ellipse; 
set ref_data_plot; 
if pact=. then delete; 
run; 
 
proc print data=ellipse; 
run; 
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proc print data=covs; 
run; 
 
/*calculates the 95% confidence ellipse for the simulated reference data 
set*/ 
proc iml; 
use vars; 
read all var{estimate} where (parameter='b') into beta; 
use vars; 
read all var{estimate} where (parameter='delta') into delta; 
use vars; 
read all var{estimate} where (parameter='s2') into mse; 
use ellipse; 
read all var{dose} into dose; 
a=.20; 
g=1-a; 
*print dose; 
dfdbeta=g#(dose[,1]-delta)#exp(beta#(dose[,1]-delta))#(dose[,1]>delta); 
dfdel=-g#beta#exp((beta#(dose[,1]-delta)))#(dose[,1]>delta); 
dfdb=g#(beta#dose[,1]-beta#delta)#exp(beta#(dose[,1]-
delta))#(dose[,1]>delta); 
x0=dfdbeta||dfdel; 
z0=dfdb; 
d=0; 
n=nrow(z0); 
*print n; 
i=I(96); 
R= (mse)*i; 
Rinv=inv(R); 
Rinv_z0_D=rinv*z0*D; 
z0t_Rinv_z0_D=z0`*Rinv_z0_D; 
z0t_Rinv=z0`*Rinv; 
v0inv=rinv - Rinv_z0_D*inv(1+z0t_Rinv_z0_D)*z0t_Rinv; 
omega=inv(x0`*v0inv*x0); 
print omega; 
mu20= a + g*0.8; *85.3; 
mu50= a + g*0.5; *63.3; 
ED20=(log((mu20-a)/g)/beta)+delta; 
ED50=(log((mu50-a)/g)/beta)+delta; 
*print ed20 ed50; 
gomega=ed20//ed50; 
big_g=(-(beta**-2)*log((mu20-a)/g)||1)//(-(beta**-2)*log((mu50-a)/g)||1); 
cov_gomega=big_g*omega*big_g`; 
se_gomega = sqrt(vecdiag(cov_gomega)); 
var=cov_gomega; 
s=nrow(gomega); 
varinv=inv(var); 
*print var d varinv; 
** transformations to polar coordinates; 
call eigen(eval,p,varinv); 
lambda=diag(eval); 
lambdahalf=root(lambda); 
lamhalfinv=inv(lambdahalf); 
check=lambdahalf*lambdahalf; 
*print lambda check;  ** should equal lambda; 
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test=p`*varinv*p;  * test should equal lambda; 
*print lambda test; 
test2=p*p`; 
*print test2;  *test2 shoould equal the identity matrix; 
type1 = 0.05; 
bign=96; 
totp=2; 
f=finv(1-type1,s,bign-totp); 
r = (s*f)**(1/2); 
pi=constant('pi'); 
twopie=2*pi; 
 
znew=j(2,1,0); 
gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 *print z; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
 *print gw; 
label={"gw1" "gw2"}; 
create gw1 from gw[colname=label];append from gw; 
quit; 
 
/*this creates the plot of the confidence ellipse with the  
appropriate similarity bounds*/ 
symbol1 v=none i=join; 
 symbol2 l=1; 
 symbol3 l=2; 
 axis1 label=(a=90);* order=(0 to 160 by 1); 
 *axis2 order=(0 to 160 by 1); 
data box; 
  set pred; 
  if _n_=1; 
  keep boxgw1 boxgw2 ed20low ed20high ed50low ed50high; 
boxgw1=ed20low; *0.001; boxgw2=ed50low; *0.31; output;  **two low values; 
boxgw1=ed20high; *0.53; output;  ***ed20hi; 
boxgw2=ed50high; *.62; output;   **ed50hi; 
boxgw1=ed20low; *.001; output;  ***ed20low; 
boxgw2=ed50low; *.31; output;   **ed50low; 
*proc print data=box; run; 
data plotrefa; 
set gw1 box; 
 
data plotref1a; 
set plotrefa; 
if _n_=1; 
run; 
 
data plotref2a; 
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set plotrefa plotref1a; 
run; 
 
symbol1 v=none i=join c=blue; 
symbol2 v=none i=join c=red; 
proc gplot data=plotref2a; 
plot  gw2*gw1 boxgw2*boxgw1/overlay vaxis=axis1 noframe; 
label gw2='ED50 (Total Dose (mg/kg))'; 
label gw1='ED20 (Total Dose (mg/kg))'; 
run; quit; 
 
/*this allows sigma-squared-h to increase until it touches the edge of the 
similarity bounds*/ 
proc iml; 
use vars; 
  read all var{estimate} where (parameter='b') into beta; 
  read all var{estimate} where (parameter='delta') into delta; 
  read all var{estimate} where (parameter='s2') into mse; 
use pred; 
   read first var{ed20low} into ed20low; 
   read first var{ed20high} into ed20high; 
   read first var{ed50low} into ed50low; 
   read first var{ed50high} into ed50high; 
 
 a=.20; 
 g=1-a; 
 b=0; 
 use ellipse; 
   read all var{dose} into dose; 
D=0; 
sigh=0; 
flag=0; 
test=0; 
do d=0 to 1 by .0001 while(flag=0); 
dfdbeta=g#(dose[,1]-delta)#exp(beta#(dose[,1]-delta))#(dose[,1]>delta); 
dfdel=-g#beta#exp((beta#(dose[,1]-delta)))#(dose[,1]>delta); 
dfdb=g#(beta#dose[,1]-beta#delta)#exp(beta#(dose[,1]-
delta))#(dose[,1]>delta); 
x0=dfdbeta||dfdel; 
z0=dfdb; 
n=nrow(z0); 
i=I(96); 
R= (mse)*i; 
Rinv=inv(R); 
Rinv_z0_D=rinv*z0*D; 
z0t_Rinv_z0_D=z0`*Rinv_z0_D; 
z0t_Rinv=z0`*Rinv; 
v0inv=rinv - Rinv_z0_D*inv(1+z0t_Rinv_z0_D)*z0t_Rinv; 
omega=inv(x0`*v0inv*x0); 
mu20= a + g*0.8;  
mu50= a + g*0.5;  
 
