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Mechanism of Nickel Phyllosilicate Formation

by Laser Ablation in Liquid

Mallory G. John and Katharine Moore Tibbetts∗

Department of Chemistry, Virginia Commonwealth University, Richmond, VA

E-mail: kmtibbetts@vcu.edu

Phone: +1 804 828 7515

Abstract

One-step synthesis of nickel-phyllosilicate (Ni-PS) nanocomposites was achieved us-

ing a femtosecond-reactive laser ablation in liquid (fs-RLAL) technique. Focusing in-

tense femtosecond laser pulses onto a silicon wafer immersed in aqueous nickel nitrate

generated Ni-PS with high Ni loading in excess of 20 wt.% under alkaline pH conditions.

Analysis of the dissolved species in solution present after laser processing revealed that

silicic acid was the key dissolved ablation product that reacted with the nickel nitrate to

form the Ni-PS under alkaline conditions. When the solution was below pH 7, no silicic

acid was generated from ablation, and consequently no Ni-PS was formed in the dried

product. The mechanism of Ni-PS formation from fs-RLAL of a silicon wafer immersed

in aqueous nickel nitrate solutions is discussed. Based on this mechanism, it is expected

that the fs-RLAL method will be capable of generating a variety of metal-phyllosilicates

from different metal salt precursors.
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1 Introduction

Metal-phyllosilicates (M-PS) are a class of minerals comprised of layered tetrahedral and

octahedral sheets of silicates and metal cations. The tetrahedral sheets contain a ‘T’ cation

bound with four oxygen atoms, while the octahedral sheets contain a ‘M’ cation bound to

six anions which may be O, F, Cl, or OH. Phyllosilicate structures can be composed of a 1:1

phase, made up of one repeating tetrahedral sheet and one repeating octahedral sheet, or

a 2:1 phase comprised of repeating layers of one octahedral sheet sandwiched between two

tetrahedral sheets.1 The T cations are Si4+, Al3+, or Fe3+, while the octahedral M centers are

usually Mg2+, Mn2+, Ni2+, Co2+, Cu2+, Zn2+, etc. By choosing combinations of the T and

M cations, the resulting size of the tetrahedral and octahedral centers can lead to a range of

phyllosilicate morphologies include sheets and nanotubes.1–3 Figure 1 displays the 2:1 and

1:1 phases of nickel phyllosilicate with Si4+ and Ni2+ as the T and M centers, respectively.

Figure 1: Nickel-phyllosilicate (Ni-PS) as 2:1 and 1:1 phases. Figure adapted from Bian et
al.1

Phyllosilicate materials have gained attention recently in applications including water

splitting,4–6 supercapacitors,7,8 lithium batteries,9,10 drug delivery,11,12 and catalysis.1,13–17

The ability to substitute the T or M centers makes phyllosilicates beneficial for a variety of

catalytic reactions, where the highly dispersed M2+ octahedral cations may be reduced in a
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separate step, leading to highly dispersed ultrasmall M0 clusters with high catalytic activity.

For example, Ni0 nanoparticles were formed over silica by H2 reduction of a 2:1 nickel-

phyllosilicate (Ni-PS) phase, which exhibited high activity and stability toward methane

reforming from CO2.18,19 The key to the stability of this material is that the unreduced

Ni2+ centers act as anchoring sites for the Ni0 nanoparticles, preventing sintering. Phyllosil-

icates with other transition metals allow for high selectivity to catalytic reactions: copper

phyllosilicates (Cu-PS) have high selectivity to methanol from CO2 reduction as well as

carbon-oxygen bond hydrogenation,15,20,21 while cobalt-phyllosilicates (Co-PS) are active to-

wards the Fischer-Tropsh reaction16 and the kinetically sluggish oxygen evolution reaction

(OER) half reaction of water splitting.5

Metal-phyllosilicates are most commonly synthesized through a variety of wet chemical

approaches, including hydrothermal, deposition-precipitation, strong electrostatic adsorp-

tion, and ammonia evaporation.1,2,22–26 In these methods, the oxidic support such as silica

can be prepared from the Stöber method, from sol-gel synthesis, or a monomer silica source

such as tetraethyl orthosilicate or silicic acid.1,2,7 Subsequent introduction of the metal com-

plex precursor to interact with the support material is conducted by heating up the slurry or

solution.1,27 The three key factors to fabricating M-PS is (a) a silica source, (b) a metal pre-

cursor, and (c) an alkaline environment (to dissolve the outer layer of silica).1 Once formed,

