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Electrolyte pore/solution partitioning by expanded grand canonical
ensemble Monte Carlo simulation
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1
Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23221, USA

2
Faculty of Science, J. E. Purkinje University, 400 96 Ústí nad Labem, Czech Republic

(Received 3 January 2015; accepted 23 February 2015; published online 27 March 2015)

Using a newly developed grand canonical Monte Carlo approach based on fractional exchanges of
dissolved ions and water molecules, we studied equilibrium partitioning of both components between
laterally extended apolar confinements and surrounding electrolyte solution. Accurate calculations of
the Hamiltonian and tensorial pressure components at anisotropic conditions in the pore required
the development of a novel algorithm for a self-consistent correction of nonelectrostatic cut-off
effects. At pore widths above the kinetic threshold to capillary evaporation, the molality of the salt
inside the confinement grows in parallel with that of the bulk phase, but presents a nonuniform
width-dependence, being depleted at some and elevated at other separations. The presence of the salt
enhances the layered structure in the slit and lengthens the range of inter-wall pressure exerted by the
metastable liquid. Solvation pressure becomes increasingly repulsive with growing salt molality in the
surrounding bath. Depending on the sign of the excess molality in the pore, the wetting free energy of
pore walls is either increased or decreased by the presence of the salt. Because of simultaneous rise in
the solution surface tension, which increases the free-energy cost of vapor nucleation, the rise in the
apparent hydrophobicity of the walls has not been shown to enhance the volatility of the metastable
liquid in the pores. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4914461]

I. INTRODUCTION

The advent of highly porous materials, from organome-
tallic networks1 to graphitic foams2 and composites,3 is giving
rise to renewed interest in fluid adsorption in nanoporous
substances. Pore permeation by electrolytes is important in
a diverse range of applications, from heterogeneous catalysis
to energy storage to separation techniques. Nanoconfined
liquids feature significant differences from their macroscopic
counterparts.4 Predicting the composition of confined solu-
tions requires the understanding of the equilibrium with the
surrounding bath, which determines solvent and solute chem-
ical potentials. Such understanding can be gained primarily
from studies at the molecular level. Molecular modeling repre-
sents a powerful tool in characterization of nano-confined
solutions. Grand Canonical Monte Carlo (GCMC) simula-
tions,5–7 which bypass costly computations of the bulk phase,
have traditionally represented the method of choice in studies
of adsorption equilibria in aqueous systems. Phenomena of
interest include pore condensation (from gaseous surrounding)
or evaporation,8,9 infiltration from and expulsion to the liquid
bath,10–13 and composition changes in mixtures with selective
component affinities to nanopore material.14,15 The propensity
for ion adsorption depends on charge and permittivity of
confining walls, packing effects, and the extent of ion hydration
in narrow confinements.16,17 The interplay of these effects has
been considered in a number of Molecular Dynamics (MD)
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simulations.17–21 Quasi-grand canonical systems used in MD
simulations are restricted to confinements of finite lateral
dimensions, placed in a reservoir with a sizeable bulk-like re-
gion to maintain essentially unperturbed chemical potentials of
solution components. Long equilibration and sampling times
are typically necessary to capture constant chemical potential
situations by this technique. The use of open ensemble Monte
Carlo (MC) methods and particle insertion techniques in the
presence of ions, on the other hand, has typically been limited
to implicit solvent models.20,22–30 Huge free energy changes
associated with insertions or removals of ions (several hun-
dred kT for monovalent salts at ambient conditions) result
in prohibitively small exchange acceptances for ion pairs
in aqueous solutions (represented by either of conventional
molecular models) at ambient conditions.31,32 Recent studies
of bulk electrolytes showed the problem can be overcome
by replacing one-step ion exchange attempts with sequences
of incremental increases or decreases of ion coupling with
the environment.33–36 According to the expanded ensemble
Monte Carlo37 underlying these works, the fractional coupl-
ing for selected ion particles represents an additional degree
of freedom varying between zero for completely decoupled
particles and unity for a fully coupled ion pair. Subdividing
this interval to around 20 partially decoupled states has been
shown to secure finite transition acceptances and viable rate
of ion exchanges. Notwithstanding the biased distribution37 of
partially charged states, the method satisfies grand canonical
statistics in fully charged states, which are used in calculations
of structural and thermodynamic properties of the solution. In a
combination with the osmotic ensemble sampling, whereby the
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fluctuations in the volume replace transfers of water molecules,
the fractional ion approach allowed precise calculations of
chemical potentials and ultimately salt solubilities in a series
of model electrolyte systems.33–36