ED20=(log((mu20-a)/g)/beta)+delta; 
ED50=(log((mu50-a)/g)/beta)+delta; 
gomega=ed20//ed50; 



 

192 

 

big_g=(-(beta**-2)*log((mu20-a)/g)||1)//(-(beta**-2)*log((mu50-a)/g)||1); 
cov_gomega=big_g*omega*big_g`; 
 
se_gomega = sqrt(vecdiag(cov_gomega)); 
 
var=cov_gomega; 
s=nrow(gomega); 
varinv=inv(var); 
** transformations to polar coordinates; 
call eigen(eval,p,varinv); 
lambda=diag(eval); 
lambdahalf=root(lambda); 
lamhalfinv=inv(lambdahalf); 
check=lambdahalf*lambdahalf; 
*print lambda check;  ** should equal lambda; 
test=p`*varinv*p;  * test should equal lambda; 
*print lambda test; 
test2=p*p`; 
*print test2;  *test2 shoould equal the identity matrix; 
type1 = 0.05; 
bign=96; 
totp=2; 
f=finv(1-type1,s,bign-totp); 
r = (s*f)**(1/2); 
pi=constant('pi'); 
twopie=2*pi; 
 
znew=j(2,1,0); 
gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 *print z; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
 d1=(gw[,1]-ed20low)>.0001; 
 d2=(ed20high-gw[,1])>.0001; 
 d3=(gw[,2]-ed50low)>.0001; 
 d4=(ed50high-gw[,2])>.0001; 
 test=d1#d2#d3#d4; 
 if test=1 then do;flag=0;end; 
 else do; flag=1;sigh=sigh//d;end; 
end; 
print  sigh; 
label={"gw1" "gw2"}; 
create gw from gw[colname=label];append from gw; 
quit; 
 
*this plots the expanded confidence ellipse; 
 symbol1 v=none i=join; 
 symbol2 l=1; 
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 symbol3 l=2; 
 axis1 label=(a=90);* order=(0 to 160 by 1); 
 *axis2 order=(0 to 160 by 1); 
 
data plotref; 
set gw box; 
 
data plotref1; 
set plotref; 
if _n_=1; 
run; 
 
data plotref2; 
set plotref plotref1; 
run; 
 
proc gplot data=plotref2; 
plot  gw2*gw1 boxgw2*boxgw1/overlay vaxis=axis1 noframe; 
label gw2='ED50 (Total Dose (mg/kg))'; 
label gw1='ED20 (Total Dose (mg/kg))'; 
run; quit; 
 
/*this calculates zmax and hl and hu*/ 
proc iml; 
use vars; 
   read all var{estimate} where (parameter='b') into beta; 
   read all var{estimate} where (parameter='delta') into delta; 
use pred; 
   read first var{ed20low} into ed20low; 
   read first var{ed20high} into ed20high; 
   read first var{ed50low} into ed50low; 
   read first var{ed50high} into ed50high; 
a=.20; 
g=1-a; 
b=0; 
use ref_data; 
read all var{dose} into dose; 
mu20= a + g*0.8;  
mu50= a + g*0.5;  
ED20=(log((mu20-a)/g)/beta)+delta; 
ED50=(log((mu50-a)/g)/beta)+delta; 
zmax=0; 
sigsqh=.0141; 
sigh=sqrt(sigsqh); 
flag=0; 
hlf=0; 
huf=0; 
zm=0; 
delta1= ed20low; *.001; 
delta2=ed20high; *.53; 
delta3=ed50low; *.31; 
delta4=ed50high; *.62; 
 
do zmax=0 to 10 by .001 while(flag=0); ****maybe not true; 
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hl=1-zmax*sigh; 
hu=1+zmax*sigh; 
lowdel1=ed20*hl; 
updel1=ed20*hu; 
lowdel2=ed50*hl; 
updel2=ed50*hu; 
t1=-(delta1-lowdel1); 
t2=-(updel1-delta2); 
t3=-(delta3-lowdel2); 
t4=-(updel2-delta4); 
 
eps=0.01; 
if ((t1<eps)*(t1 >0))=1 then do; max1=1;end; 
else do; max1=0;end; 
  
if ((t2<eps)*(t2 >0))=1 then do; max2=1;end; 
else do; max2=0;end; 
 
if ((t3<eps)*(t3 >0))=1 then do; max3=1;end; 
else do; max3=0;end; 
 
if ((t4<eps)*(t4 >0))=1 then do; max4=1;end; 
else do; max4=0;end; 
 
test=max1+max2+max3+max4; 
 
if test=0 then do;flag=0;end; 
if test>=1 then do;flag=1;zm=zm//zmax;hlf=hlf//hl;huf=huf//hu; 
 print zmax; 
 print hlf huf; 
 print t1 t2 t3 t4; 
 print max1 max2 max3 max4; 
end; end; 
quit; 
 
proc sort data=ref_data; 
by dose; 
run; 
 
proc gplot data=ref_data; 
plot pact*dose; 
run; 
quit; 
 
data yesno; 
run; 
 
data yesno1; 
run; 
 
data all; 
run; 
 
data all1; 
run; 
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data powers; 
run; 
 
data outers; 
run; 
 