M-PS can be subject to a reducing step to form M0 clusters anchored to the phyllosilicate

structure through the unreduced M2+ sites.13,28,29

Recently, we reported the one-step synthesis of sub-3 nm Cu2O clusters dispersed over

copper-phyllosilicate (Cu-PS) using a laser ablation in liquid (LAL) technique in which

intense laser pulses were focused on the surface of a silicon wafer immersed in an alkaline

solution of Cu(NO3)2.30 LAL comprises simple, versatile, and green synthesis strategies that

employ photons to drive synthesis of a variety of nanomaterials.31–34 For instance, LAL has

been used to synthesize highly complex structured nanomaterials including Ni-Fe layered

double hydroxides,35 PtCo/CoOx nanoalloys,36 and structurally disordered CoFe2O4/CoO
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materials,37 all of which have promising properties for catalytic applications. In the case of

our femtosecond-reactive LAL (fs-RLAL), the interaction between intense ultrashort pulses

and the immersed silicon wafer results in the lattice electrons absorbing the laser energy and

escaping into the surrounding liquid. The resulting electron-deficient Si lattice undergoes

Coulombic explosion due to the charge repulsion, ejecting out highly reactive silicon atoms

and ions into the solution.30,38–42 When the solution contains a metal salt such as Cu(NO3)2,

the ejected silicon atoms and ions can react with nearby Cu2+ cations to form nanocomposites

containing both copper and silicon.30

Our recent work highlighted the role that the precursor solution pH played on the product

morphology when ablating a silicon wafer in Cu(NO3)2 solutions, where low pH formed Cu-

core/silica shell nanoparticles while alkaline conditions formed Cu2O/Cu-PS.30 In this work,

we investigate the reaction mechanisms underlying phyllosilicate formation by identifying

the dissolved species present in solution after ablation and the roles they play in forming

nickel-silica nanostructures. This was achieved by ablating a silicon wafer immersed in water

and aqueous solutions of Ni(NO3)2 over a range of pH conditions. The key silicate species

generated from the ablation plasma that reacted with the nickel cations to Ni-PS was silicic

acid, which was only present at pH 10 and higher. The results, combined with our previous

report of Cu-PS,30 suggest that alkaline reaction conditions can be applied as a general

method to prepare M-PS using fs-RLAL.

2 Methods Section

2.1 Materials

Silicon wafers (n-doped, (111)-oriented, single side polished, 300 µm thick, NOVA elec-

tronic materials), potassium hydroxide (KOH, Fisher), and nickel(II) nitrate (Ni(NO3)2,

Fisher) were used as received. Stock and working solutions were prepared with purified

water from a Millipore Ultrapure water system (resistivity is 18.2 MΩcm−1 at 25◦C).
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2.2 Sample Preparation

Working solutions were prepared directly in a 15 mL 10×40×40 mm glass cuvette from

Ni(NO3)2 (50 mM) and KOH (500 mM) stock solutions. Table 1 displays the sample name

and the solution composition of all samples prepared. The cuvette was equipped with a stir

bar and a precut silicon wafer and irradiated for 120 min (details in Section 2.3). After

irradiation was complete, the solution pH was recorded, and the sample was centrifuged

for 90 min at 13,000 rpm, washed with water and repeated. The first supernatant was

collected for electrospray ionization-mass spectrometry (ESI-MS) and inductively coupled

plasma-optical emission spectroscopy (ICP-OES) analysis, and the powder was collected for

characterization described in Section 2.4.

Table 1: Sample names and solution composition prepared in this work.