The present article describes an adaptation of the expanded
ensemble Monte Carlo to study the behavior of nanoconfined
salt solutions in equilibrium with (implicit) bulk phase, char-
acterized by fixed water and electrolyte chemical potentials.
We demonstrate the use of fractional GCMC changes for
both the ions and water molecules to present a computation-
ally viable sampling technique for confined electrolytes. A
novel algorithm is introduced to replace the conventional tail
correction associated with the truncation of noncoulombic
interactions in a strongly anisotropic system. The applica-
tion of the above methods is illustrated in the case of NaCl
solutions in laterally extended nanopores of planar geom-
etry (Fig. 1). We consider apolar confinements of widths
slightly above the kinetic threshold for capillary evaporation
of water,11,12,38–40 which persists in the pores in a metastable
liquid state.11,41,42 Earlier studies suggested the addition of salt
to render the solid/solution interface more hydrophobic,18,43

raising the question of possible destabilization of the confined
solution with respect to capillary evaporation.20 We determine
the amounts and interfacial distributions of confined water
and salt ions for different concentrations of bulk solution.
Well-defined charge layering, observed across entire pore,
significantly extends the range of interfacial perturbations
in the presence of the salt. To examine the effect of added
electrolyte on wall wettability and associated solvation force,
we estimate the changes in the solvation pressure acting on,
and wetting free energies of, confining walls as functions of salt
concentration in the bath. Our results reveal a non-monotonic
variation of excess salt molality and wetting free energy on the
width of the confining slit, which persists even at several nm
inter-wall separations. The observed interplay between molec-
ular packing effects and Coulombic and dispersion interactions
highlights the importance of all-atom simulation techniques
for studies of nanoconfined electrolytes. The approach we
describe in Sec. II overcomes major hurdles that have been

FIG. 1. A snapshot of the simulation cell with electrolyte solution between
a pair of hydrophobic plates. The system is periodically replicated in lateral
directions and maintains equilibrium with an (implicit) reservoir at ambient
conditions and fixed concentration of the salt.

impeding the use of Monte Carlo techniques in these complex
systems. In Sec. III, we present the results for main structural
and thermodynamic properties of our prototypical model sys-
tems. We discuss these results in the context of earlier studies
of related systems, which were primarily based on molec-
ular dynamics simulations.17–20,44,45 Section IV summarizes
main findings and briefly discusses the perspectives of Monte
Carlo approaches for studies of electrolytes in nanoparticle
dispersions, inside porous materials, or at submerged surface
corrugations in contact with unperturbed salt solution.

II. METHODOLOGY

A. Models

We model water using the standard SPC/E force field.46

For NaCl, we use the model of Joung and Cheatham47,48 (JC).
This model has been shown to produce reasonable results for
aqueous NaCl solutions at ambient conditions.34–36,48,49

The interactions between all types of particles in solution
are modeled by a sum of Lennard-Jones (LJ) interactions,

Ui j,LJ = 4εi j

�
σi j

ri j

�12

−
�
σi j

ri j

�6 (1)

and Coulombic interactions,

Ui j,Coul =
qiqj

4πε0ri j
, (2)

where εi j and σi j are, respectively, the LJ well-depth and LJ
size parameters, ri j is the distance between the interacting sites
i and j, qk is the charge at the center of the interacting site k,
and εo is the permittivity of vacuum. The models embody a
single LJ site that either coincides with the center of the oxygen
atom (O) for the water or the ion centers. We use the Lorentz-
Berthelot combining rules5 for the cross LJ parameters,

εi j =
√
εiiε j j, σi j =

σii + σ j j

2
. (3)

For the values of Lennard-Jones parameters, we refer the
reader to the original papers.46–48

We model interactions between the particles and walls of
the pore by two approaches. The first model considers smooth
walls (SW) represented by the integrated (9-3) Lennard-Jones
particle-wall potential7,11,12,14,15,50–52

Ui, SW = Ai

�
σiw

riw1

�9
− Bi

�
σiw

riw1

�3
+ Ai

�
σiw

riw2

�9
− Bi

�
σiw

riw2

�3
,

(4)

where riw1 and riw2 are the distances of particle i from the two
walls in the planar pore, Ai = 4/45πρwσiw

3εiw, Bi = 15/2 Ai,
ρw is the presumed uniform number density of interacting sites
of wall material, σiw and εiw are obtained by the Lorentz-
Berthelot rules and LJ parameters of the wall interaction
sites, σw and εw. To mimic hydrocarbon walls, we use ρw
= 0.0333 Å−3, εw = 0.6483 kJ mol−1, σw = 3.742 Å.