/*this macro creates 1000 studies and conducts the gold standard test for 
sufficient  
similarity and calculates sensitivity for the unadjusted unweighted 
similarity 
measure and for the method proposed by Strok et al. (2008)*/ 
%macro subsets; 
%do _i_=1 %to 1000; 
 
footnote 'sample='&_i_; 
 
data subset&_i_; 
set sample; 
where group=&_i_; 
run; 
 
data evaluate&_i_; 
set ref_data subset&_i_; 
run; 
 
data evaluate&_i_; 
set evaluate&_i_; 
if curve=2 then do; pact2=pact;end; 
if curve=1 then do; pact1=pact;end; 
run; 
 
proc sort data=evaluate&_i_; 
by curve dose; 
run; 
quit; 
 
proc nlmixed data=evaluate&_i_ cov hess method=firo; 
parms b=0 to -.16 by -.02 delta=1 to 2 by .1 s2=0.0648 su=0.0001 to .1 by 
.05; 
a= 0.2521;  
g=1-a; 
s2u=su*su; 
    *y = a_term+g*exp(b*(u+1)*(dose-delta)*(dose>delta)); 
 y = a+g*exp(b*(1+u)*(dose-delta)*(dose>delta)); 
 estimate 'ed20' (log(.8)+b*delta)/(b); 
    estimate 'ed50' (log(.5)+b*delta)/(b); 
    random u ~ normal(0,s2u) subject=curve out=randomest&_i_; 
    model pact ~ normal(y,s2); 
    predict y out=pred&_i_; 
    ods output parameterestimates=vars covmatparmest=covs; 
run; 
quit; 
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data covs; 
set covs; 
where parameter='b' or parameter='delta'; 
run; 
 
data noest; 
set vars; 
if df=. then do; 
flag=1;end; 
if df=1 then do; 
flag=0; end; 
run; 
 
/*produces box and confidence region*/ 
proc iml; 
  use vars; 
 read all var{estimate} where (parameter='b') into beta; 
 read all var{estimate} where (parameter='delta') into delta; 
 read all var{estimate} where (parameter='s2') into mse; 
 read all var{estimate} where (parameter='s2u') into sigmah; 
 
use covs; 
 read all var{b delta} into covs; 
 
 aa=.2521; * 25.21; 
 g=1-aa; 
 mu20=0.8#g+aa; 
 mu50=0.5#g+aa; 
 ED20=(log((mu20-aa)/g)/beta)+delta; 
 ED50=(log((mu50-aa)/g)/beta)+delta; 
 *print ed20 ed50; 
 gomega=ed20//ed50; 
 big_g=(-(beta**-2)*log((mu20-aa)/g)||1)//(-(beta**-2)*log((mu50-
aa)/g)||1); 
 cov_gomega=big_g*covs*big_g`; 
* print covs cov_gomega; 
 varinv=inv(cov_gomega); 
 se_gomega = sqrt(vecdiag(cov_gomega)); 
 *print  cov_gomega varinv se_gomega; 
 
** transformations to polar coordinates; 
 call eigen(eval,p,varinv); 
 lambda=diag(eval); 
 lambdahalf=root(lambda); 
 lamhalfinv=inv(lambdahalf); 
 check=lambdahalf*lambdahalf; 
 *print lambda p; 
* print lambda check;  ** should equal lambda; 
 test=p`*varinv*p;  * test should equal lambda; 
* print lambda test; 
 test2=p*p`; 
* print test2;  *test2 shoould equal the identity matrix; 
 type1 = 0.05; 
 bign=192; 
 totp=2; 
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 s=nrow(gomega); 
 f=finv(1-type1,s,bign-totp);  
 r = (s*f)**(1/2); 
 pi=constant('pi'); 
 twopie=2*pi; 
 
 znew=j(2,1,0); 
 gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 *print z; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
 label={"gw1" "gw2"}; 
 create gw1 from gw[colname=label];append from gw; 
* labelz={"z1" "z2"}; 
* znew=znew`; 
* create znew from znew[colname=labelz];  
*    append from znew; 
quit; 
*proc gplot data=znew; 
*   plot z2*z1; 
*   run;  
*   quit; 
 
 
symbol1 v=none i=join; 
symbol2 l=1; 
symbol3 l=2; 
axis4 label=(a=90 'ED50 (mg/kg)');* order=(0 to 100 by 20); 
axis5 label=('ED20 (mg/kg)') ;*order=(0 to 100 by 20); 
data box; 
 boxgw1=1.35; boxgw2=2.79; output; 
 boxgw1=6.37;output; 
 boxgw2=13.15;output; 
 boxgw1=1.35;output; 
 boxgw2=2.79;output; 
 
data plotrefa; 
 set gw1 box; 
 
data plotref1a; 
 set plotrefa; 
 if _n_=1; 
 run; 
 
data plotref2a; 
 set plotrefa plotref1a; 
run; 
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/* 
symbol2 i=join v=none; 
proc gplot data=plotref2a; 
 plot  gw2*gw1 boxgw2*boxgw1/ overlay vaxis=axis4 haxis=axis5 noframe; 
* plot  gw2*gw1 / overlay vaxis=axis4 haxis=axis5 noframe; 
* plot  boxgw2*boxgw1/  vaxis=axis4 haxis=axis5 noframe; 
 label gw2='ED50 (mg/kg)'; 
 label gw1='ED20 (mg/kg)'; 
 run; quit; 
*/ 
 
proc means data=plotref2a max min noprint; 
 var gw1 gw2; 
 output out=maxmin max= max1 max2 min= min1 min2; 
run; 
 
data yesno; 
 set maxmin; 
 id=&_i_; 
 yesno=0; 
 if min1>1.35 and max1<6.37 and min2>2.79 and max2<13.15 then yesno=1; 
 if min1=0 and max1=0 and min2=0 and max2=0 then noest=1; 
run; 
 