Sample Name mM Ni(NO3)2 mM KOH Initial pH
silica-5.9 0 0 5.9±0.05
silica-7.8 0 0.02 7.8±0.45
silica-10.3 0 0.2 10.3±0.04
silica-11.7 0 5 11.7±0.01
silica-Ni-5.9 2 0 5.9±0.01
silica-Ni-8.3 2 1 8.3±0.06
silica-Ni-10.6 2 5 10.6±0.10
silica-Ni-11.8 2 10 11.8±NA

2.3 Instrumentation

The laser ablation setup has been described in detail elsewhere.30,41 Briefly, a Ti:sapphire-

based chirped-pulse amplifier (Astrella, Coherent, Inc.) delivering 7 mJ, 30 fs pulses with

bandwidth centered at 800 nm at a 1 kHz repetition rate was attenuated to 200 µJ for all

ablation experiments. The silicon wafer was placed approximately 10 mm in front of the

focal point of a f = 50 mm lens; the high numerical aperture lens ensures no filamentation

occurs on the window of the cuvette or in the aqueous solution prior to interaction with
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the Si wafer. The ablation spot size was 85 µm in diameter based on measurements of an

ablated Si wafer with an optical microscope.

Samples were generated using 200 µJ pulses, corresponding to a laser fluence of 3.5 J

cm−2 and an intensity of 1.2×1014 W cm−2. The sample cuvette was placed on a miniature

stir plate (Thermo Scientific) mounted to x- and y- motorized translation stages (Thorlabs).

The stages were mounted on a manually controlled z-direction stage (Thorlabs), which was

adjusted to focus the laser beam onto the Si wafer. The cuvette was translated in the x-

and y- directions at a rate of 0.5 mm/s during the irradiation experiments to move the laser

focus across the Si wafer.

2.4 Characterization

Transmission Electron Microscopy (TEM) TEM images were collected on a

JEOL JEM-1230 TEM at 120 kV. Samples were prepared by drop-casting the re-dispersed

powder pellet onto a carbon-coated copper grid (100 mesh, Ted Pella, Inc.) and left to dry

for at least 24 hr at room temperature.

Scanning Electron Microscopy-Energy Dispersive X-ray Spectroscopy (SEM-

EDX) SEM-EDX was carried out on a Hitachi FE SEM SU-70 (spatial resolution 1.0 nm)

equipped with an Energy Dispersive X-ray Spectroscopy (EDX) detector. Images were ob-

tained at 10 keV and elemental analysis was conducted at 20 keV, with ZAF standardless

quantification employed for EDX measurements. Samples were prepared by depositing the

dried powder pellets onto conductive carbon tape stabilized on an aluminum stage.

X-ray Diffraction (XRD) XRD was conducted on a Panalytical Empryrean Diffrac-

tometer with CuKα radiation (λ = 0.15418 nm) at 40 kV and 45 mA, with scanning angle

(2θ) of 10−90◦ and a gonio focusing geometry. Samples were prepared for XRD analysis by

drying the centrifuged pellet under vacuum at room temperature and collecting the dried

powder.

X-ray Photoelectron Spectroscopy (XPS) XPS was conducted on a PHI VersaProbe
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III Scanning XPS Microprobe with a monochromatic Al Kα X-ray source (1486.6 eV) run

at 25 W and 15 KV, with a pass energy set to 112 eV for survey scans and 69 eV for high

resolution spectra. A spot diameter of 100 µmwas irradiated using a take off angle of 90◦, and

a detector was situated at an angle of 45◦. Charge neutralization was achieved by employing

an ion gun and a flood gun during the analysis. Samples were prepared by depositing the

dried powder onto conductive carbon tape. Sample analysis was carried out using CasaXPS

Software version 2.3.19PR1.0, employing Gaussian and Lorentzian convolution to fit the

spectral lines, and all high resolution spectra were corrected by shifting the C1s peak at

284.8 eV.

Fourier Transform Infrared Spectroscopy (FTIR) FTIR analysis was conducted

on a Nicolet iS50 FTIR spectrometer equipped with a mid- and far- IR-capable diamond

ATR. Spectra were obtained using 32 scans in the range of 4000 to 400 cm−1 with 5 cm−1

resolution. Samples were prepared for FTIR analysis by drying the centrifuged pellet under

vacuum at room temperature and collecting the dried powder.

Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) ICP-

OES was carried out on a Varian VISTA-MPX inductively coupled plasma optical emission

spectrometer. Analysis of Ni content in the supernatant was achieved by centrifuging the as-

prepared samples at 13,000 rpm for 90 min followed by filtering of the supernatant solution

through a 0.22 µm cellulose filter, and dispersed in 6 v/v% HNO3 in water. Calculations

based on external calibration curve prepared from a 1000 ppm Ni stock (Inorganic Ventures).