The second model considers walls with discrete interac-
tion sites representing butylated graphane surfaces,53 hereafter
called molecular walls (MW). These nonpolarizable surfaces
have similar wetting properties as self-assembled monolayer
(SAM)-coated substrates but possess a considerably simpler
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structure advantageous in computational setting.21,53,54 The
structure of the MW was prepared by a molecular dy-
namics simulation using a flexible model in united-atom
representation55 and then transformed to a rigid structure as
detailed in previous works.44,53,56 Interactions of the MW with
the solution are of Lennard-Jones type.44,53,56 Parameters of
interaction sites representing united-atom groups adopted from
Jorgensen et al.

55 had the following values: σCH3 = 3.905 Å,
σCH2 = 3.905 Å, εCH2 = 0.7866 kJ mol−1, σCH = 3.85 Å,
εCH = 0.3347 kJ mol−1, σC = 3.8 Å, εC = 0.2092 kJ mol−1.
For comparison with strongly hydrophobic systems previ-
ously studied in neat water,11,12,52,57 we adjust εCH3 to
0.3347 kJ mol−1 corresponding to contact angle ∼130◦ ± 2◦.

B. Methods

We simulate the solution confined between two infinite
parallel walls by a MC method based on grand canonical
approach.58 The solution in the nanopore is in equilibrium with
an implicit bulk reservoir (not simulated) with temperature T =
298 K, pressure P ∼ 1 bar, and molality mbulk ≤ 6 mol kg−1.
Chemical potentials in the nanopore, {µi}, i = 1 . . . t, where t

is the number of species in the solution, are equal to those in
the reservoir. Chemical potentials, therefore, represent input
parameters for the simulation of the solution in the nanopore.
Chemical potential values are available in recent literature36 in
the form of analytic functions of concentration for the NaCl
aqueous solution modeled by the SPC/E and JC force fields
at ambient conditions. These functions are, therefore, readily
used in the present work for the chemical potentials of NaCl
and of water,

µNaCl = µ
†
NaCl + 2RT ln m + 2RT ln(10)

×
�
− A

√
m

1 + B
√

m
+ bm + Cm

2 + Dm
3
�
, (5)

µH2O = µ
∗
H2O − 2RTmMH2O − RTMH2O ln(10)

×
�
bm

2 +
4
3

Cm
3 +

3
2

Dm
4 +

2A

B3 + B4√m

+
4A ln(B

√
m + 1)

B3 − 2A
√

m

B2 − 2A

B3

�
, (6)

where A = 0.5108, B = 1.4495, µ†NaCl = −391.278 kJ mol−1,
µ∗H2O = −240.301 kJ mol−1, b = 0.019 088, C = 0.021 530 7,
D = −0.001 335 6, and m stands for the reduced electrolyte
molality (mbulk/mol kg−1).

C. Implementation of the grand canonical Monte Carlo
method

During the simulation, a sequence of configurations is
generated as in the case of a constant numbers of particles,
volume, temperature (NVT) MC simulation, with an additional
MC step (for each independent species) changing the numbers
of particles {Ni} by {∆Ni}, i = 1 . . . t. Acceptance probability
criterion that governs this MC step34 is

Π({Ni} → {Ni + ∆Ni})

= min{1; [Πt
i=1

Ni!
(Ni + ∆Ni)!