 
/* 
data yesno1; 
 set maxmin; 
 id=&_i_; 
 yesno=0; 
 if min1>9.32 and max1<17.30 and min2>13.16 and max2<24.45 then yesno=1; 
 if min1=0 and max1=0 and min2=0 and max2=0 then noest=1; 
run; 
*/ 
 
data all; 
set all yesno; 
drop _type_ _freq_; 
if yesno=. then delete; 
run; 
 
/* 
data all1; 
set all1 yesno1; 
drop _type_ _freq_; 
if yesno=. then delete; 
run; 
*/ 
 
proc iml; 
use ais_&_i_; 
read all var {a1} into a1; 
read all var {a2} into a2; 
read all var {a3} into a3; 
read all var {a4} into a4; 
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read all var {a5} into a5; 
 
 
use noest; 
read all var {flag} into flagger; 
if flagger=1 then do; flag=1;end; 
if flagger=0 then do; flag=0;end; 
 
a_ref=0.522//0.288//0.129//0.034//0.027; 
a_cand=a1//a2//a3//a4//a5; 
 
diffsq=(a_ref-a_cand)`*(a_ref-a_cand); 
dist=1+sqrt(diffsq); 
 
id=&_i_; 
 
if flag=1 then do;out=id||flag;end; 
if flag=0 then do;out=id||flag;end; 
 
in=(dist>0.35)*(dist<1.65)*(flag=0); 
 
if in=1 then do;pow=1;end; 
if in=0 then do;pow=0;end; 
 
t1=(a1>0.19)*(a1<0.84); 
t2=(a2>0.08)*(a2<0.66); 
t3=(a3>0.03)*(a3<0.41); 
t4=(a4>0.007)*(a4<0.14); 
t5=(a5>0.006)*(a5<0.12); 
la=t1*t2*t3*t4*t5; 
if la=1 then do;leanna=1;end; 
if la=0 then do;leanna=0;end; 
 
power=id||pow||dist||flag||leanna; 
 
label={"id" "yesno" "distance" "nopt" "leanna"}; 
create pows from power[colname=label];append from power; 
 
create outs from out;append from out; 
quit; 
 
data powers; 
set powers pows;  
run; 
 
data outers; 
set outers outs; 
run; 
 
%end; 
%mend; 
 
%subsets; 
 
/*cleans data and calculates sensitivity and specificity*/ 
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proc copy in=work out=perm; 
select  sample components comp_power ref_data; 
run; 
 
data all_anal; 
set all; 
*if noest=1 then delete; 
run; 
 
data power_anal(drop=yesno); 
set powers; 
if id=. then delete; 
in=yesno; 
run; 
 
data comp_power; 
merge power_anal all_anal; 
by id; 
run;  
 
data comp_power; 
set comp_power; 
if nopt=1 then delete; 
if noest=1 then delete; 
if leanna=0 then do; leanna_out=1;end; 
if leanna=1 then do; leanna_out=0;end; 
run; 
 
proc print data=comp_power; 
run; 
 
data sensitivity; 
set comp_power; 
if yesno=1; 
run; 
 
data specificity; 
set comp_power; 
if yesno=0; 
run; 
 
 
data specificity_no; 
set comp_power; 
if yesno=0 then do;no=1;end; 
if yesno=1 then do;no=0;end; 
if in=0 then do; out=1;end; 
if in=1 then do; out=0;end; 
run; 
 
 
proc iml; 
use sensitivity; 
read all var{yesno} into yesno; 
read all var{in} into in; 
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n=nrow(yesno); 
ones=j(1,n,1); 
sumyesno=ones*yesno; 
sumin=ones*in; 
sensitivity=sumin/sumyesno; 
print sumyesno sumin sensitivity; 
quit; 
 
proc iml; 
use specificity_no; 
read all var {no} into no; 
read all var {out} into notin; 
n_out=nrow(no); 
ones=j(1,n_out,1); 
sumno=ones*no; 
sumout=ones*notin; 
specificity=sumout/sumno; 
print sumno sumout specificity; 
quit; 
 
proc iml; 
use sensitivity; 
read all var{yesno} into yesno; 
read all var{leanna} into in; 
n=nrow(yesno); 
ones=j(1,n,1); 
sumyesno=ones*yesno; 
sumin=ones*in; 
sensitivity=sumin/sumyesno; 
print sumyesno sumin sensitivity; 
quit; 
 
proc iml; 
use specificity_no; 
read all var {no} into no; 
read all var {leanna_out} into notin; 
n_out=nrow(no); 
ones=j(1,n_out,1); 
sumno=ones*no; 
sumout=ones*notin; 
specificity=sumout/sumno; 
print sumno sumout specificity; 
quit; 
 
proc copy in=work out=perm; 
select  expose_log; 
run; 
 