Calibration curve is provided in Figure S1 in the Supporting Information.

Electrospray Mass-Spectrometry (ESI-MS) ESI-MS data were run on an Orbitrap

Velos from Thermo Electron in the Mass Spectrometry facility at VCU. The spray voltage

was operated at 3.5 V using a flow rate of 0.7 µL/min. Data was collected using LTQ-Tune

and visualized with Qual Browser (Thermo XCalibur software). Samples were prepared by

filtering (0.22 µm cellulose) the supernatant (13,000 rpm for 90 min) and mixing 1:1 with

acetonitrile.
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3 Results and Discussion

3.1 Characterization of Dissolved Species in Solution

The prepared samples from Table 1 were centrifuged for 90 min at 13,000 rpm to ensure

that all clusters and nanoparticles were separated out into the pellet, and the species present

in the supernatant were only the dissolved species. ICP-OES and SEM-EDX were used

to quantify the Ni content in the supernatant (as ppm) and the washed pellet (as wt.%),

respectively, and the results are displayed in Figure 2, with numerical values provided in Table

S1 in the Supporting Information. The silica-Ni-pH 5.9 sample had the highest concentration

of Ni in the supernatant at 117.5 ppm, and the concentration of Ni in the supernatant

decreased as the precursor solution pH increased up to pH 10.6. Alternatively, the wt.% Ni

quantified in the dried pellets shows an inverse relationship to the Ni content quantified in

the supernatant. The lowest wt.% Ni of 0.47±0.08 was in the silica-Ni-pH 5.9 pellet, and

increased with solution pH up to 29.3±3.6 wt.% in the silica-Ni-pH 11.8 sample.

Figure 2: Nickel content in supernatant (left y-axis) and in dried pellet (right y-axis) (a);
pH change of solutions before and after irradiation (b).

The precursor solution pH decreased after laser irradiation was complete, and the mag-

nitude of this decrease was affected by the initial solution pH. Figure 2b displays the final
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solution pH versus initial solution pH for all silica and silica-nickel samples, with numerical

values provided in the Supporting Information, Table S1. The pH change was dependent

upon the initial solution pH, and not on the added Ni(NO3)2, as the data points of the silica

and silica-Ni samples are nearly overlapping. For the solutions near an initial pH of 6, nearly

no pH change was observed from laser irradiation, as the data points are near the plotted

line with a slope of one. As the initial pH increased, the final pH decreased, with a maximum

decrease of ∼2 pH units for the two highest pH samples pH 10.6 and 11.8.

Because the change in solution pH upon laser irradiation was dependent upon the initial

solution pH, the solution-phase silicate species generated in the low- and high-pH samples

were characterized. Figure 3a and b display ESI-mass spectra of the collected supernatants

of four samples at the low and high pH conditions. In Figure 3a the mass spectra of the

silica-pH 5.9 and silica-Ni-pH 5.9 are compared, with peaks labeled at 76 m/z and 244

m/z. The major peak at 76 m/z in the silica-pH 5.9 sample corresponds to deprotonated

metasilicate, with the structure provided in Figure 3. The metasilicate peak disappeared

in the silica-Ni-pH 5.9, and a separate peak located at 244 m/z formed, corresponding to a

[(H2O)5NiOSi(H2O)2O]– (Ni-O-Si) monomer species, with the structure provided in Figure 3.

The presence of metasilicate upon ablation in water, along with its disappearance and sub-

sequent formation of the Si-O-Ni monomer species upon the addition of Ni(NO3)2, suggests

that the metasilicate species plays a role in forming the Si-O-Ni monomer. Previous reports

on the formation of Ni-PS have identified the formation of this Ni-O-Si monomer species

as being the most favorable compound formed at lower pH ranges.43,44 When the Si wafer

was ablated in high pH solutions, the metasilicate peak is present in both solutions without

(silica-pH 11.7) and with Ni(NO3)2 (silica-Ni-pH 10.6) (Figure 3b; spectra are normalized to

the intensity of the metasilicate peak at 76 m/z). An additional peak is present at 95 m/z,

which is assigned to deprotonated silicic acid. In the silica-Ni-pH 10.6 spectrum, a relative

decrease in the 95 m/z species is observed upon addition of the Ni(NO3)2 to the precursor

solution. Moreover, no peak at 244 m/z is present in the silica-Ni-pH 10.6 spectrum. Other
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peaks are assigned to a hydrated Ni(OH)2 species (127 m/z) and a silicate-dimer (155 m/z).

