Highway 66 Structural Foundation Redesign

Devyn Borum
Virginia Commonwealth University

Joshua Clarke
Virginia Commonwealth University

Lorenzo Dingcong
Virginia Commonwealth University

Korey Smith
Virginia Commonwealth University

Follow this and additional works at: https://scholarscompass.vcu.edu/capstone

Part of the Mechanical Engineering Commons, and the Nuclear Engineering Commons

© The Author(s)
Background

- Two lane automated miniature 10-pin bowling alley
- Customizable themes and furniture
- Standard length: 39' - 9 1/2" (Customized length available)
- Area needed to operate product: 9'-4" x 40'-1 1/2'
- Height Clearance: 8'-2 1/2'
- Prefabricated at QubicaAMF Lowville, NY facility
- +3000 units installed worldwide

Constraints

- Major Dimensions cannot be altered: height of sublane, overall width of lane pair, and length of individual segments
- Load bearing strength should be greater than or close to current design
- 10-15 year product life

Results

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Team Goal</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lower Structural Material and Labor Cost for (Lane Pair)</td>
<td>Lower by 10%</td>
<td>13.4% cost reduction</td>
</tr>
<tr>
<td>Lower overall structural foundation weight (Lane Pair)</td>
<td>Lower by 6%</td>
<td>13% or 234.61lb reduction</td>
</tr>
<tr>
<td>Lower Cubic Volume for Shipping (2 Lane Pairs)</td>
<td>Lower by 15%</td>
<td>2.4% or 57 ft³ reduction</td>
</tr>
<tr>
<td>Lower Shipping Length (2 Lane Pairs)</td>
<td>Lower by 15%</td>
<td>22% or 152 in reduction</td>
</tr>
</tbody>
</table>

Table 1: Final proposed results of the team goals based on the project objectives.

Preliminary Research

1. 1.25" Oriental Strand Board (OSB)
 - Benefits:
 - 56% initial cost reduction.
 - 13% weight reduction.
 - Standard thickness for OSB
 - Increase maneuverability for installers due to weight.
 - Initial calculations suggest no significant change in load capability.
 - Considerations:
 - Sub-lane height will decrease by 0.125".
 - Lane width reduced by 0.25".
 - Cost reduction will take a hit to correct changes.
 - Side screw splintering.

2. 30mm (1.18") thick Laminated Strand Lumber (LSL)
 - Benefits:
 - 47% initial cost reduction.
 - 9% weight reduction.
 - Commonly used for QubicaAMF full size lanes.
 - Less susceptible to splintering compared to OSB.
 - Considerations:
 - Sub-lane height will decrease by 0.1939".
 - Width of lane reduced by 0.3878".
 - Cost reduction will take a hit to correct changes.

3. 1.375" thick Laminated Strand Lumber (LSL)
 - Benefits:
 - 64% initial cost reduction.
 - Material change will not contribute to further mods.
 - Less susceptible to splintering compared to OSB.
 - Considerations:
 - Sub-lane height will decrease by 0.1939".
 - Width of lane reduced by 0.3878".
 - Decreased maneuverability for installers due to weight.

Graph 1: Weight comparison of all proposed wood dimensions.

Conclusion

- Reduce 1.375" thick OSB to 1.25" thick OSB (Black, Red, Green)
- Increase cross-wise vertical board (196-3751-00B) by ½" (Black)
- Increase Kickback Brackets length by 1/8"
- Increase thickness of Sublane Particle Board material from 1" to 1.125" (Grey)

Table 2: Density comparisons of each proposed wood density.

<table>
<thead>
<tr>
<th>Material</th>
<th>Density (kg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>809.61</td>
<td>700.00</td>
</tr>
<tr>
<td>808.85</td>
<td></td>
</tr>
<tr>
<td>640.27</td>
<td></td>
</tr>
<tr>
<td>640.27</td>
<td></td>
</tr>
<tr>
<td>1.375" OSB</td>
<td></td>
</tr>
<tr>
<td>1.25" OSB</td>
<td></td>
</tr>
<tr>
<td>30mm LSL (30mm)</td>
<td></td>
</tr>
<tr>
<td>30mm LSL (1.375")</td>
<td></td>
</tr>
</tbody>
</table>