Appendix B.4.2: SAS Code to Evaluate Sensitivity and Specificity for the 
Remaining Similarity Measures when Resmethrin or λcyhalothrin is Added  
libname pyr 'C:\Sufficient Similarity Research\verification'; 
libname ver 'C:\Sufficient Similarity Research\verification_code'; 
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libname perm 'C:\Sufficient Similarity 
Research\verification_code\sens_spec_data'; 
 
/*Pulls in the log-transformed raw exposure data for the selected 
pyrethroids*/ 
data expose_log; 
set perm.expose_log; 
run; 
 
/*creates the original dose groups*/ 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
0.275 
1.096 
2.740 
9.042 
13.70 
18.084 
27.400 
; 
run; 
quit; 
 
/*creates the new dose groups resulting from adding resmethrin/l-cyhalothrin 
at different 
specified proportions; creates 1000 candidate mixture rays*/ 
%macro subsetprops(comp);  
 
data expose_log;*(drop=a1 a2 a3 a4 a5 check); 
set expose_log; 
 
a1_c=a1*(1-&comp); 
a2_c=a2*(1-&comp); 
a3_c=a3*(1-&comp); 
a4_c=a4*(1-&comp); 
a5_c=a5*(1-&comp); 
a6_c=&comp; 
total=a1_c+a2_c+a3_c+a4_c+a5_c+a6_c; 
constant=0; 
run; 
 
data new_dose; 
set dose; 
 
/* 
dose=dose+(dose*&comp)/(1-&comp); 
*/ 
 
 
adose=dose+(dose*&comp)/(1-&comp); 
dose=(1-&comp)*adose; 
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run; 
 
%mend subsetprops; 
 
%subsetprops (0.785); 
 
proc print data=new_dose; 
run; 
 
data id; 
constant=0; 
do id=1 to 1000; 
output;end; 
run; 
 
data ais_final; 
merge expose_log id; 
by constant; 
run; 
 
/*simulates the reference data under the assumption of additivity*/ 
%macro refdata; 
 %do _i_=1 %to 1; 
 
data ref_ais; 
 constant=0; 
 a1=0.522; 
 a2=0.288; 
 a3=0.129; 
 a4=0.034; 
 a5=0.027; 
run;  
  
data ref_data; 
 merge ref_ais dose; 
 by constant; 
    seed=102679; 
 aa=0.2521; 
 b1= -0.0139; 
 b2= -0.0554; 
 b3= -0.2686; 
 b4= -0.2364; 
 b5= -0.4959; 
 del= -0.2359; 
 drop b1 b2 b3 b4 b5 constant; 
 ba=b1*a1+b2*a2+b3*a3+b4*a4+b5*a5; 
 put ba; 
 curve=1; 
  do k=1 to 12; 
           term=ba*dose; 
     mu = aa+(1-aa)*exp((term-del)*(term<del));  
        pact=mu+sqrt(0.0648)*rannor(seed); 
     if pact<0 then do;pact=mu;end; 
     output; 
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  end; 
run; 
 
%end; 
%mend refdata; 
 
%refdata; 
 
/*Resmethrin slope=-0.0020*/ 
 
/*simulates 1000 data sets using the 1000 generated candidate mixtures under 
the 
assumption of additivity*/ 
%macro curves(slope); 
%do _i_=1 %to 1000; 
 
data ais_&_i_; 
set ais_final; 
where id=&_i_;  
constant=0; 
run; 
 
data cand_new; 
merge ais_&_i_ new_dose; 
by constant; 
run; 
 
data cand_generate&_i_; 
set cand_new; 
    seed=100598+&_i_; 
    *aa=0.2521; 
 aa=0.2521; 
 b1= -0.0139; 
 b2= -0.0554; 
 b3= -0.2686; 
 b4= -0.2364; 
 b5= -0.4959; 
 b6=&slope; 
 del= -0.2359; 
 drop b1 b2 b3 b4 b5 b6 constant check id; 
 ba=b1*a1_c+b2*a2_c+b3*a3_c+b4*a4_c+b5*a5_c+b6*a6_c; 
 put ba; 
 curve=2; 
 group=&_i_; 
  do k=1 to 12; 
           term=ba*adose; 
     *pact = aa+(1-aa)*exp((term-del)*(term<del)); 
     mu = aa+(1-aa)*exp((term-del)*(term<del)); 
           pact=mu+sqrt(0.0648)*rannor(seed); 
     *pact=mu+sqrt(0.0348)*rannor(seed); 
     *pact=mu+sqrt(0.18)*rannor(seed);  
        if pact<0 then do;pact=mu;end; 
     output; 
  end; 
run; 
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data anal&_i_; 
set ref_data cand_generate&_i_ ; 
run; 
quit; 
 
data anal&_i_; 
set anal&_i_; 
if curve=2 then do; pact2=pact;end; 
if curve=1 then do; pact1=pact;end; 
run; 
 
%end; 
%mend curves; 
 
%curves (-0.0020); 
 
data yesno; 
run; 
 
data yesno1; 
run; 
 
data all; 
run; 
 
data all1; 
run; 
 
data powers; 
run; 
 
data outers; 
run; 
 