Since no major Ni-containing peaks were identified in this spectrum, it is likely that the

majority of the nickel is found in the separated dried powder. It should be noted that the

contribution of dissolved silicon from the glass cuvette is negligible, and the dissolved silicate

species detected in the ESI-MS in Fig. 3a and b correspond to the ablated Si wafer. Calcu-

lations to determine the contribution from the glass cuvette are provided in the Supporting

Information.

Figure 3: ESI-MS patterns for silica and silica nickel samples at different pHs.

3.2 Characterization of Solid Products

XRD patterns of the obtained solid powders in Figure 4 contain a broad peak near 25◦,

corresponding to amorphous silica.45 The weakly intense peaks located at 2θ = 28.5◦, 47◦,

56◦, 69◦, and 76◦ correspond to the (111), (220), (311), (400), and (331) planes of fcc-silicon,

and the cell parameter was calculated to be a = 0.544±0.002 nm, in agreement with the

value of fcc-silicon (JCPDS number 27-1402).45 These peaks are present in both the silica-

and silica-Ni samples, with more intense peaks present in the silica samples prepared below

pH 11.7. The fcc-silicon peaks are weakly visible in all silica-Ni samples, and decrease in

intensity in the silica-Ni-10.6 and silica-Ni-11.8 samples. The silica-Ni-pH 8.3, pH 10.6, and
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pH 11.8 samples also have broad peaks located at 2θ = 34◦ and 61◦ that increase in intensity

with increasing solution pH, with an additional peak near 73◦ in the silica-Ni-pH 11.8 sample.

These peaks are consistent with reports of ill-crystallized nickel-phyllosilicate.13,18,46–49 The

silica-Ni-pH 5.9 pattern matches that of the XRD patterns of the nickel-free silica samples,

and does not have any peaks associated with the Ni-PS phase. As the solution pH increased

to 8.3, the silica-Ni-pH 8.3 pattern has both the fcc-Si peaks along with very weakly intense

peaks for Ni-PS, corresponding the presence of both the fcc-Si and a small amount of Ni-PS

phase in this sample. The silica-Ni-pH 10.6 and pH 11.8 samples have more intense peaks

corresponding to the Ni-PS phase, and very weak peaks corresponding to fcc-Si. Thus, in

this pH range, the Ni-PS is the major phase present in the powder samples.

Figure 4: XRD patterns of silica and silica-nickel samples prepared from different precursor
pH solutions.

TEM images of the silica-Ni samples are displayed in Figure 5 and additional TEM images

are provided in Figure S2 in the Supporting Information. Representative TEM images of
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the silica samples are displayed in Figure 6. The silica-Ni-pH 5.9 sample in Figure 5a has

mostly amorphous silica with large spherical particles ∼50 nm in diameter, decorated with

small ∼1.5 nm particles, which are visible in the inset of Figure 5a. These small particles are

most likely comprised of silicon or silica, since this morphology is similar to that of the silica-

pH 10.5 TEM image in Figure 6a, and due to very low nickel loading in the dried powder

(Figure 2a). In the silica-Ni-pH 10.6 and pH 11.8 samples (Figure 5c–d), the morphology

transformed from the mostly amorphous silica and spherical particles in Figure 5a to that of

Ni-PS phase. The crinkly-like morphology of the Ni-PS visible in the insets of Figure 5c and

d is consistent with the morphology of Ni-PS from previous reports.1,13,49–51 The silica-Ni-pH

8.3 sample has a combination of amorphous silica and the Ni-PS structure, as seen in the

inset of Figure 5b. The morphology of the samples from TEM corroborate the XRD patterns

in Fig 4, and confirm that increased solution pH results in the formation of an ill-crystallized

Ni-PS structure.

FTIR spectra are displayed in Figure 7 with inset (a) of the ν(OH) stretching region and

(b) of the Si−O and δ(OH) bending region. The silica-pH 7.8 is displayed as a representative

spectrum of the silica-only samples, as they were similar across the pH range (Supporting

Information, Figure S3). The FTIR spectra of silica-pH 7.8 and silica-Ni-pH 5.9 were similar,

with absorbance bands corresponding to the isolated OH groups of the silica support (3745

cm−1), and the antisymmetric (1075 cm−1) and symmetric (800 cm−1) stretching bands of

Si−O of the SiO4 tetrahedra in silica.18,50,52 This result suggests that the key components

in the silica-Ni-pH 5.9 correspond to the silica support, with no features consistent with

nickel-containing phases. The silica-Ni-pH 8.3 spectrum had peaks at 3745 cm−1, 1075 cm−1

and 800 cm−1 that resembled the silica-7.8 and silica-Ni-pH 5.9 spectra. An additional

absorbance at 670 cm−1 was identified that was not observed in the two other spectra, and

corresponds to the δ(OH) bending mode of the 1:1 Ni-PS structure.18,50,52 The silica-Ni-pH

10.6 sample lacks the 3745 cm−1 feature, exhibits a decrease in absorbance at 800 cm−1,

and has a shift in the 1075 cm−1 peak to 1020 cm−1. These spectral features are consistent
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Figure 5: TEM images of silica-Ni samples at pH 5.9 (a), 8.3 (b), 10.6 (c), and 11.8 (d).

Figure 6: TEM images of silica NPs generated at pH 10.5 (a) and in water at pH 5.9 (b).
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with the disappearance of the isolated OH groups of silica and the formation of Si–O–Ni

bonds of Ni-PS. The observed 1020 cm−1 frequency corresponds to the 2:1 Ni-PS phase; the

1:1 Ni-PS phase would be expected at 1005 cm−1.52,53 The silica-Ni-pH 10.6 sample also

exhibits a new broad feature around 650 cm−1. This feature could arise from the δ(OH)

bending mode of a 1:1 Ni-PS phase at 670 cm−1, an ill-crystallized α-Ni(OH)2 structure at

640 cm −1, or both.35,49,52 In the silica-Ni-pH 11.8 spectrum, this feature has an even more

asymmetric absorbance in the 640 cm−1 range than near 670 cm−1, which suggests a greater

contribution from Ni(OH)2. The silica-Ni-pH 11.8 also contains a small but sharp peak at

3645 cm−1 (inset (a)), corresponding to the ν(OH) stretching vibration in either the 1:1

Ni-PS phase or in β-Ni(OH)2.35,52

Figure 7: FTIR spectra of silica and silica-nickel samples prepared from different precursor
solution pH.

To determine the origin of the sharp peak at 3645 cm−1 in the silica-Ni-pH 11.8 spectrum,

the precursor Ni(NO3)2 solution was centrifuged and dried (13,000 rpm, 90 min) and the

FTIR spectrum of the collected powder is displayed in Figure 7 (Ni(OH)2 (synth.)). This

spectrum has a sharp peak at 3640 cm−1, confirming that this feature in the silica-Ni-pH

11.8 spectrum is due to unreacted, precipitated Ni(OH)2 from the precursor. Additionally,

the absorbance in inset (b) of Figure 7 of the Ni(OH)2 (synth.) spectrum is near 520 cm−1,
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consistent with the δ(OH) bending mode of the β-Ni(OH)2 phase.35,52 Thus, the absorbance

band of the silica-Ni-pH 8.3, pH 10.6, and pH 11.8 samples near 640 cm−1 likely arise from

the Ni(OH)2 phase. The precursor solution pH increase from the silica-Ni-pH 8.3 to the silica-

Ni-pH 11.8 samples presents shifts in absorbance intensity and frequency that are consistent

with the formation of Ni-PS and Ni(OH)2. The silica-Ni-pH 11.8 sample also contains some

unreacted, β-Ni(OH)2, as evidenced by the spectrum of its dried precursor.