/*creates 1000 studies; performs the gold standard test for sufficient 
similarity; 
evaluates sufficient similarity using the proposed methods*/ 
%macro analysis; 
%do _i_=1 %to 1000; 
 
footnote 'sample='&_i_; 
 
proc sort data=anal&_i_; 
by curve dose; 
run; 
quit; 
 
proc nlmixed data=anal&_i_ cov hess tech=trureg method=firo; 
parms b=0 to -.16 by -.02 delta=1 to 2 by .05 s2=0.0648 su=0.0001 to .1 by 
.05; 
a= 0.25;  
g=1-a; 
s2u=su*su; 
    *y = a_term+g*exp(b*(u+1)*(dose-delta)*(dose>delta)); 
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 y = a+g*exp(b*(1+u)*(dose-delta)*(dose>delta)); 
 estimate 'ed20' (log(.8)+b*delta)/(b); 
    estimate 'ed50' (log(.5)+b*delta)/(b); 
    random u ~ normal(0,s2u) subject=curve out=randomest&_i_; 
    model pact ~ normal(y,s2); 
    predict y out=pred&_i_; 
    ods output parameterestimates=vars covmatparmest=covs; 
run; 
quit; 
 
data covs; 
set covs; 
where parameter='b' or parameter='delta'; 
run; 
 
data noest; 
set vars; 
if df=. then do; 
flag=1;end; 
if df=1 then do; 
flag=0; end; 
run; 
 
/*produces box and confidence region*/ 
proc iml; 
  use vars; 
 read all var{estimate} where (parameter='b') into beta; 
 read all var{estimate} where (parameter='delta') into delta; 
 read all var{estimate} where (parameter='s2') into mse; 
 read all var{estimate} where (parameter='s2u') into sigmah; 
 
use covs; 
 read all var{b delta} into covs; 
 
 aa=.25; * 25.21; 
 g=1-aa; 
 mu20=0.8#g+aa; 
 mu50=0.5#g+aa; 
 ED20=(log((mu20-aa)/g)/beta)+delta; 
 ED50=(log((mu50-aa)/g)/beta)+delta; 
 *print ed20 ed50; 
 gomega=ed20//ed50; 
 big_g=(-(beta**-2)*log((mu20-aa)/g)||1)//(-(beta**-2)*log((mu50-
aa)/g)||1); 
 cov_gomega=big_g*covs*big_g`; 
* print covs cov_gomega; 
 varinv=inv(cov_gomega); 
 se_gomega = sqrt(vecdiag(cov_gomega)); 
 *print  cov_gomega varinv se_gomega; 
 
** transformations to polar coordinates; 
 call eigen(eval,p,varinv); 
 lambda=diag(eval); 
 lambdahalf=root(lambda); 
 lamhalfinv=inv(lambdahalf); 
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 check=lambdahalf*lambdahalf; 
 *print lambda p; 
* print lambda check;  ** should equal lambda; 
 test=p`*varinv*p;  * test should equal lambda; 
* print lambda test; 
 test2=p*p`; 
* print test2;  *test2 shoould equal the identity matrix; 
 type1 = 0.05; 
 bign=192; 
 totp=2; 
 s=nrow(gomega); 
 f=finv(1-type1,s,bign-totp);  
 r = (s*f)**(1/2); 
 pi=constant('pi'); 
 twopie=2*pi; 
 
 znew=j(2,1,0); 
 gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 *print z; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
 label={"gw1" "gw2"}; 
 create gw1 from gw[colname=label];append from gw; 
* labelz={"z1" "z2"}; 
* znew=znew`; 
* create znew from znew[colname=labelz];  
*    append from znew; 
quit; 
*proc gplot data=znew; 
*   plot z2*z1; 
*   run;  
*   quit; 
 
 
data box; 
 boxgw1=1.35; boxgw2=2.82; output; 
 boxgw1=6.35;output; 
 boxgw2=13.32;output; 
 boxgw1=1.35;output; 
 boxgw2=2.82;output; 
 
data plotrefa; 
 set gw1 box; 
 
data plotref1a; 
 set plotrefa; 
 if _n_=1; 
 run; 
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data plotref2a; 
 set plotrefa plotref1a; 
run; 
 
proc means data=plotref2a max min noprint; 
 var gw1 gw2; 
 output out=maxmin max= max1 max2 min= min1 min2; 
run; 
 
data yesno; 
 set maxmin; 
 id=&_i_; 
 yesno=0; 
 if min1>1.35 and max1<6.35 and min2>2.82 and max2<13.32 then yesno=1; 
 if min1=0 and max1=0 and min2=0 and max2=0 then noest=1; 
run; 
 
data all; 
set all yesno; 
drop _type_ _freq_; 
if yesno=. then delete; 
run; 
 
proc iml; 
use ais_&_i_; 
read all var {a1_c} into a1_c; 
read all var {a2_c} into a2_c; 
read all var {a3_c} into a3_c; 
read all var {a4_c} into a4_c; 
read all var {a5_c} into a5_c; 
read all var {a6_c} into a6_c; 
 
use noest; 
read all var {flag} into flagger; 
if flagger=1 then do; flag=1;end; 
if flagger=0 then do; flag=0;end; 
 
a_ref=0.522//0.288//0.129//0.034//0.027//0; 
a_cand=a1_c//a2_c//a3_c//a4_c//a5_c//a6_c; 
 
w={1.01 0 0 0 0 0, 
   0 1.01 0 0 0 0, 
   0 0 1.01 0 0 0, 
   0 0 0 1.01 0 0, 
   0 0 0 0 1.01 0, 
   0 0 0 0 0 0.95}; 
 
*diffsq=(a_ref-a_cand)`*(a_ref-a_cand); 
*adj_unw_diffsq=(a_ref*.215-a_cand)`*(a_ref*.215-a_cand); 
 adj_w_diffsq=(a_ref*.215-a_cand)`*w*w*(a_ref*.215-a_cand); 
dist=1+sqrt(adj_w_diffsq); 
 
id=&_i_; 
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if flag=1 then do;out=id||flag;end; 
if flag=0 then do;out=id||flag;end; 
 
in=(dist>0.35)*(dist<1.65)*(flag=0); 
 
if in=1 then do;pow=1;end; 
if in=0 then do;pow=0;end; 
 
 
power=id||pow||dist||flag; 
 
label={"id" "yesno" "distance" "nopt"}; 
create pows from power[colname=label];append from power; 
 
create outs from out;append from out; 
quit; 
 
data powers; 
set powers pows;  
run; 
 
data outers; 
set outers outs; 
run; 
 
%end; 
%mend analysis; 
 
%analysis; 
 
/*the next steps clean the data and calculate sensitivity and specificity*/ 
data all_anal; 
set all; 
*if noest=1 then delete; 
run; 
 
data power_anal(drop=yesno); 
set powers; 
if id=. then delete; 
in=yesno; 
run; 
 
data comp_power; 
merge power_anal all_anal; 
by id; 
run;  
 
data comp_power; 
set comp_power; 
if nopt=1 then delete; 
if noest=1 then delete; 
run; 
 
data sensitivity; 
set comp_power; 
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if yesno=1; 
run; 
 
data specificity; 
set comp_power; 
if yesno=0; 
run; 
 
proc print data=sensitivity; 
run; 
 
data specificity_no; 
set comp_power; 
if yesno=0 then do;no=1;end; 
if yesno=1 then do;no=0;end; 
if in=0 then do; out=1;end; 
if in=1 then do; out=0;end; 
run; 
 
proc print data=specificity_no; 
run; 
 
proc print data=specificity_no; 
run; 
 
proc iml; 
use sensitivity; 
read all var{yesno} into yesno; 
read all var{in} into in; 
n=nrow(yesno); 
ones=j(1,n,1); 
sumyesno=ones*yesno; 
sumin=ones*in; 
sensitivity=sumin/sumyesno; 
print sumyesno sumin sensitivity; 
quit; 
 
proc iml; 
use specificity_no; 
read all var {no} into no; 
read all var {out} into notin; 
n_out=nrow(no); 
ones=j(1,n_out,1); 
sumno=ones*no; 
sumout=ones*notin; 
specificity=sumout/sumno; 
print sumno sumout specificity; 
quit; 
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Appendix B.5: SAS Code for Chapter 5 

Appendix B.5.1: SAS Code to Evaluate Study Design and Power of the Gold 
Standard 

 

 

goptions colors=(black) htext=1.8 ftext=swiss; 
libname ver 'C:\Sufficient Similarity Research\verification_code'; 
 
/*this allows for the input/construction of different dose groups which in 
return 
creates different study designs*/ 
/* 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
0.275 
1.096 
2.740 
9.042 
13.70 
18.084 
27.400 
; 
run; 
quit; 
*/ 
 
/* 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
9.042 
18.084 
27.400 
; 
run; 
quit; 
*/ 
 
/* 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
1.096 
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13.70 
27.40 
; 
run; 
quit; 
*/ 
 
/* 
data dose; 
  input dose; 
  constant=0; 
  cards; 
0 
0.275 
9.042 
18.084 
; 
run; 
quit; 
*/ 
 
data all; 
run; 
 
data all1; 
run; 
 
data anal; 
run; 
 
/*this macro simulates the dose-response study under different constrainst on  
the number of dose groups and the number allocated to each dose group and 
performs the  
gold standard test*/ 
 
%macro simulate(size,dosegroups); 
 %do _i_=1 %to 1000; 
 
 footnote 'sample='&_i_; 
 
data parms; 
constant=0; 
a= 0.25; 
beta= -0.1113 ; 
del= 1.8450; 
run; 
 
data new_ref; 
merge parms dose; 
by constant; 
run; 
 
data ref_generate&_i_; 
set new_ref; 
    seed=100597+&_i_; 
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 constant=0; 
 curve=1; 
   do k=1 to &size; 
           mu = a+(1-a)*exp(beta*(dose-del)*(dose>del));  
        pact=mu+sqrt(0.0648)*rannor(seed); 
     if pact<0 then do;pact=0;end; 
     output; 
  end; 
run; 
 
data new_cand; 
merge parms dose; 
by constant; 
run;  
 
data cand_generate&_i_; 
set new_cand; 
    seed=100598+&_i_; 
 curve=2; 
   do k=1 to &size; 
           mu = a+(1-a)*exp(beta*(dose-del)*(dose>del));  
        pact=mu+sqrt(0.0648)*rannor(seed); 
     if pact<0 then do;pact=0;end; 
     output; 
  end; 
run; 
 
data anal&_i_; 
set ref_generate&_i_ cand_generate&_i_ ; 
run; 
quit; 
 
data anal&_i_; 
set anal&_i_; 
if curve=2 then do; pact2=pact;end; 
if curve=1 then do; pact1=pact;end; 
run; 
 
proc nlmixed data=anal&_i_ cov hess method=firo tech=truereg itdetails; 
parms b=-.1  delta=1 su=0 to 0.1 by 0.005 s2=0 to .07 by .01; 
a_term= 0.2;  
g=1-a_term; 
s2u=su*su; 
    mu = a_term+g*exp(b*(1+u)*(dose-delta)*(dose>delta)); 
    estimate 'ed20' (log(.8)+b*delta)/(b); 
    estimate 'ed50' (log(.5)+b*delta)/(b); 
    random u ~ normal(0,s2u) subject=curve out=randomest&_i_; 
    model pact ~ normal(mu,s2); 
    predict mu out=pred&_i_; 
    ods output parameterestimates=vars covmatparmest=covs; 
run; 
quit; 
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data covs; 
set covs; 
where parameter='b' or parameter='delta'; 
run; 
 