The Ni2p3/2 atomic orbital spectra obtained with XPS from silica-Ni-pH 8.3, 10.6, and

11.8 are displayed in Figure 8. No Ni was detected in the silica-Ni-pH 5.9 sample. In all

three samples the surface Ni atoms possess a Ni2+ charge state due to lack of features in

the range of Ni0 (852.7 eV).54 The silica-Ni-pH 10.6 and 11.8 spectra are fit to two peaks

assigned to the 1:1 and 2:1 Ni-PS phases, and the silica-Ni-pH 8.3 spectrum was fit with

one peak at 855.3 eV assigned to the 1:1 Ni-PS phase.35,50,54 Because the binding energy of

Ni(OH)2 at 855−856 eV overlaps that of the 1:1 Ni-PS phase (885.5 eV), it is difficult to

definitively assign the peaks in this binding energy range. The similar binding energy of

Ni(OH)2 to that of the Ni in 1:1 Ni-PS is due to the octahedrally coordinated Ni2+ to both

Ni-O-Si and Ni-OH bonds in the 1:1 structure as seen in Figure 1. While it is difficult to

definitively assign surface Ni species to Ni(OH)2 or Ni-PS with XPS, the the spectra of the

silica-Ni-pH 10.6 and 11.8 samples are consistent with Ni-PS phases observed with XRD,

TEM, and FTIR.

3.3 Discussion

Analysis of solution phase silicate species generated from laser ablation and characteriza-

tion of the nickel-containing products revealed that silicic acid is the key species generated

under alkaline conditions (above pH 10) that reacts with nickel cations in solution to form

Ni-PS. When no KOH was added to the nickel nitrate precursor solution, no silicic acid was

generated, and a Si-O-Ni monomer was the major product that remained in solution. The

generation of the silicic acid at high solution pH conditions drove the decrease in solution

15



Figure 8: High resolution XP spectra of Ni2p3/2 atomic orbital for silica-Ni samples prepared
at different pH solutions.
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pH after laser irradiation, independent of the addition of nickel nitrate to the precursor. The

magnitude of solution pH decrease after irradiation corresponds to the relative amount of

silicic acid generated. Solutions of pH ∼6 had no drop in pH after irradiation, and no peak

at 95 m/z in the ESI-MS. The samples with initial pH ∼10.6 and ∼11.8 decreased to ∼8.6

and ∼9.9, respectively, while the intermediate pH ∼8 dropped only one pH unit, suggesting

that a smaller amount of silicic acid was generated in this pH range. Analysis of the dried

silica-Ni powders confirmed that silicic acid is the major species driving the formation of

Ni-PS. The silica-Ni-pH 5.9 sample had nearly identical FTIR or XRD features as the silica-

only samples, while the silica-Ni-pH 10.6 sample exhibited distinct features consistent with

Ni-PS. The silica-Ni-pH 8.3 sample had a mixture of XRD, FTIR, and TEM features to that

of the silica-Ni-pH 5.9 and the silica-Ni-pH 10.6 samples, consistent with the availability of

less silicic acid for Ni-PS formation. Figure 9 displays a summary of the proposed reaction

process to form the solution-phase compounds and solid-phase products in this investigation.

Figure 9: Proposed reaction mechanisms based on dissolved species generated from silicon
wafer ablation in various solutions.
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It should be noted that the formation of nickel hydroxide (Ni(OH)2) is common at high

solution pH, and precipitates above pH 9.52 Because the silica-Ni-pH 11.8 sample dropped to

a pH of 9.9 after laser irradiation, any unreacted nickel in the solution was likely incorporated

in the dried pellet as precipitated Ni(OH)2. FTIR analysis of the dried silica-Ni-pH 11.8

precursor confirmed the presence of β-Ni(OH)2 in the irradiated silica-Ni-pH 11.8 sample.

Thus, the 29.3 wt.% Ni in the dried powder represents both the Ni-PS and some unreacted

β-Ni(OH)2. In contrast, the 23.1 wt.% Ni in the silica-Ni-pH 10.6 sample represents the

Ni-PS phase, since the final solution pH of 8.6 is below the precipitation point of Ni(OH)2,

as evidenced by the 127 m/z peak corresponding to hydrated Ni(OH)2 in the supernatant

via ESI-MS.

The majority of synthesis approaches to Ni-PS include deposition-precipitation (D-P) and

hydrothermal treatments, where the silica source (silicic acid, sodium silicate, fumed silica)

is mixed with the nickel precursor (NiCl2, Ni(NO3)2), and the solution pH was controlled by

addition of urea. Investigations on the effect of the Si/Ni ratio, specific surface area (SSA)

of the silica precursor, and D-P reaction time have lead to the observations that the Si/Ni

ratio, the solution pH, and SSA of the silica source affected the relative yields of Ni(OH)2

as compared to 1:1 or 2:1 Ni-PS structures.1,43,44,52,53 Low SSA silica formed Ni(OH)2 over

silica in one report52 and Ni(OH)2 with 1:1 Ni-PS in a separate report.43 High SSA silica

and solution pH formed 2:1 Ni-PS, as long as the pH was below the Ni(OH)2 precipitation

threshold.43,52,53

In this work, silicic acid was generated directly in situ through the laser ablation process,

wherein ejected silicon atoms form silicic acid upon interaction with solution. The silicic

acid monomer was only observed in ESI-MS in the high pH samples of the silica-pH 11.7

and silica-Ni-pH 10.6 samples. In the two samples prepared at pH ∼6, a metasilicate species

was identified in ESI-MS, which was attributed to the [(H2O)5NiOSi(H2O)2O]– monomer

formation. Previous reports on the formation mechanism of Ni-PS structures have suggested

that silicic acid or its deprotonated (OH)3SiO
– form is responsible for the formation of this
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[(H2O)5NiOSi(H2O)2O]– monomer, which was suggested as an intermediate species in Ni-PS

formation.1,43,44,52,53 Our data do not support the above hypothesis, but suggest that the

metasilicate species is responsible for forming the [(H2O)5NiOSi(H2O)2O]– monomer, which

is not a Ni-PS intermediate. The silicic acid formed at high pH instead drives the Ni-PS

formation.

The ablation reaction conditions used to form Ni-PS in this work were similar to those

used in our recent publication reporting ultrasmall Cu2O nanoparticles dispersed over copper-

phyllosilicate (Cu-PS).30 In the latter work, Cu-PS formation was attributed to the silica

clusters becoming deprotonated and attracting nearby Cu2(OH) 2+
2 complexes due to strong

electrostatic attraction.30 However, the findings from this investigation identify the silicic

acid as the primary driver of metal-phyllosilicate formation. The formation of both Cu-PS

in our recent publication and the Ni-PS in this work demonstrate a general method of metal-

phyllosilicate synthesis using a laser ablation in liquid technique. The key to successfully

preparing metal phyllosilicates requires that the solution have a high enough pH to induce

silica dissolution resulting in silicic acid generated that may interact with the divalent metal

cations. Because both copper nitrate and nickel nitrate formed Cu-PS and Ni-PS under

similar experimental conditions, the specific metal salts used do not appear to play as large

of a role in the metal-phyllosilicate formation as the ablated silicate species do. These results

suggest that the laser ablation in liquid technique can become a versatile route to a variety

of metal phyllosilicate materials with very high metal loadings. These materials are expected

to provide exceptional thermal stability and high activity for catalytic applications.

4 Conclusion

The synthesis of nickel-phyllosilicate with 23 wt.% Ni was achieved using the fs-RLAL

method by ablating a silicon wafer immersed in nickel nitrate solutions under alkaline condi-

tions. Analysis of the supernatants of irradiated solutions revealed that silicic acid was the
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key species driving the nickel-phyllosilicate formation when the solution pH was above 10.

The generation of silicic acid led to a decrease of solution pH by two pH units after laser

irradiation. In contrast, for irradiated solutions of nickel nitrate and water at ∼pH 6, the

solution pH did not change after irradiation, no silicic acid was detected in the supernatants,

and nearly no nickel was detected in the dried powder. Instead, a metasilicate species as the

major product in when the silicon wafer was ablated in water, while a Si-O-Ni monomer was

the major species detected when nickel nitrate was added to the solution. The results from

this work and from our recent report30 identify a general mechanism of metal-phyllosilicate

synthesis using laser ablation liquid under alkaline conditions. The metal cation complex

does not appear to play a large role in metal-PS formation, but rather the solution pH

drives the metal-PS formation due to the silicic acid generated from the ablation process.

This synthesis method may be applied to other divalent metal cations to fabricate metal-

phyllosilicates that may be used for catalytic applications.
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