/*produces box and confidence region*/ 
proc iml; 
  use vars; 
 read all var{estimate} where (parameter='b') into beta; 
 read all var{estimate} where (parameter='delta') into delta; 
 read all var{estimate} where (parameter='s2') into mse; 
 read all var{estimate} where (parameter='s2u') into sigmah; 
  use covs; 
 read all var{b delta} into covs; 
 
 aa=.25; * 25.21; 
 g=1-aa; 
 mu20=0.8#g+aa; 
 mu50=0.5#g+aa; 
 ED20=(log((mu20-aa)/g)/beta)+delta; 
 ED50=(log((mu50-aa)/g)/beta)+delta; 
 *print ed20 ed50; 
 gomega=ed20//ed50; 
 big_g=(-(beta**-2)*log((mu20-aa)/g)||1)//(-(beta**-2)*log((mu50-
aa)/g)||1); 
 cov_gomega=big_g*covs*big_g`; 
* print covs cov_gomega; 
 varinv=inv(cov_gomega); 
 se_gomega = sqrt(vecdiag(cov_gomega)); 
 *print  cov_gomega varinv se_gomega; 
 
** transformations to polar coordinates; 
 call eigen(eval,p,varinv); 
 lambda=diag(eval); 
 lambdahalf=root(lambda); 
 lamhalfinv=inv(lambdahalf); 
 check=lambdahalf*lambdahalf; 
 *print lambda p; 
* print lambda check;  ** should equal lambda; 
 test=p`*varinv*p;  * test should equal lambda; 
* print lambda test; 
 test2=p*p`; 
* print test2;  *test2 shoould equal the identity matrix; 
 type1 = 0.05; 
 bign=&size*&dosegroups*2; 
 totp=2; 
 s=nrow(gomega); 
 f=finv(1-type1,s,bign-totp);  
 r = (s*f)**(1/2); 
 pi=constant('pi'); 
 twopie=2*pi; 
 
 znew=j(2,1,0); 
 gw=j(2,1,0); 
  do theta=0 to twopie by .1; 
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    z1=r*cos(theta); 
 z2=r*sin(theta); 
 z=z1//z2; 
 *print z; 
 znew=znew||z; 
 gw=gw||(gomega-p*lamhalfinv*z); 
  end; 
 gw=gw`; 
    gw=gw[2:64,]; 
 label={"gw1" "gw2"}; 
 create gw1 from gw[colname=label];append from gw; 
* labelz={"z1" "z2"}; 
* znew=znew`; 
* create znew from znew[colname=labelz];  
*    append from znew; 
quit; 
*proc gplot data=znew; 
*   plot z2*z1; 
*   run;  
*   quit; 
 
 
symbol1 v=none i=join; 
symbol2 l=1; 
symbol3 l=2; 
axis4 label=(a=90 'ED50 (mg/kg)');* order=(0 to 100 by 20); 
axis5 label=('ED20 (mg/kg)') ;*order=(0 to 100 by 20); 
data box; 
 boxgw1=1.35; boxgw2=2.79; output; 
 boxgw1=6.37;output; 
 boxgw2=13.15;output; 
 boxgw1=1.35;output; 
 boxgw2=2.79;output; 
 
data plotrefa; 
 set gw1 box; 
 
data plotref1a; 
 set plotrefa; 
 if _n_=1; 
 run; 
 
data plotref2a; 
 set plotrefa plotref1a; 
run; 
 
proc means data=plotref2a max min noprint; 
 var gw1 gw2; 
 output out=maxmin max= max1 max2 min= min1 min2; 
run; 
 
data yesno; 
 set maxmin; 
 sample=&_i_; 
 yesno=0; 
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 if min1>1.35 and max1<6.37 and min2>2.79 and max2<13.15 then yesno=1; 
 if min1=0 and max1=0 and min2=0 and max2=0 then noest=1; 
run; 
 
 
data yesno1; 
 set maxmin; 
 sample=&_i_; 
 yesno=0; 
 if min1>1.73 and max1<5.97 and min2>3.63 and max2<12.51 then yesno=1; 
 if min1=0 and max1=0 and min2=0 and max2=0 then noest=1; 
run; 
 
 
data all; 
set all yesno; 
drop _type_ _freq_; 
if yesno=. then delete; 
run; 
 
data all1; 
set all1 yesno1; 
drop _type_ _freq_; 
if yesno=. then delete; 
run; 
 
%end; 
%mend; 
 
%simulate(6,4); 
 
/*cleans the data and calculates the power for the simulated given study 
design*/ 
data all_anal; 
set all; 
if noest=1 then delete; 
run; 
 
proc means data=all_anal sum; 
var yesno; 
run; 
 
 
proc freq data=all_anal; 
tables yesno; 
run; 
 
proc means data=all sum; 
var noest; 
run; 
 
 
data all_anal1; 
set all1; 
if noest=1 then delete; 
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run; 
 
proc means data=all_anal1 sum; 
var yesno; 
run; 
 
 
proc freq data=all_anal1; 
tables yesno; 
run; 
 
proc means data=all1 sum; 
var noest; 
run; 
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