(V βP
0)∆Ni]e(−β(∆U+∆Gp)},

(7)

where V is the volume in which new particles are created or
deleted (it should roughly match the interior of the nanopore
available to the particles for a good efficiency), β = 1/kBT , kB
is the Boltzmann constant, P

0 is the standard-state pressure
(1 bar), ∆U is the configurational energy change of the MC
step, and

∆G
p = −

�s

i=1
(µi − µ0

i)∆Ni (8)

is an externally prescribed free energy driving force (at fixed
pressure p), where µi and µ0

i are, respectively, the total chemi-
cal potential and the ideal-gas standard chemical potential per
particle of species i. Values of the ideal-gas standard chemical
potentials, µ0

i , are available in thermochemical compilations
such as the NIST-JANAF,59 Thermodynamics Research Cen-
ter,60 or Wagman tables.61 We use µ0

w = −228.582 kJ mol−1,
µ0

Na+
= 574.317 kJ mol−1, µ0

Cl− = −240.167 kJ mol−1.59

The acceptance probability for direct GCMC insertion/
deletion of ionic species in an aqueous solution via a single
MC step, determined by Eq. (7), is, however, virtually zero due
to the huge free energy change associated with the process.
To overcome this difficulty, we utilize a method previously
used for MC simulations of univalent salts in an osmotic
ensemble.34–36 The method is based on gradual insertion/dele-
tion of the particles via a sequence of values of a coupl-
ing parameter, λ j, corresponding to intermediate states (or
fractional particles). We break a general process of changing
particle counts

initial state
∆Gp

⇐⇒ final state (9)

into sub-processes, which represent transitions between neigh-
boring λ-states corresponding to fractional particles (frac.
part.), i.e.,

initial state(λ0 = 0)
∆GP

0⇐⇒ fract. part.(λ1)
∆GP

1⇐⇒ fract. part.(λ2) . . .
∆GP

M+1⇐⇒ final state(λM+2 = 1), (10)

where

∆G
p =
�M+1

j=0
∆G

p
j . (11)

The first subprocess changing λ0 to λ1 represents insertion of
new noninteracting particles. During the following steps, the
value of λ is gradually increased and the coupling of the frac-
tional particles to the system becomes stronger. More specifi-
cally, the interactions of the fractional particles are dependent
on the value of λ via a conveniently devised scaling scheme as
discussed further along Eqs. (14), (15), and (16). When λM+2
state is achieved, the fractional particles are fully interacting.
These subprocesses can be understood as virtual chemical
reactions turning existing fractional particles to new fractional
particles with different values of λ. These intermediate steps
are governed by Eq. (7) where {Ni} correspond to the numbers
of intermediate species and {∆Ni} are their changes due to
the reactions. For example, in the case of inserting a new
noninteracting molecule, Eq. (7) becomes

Π0 = min{1; V βP
0
e
−β∆Gp

0} (12)
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and for increasing the λ value of the molecule by the following
steps of Eq. (10),

Π j = min{1; e
−β(∆U+∆Gp

j)}, (13)

where the choice of the ∆G j
p values is explained later in this

section and given by Eq. (17).
In the case of GCMC simulation of NaCl aqueous solu-

tion, we consider two processes changing particle counts, cor-
responding to two instances of Eq. (9). One process changes
the amount of water in the nanopore. The other process changes
the amount of Na+ and Cl− ions simultaneously, thus maintain-
ing electric neutrality of the solution. The acceptance prob-
ability criteria governing individual subprocesses are readily
derived from Eq. (7), therefore these equations are not shown.
In a simulation, each of the two processes is selected with equal
probability 0.5, and its direction is also selected with equal
probability 0.5. This ensures that the microscopic reversibility
condition is satisfied. We only allow one such process to take
place at a time, i.e., no new process is started when another
process is still running, and only configurations with no inter-
mediate particles are used for the averaging of thermodynamic
and structural properties of the solution.

Regarding the scaling scheme, we employ equidistantly
distributed values of λ, i.e., λ j+1 = λ j + ∆λ, and the two
following approaches34 are applied simultaneously: (i) scale all
the site-site interaction potentials by a coupling parameter λ,
which is the product of the individual coupling parameters λ(i)
and λ( j) of the interacting molecules i and j, i.e., λ = λ(i)λ( j),
and (ii) add a term of the form [Rs (1 − λ)]2 to the squared
distance between the interacting sites, r

2. The scaled site-site
interaction potential then becomes

u(r,λ) = λu(r∗), (14)

where

r
∗ = {r

2 + [Rs(1 − λ)]2} 1
2 (15)

and u is a general site-site potential of any form. Rs is an ad

hoc parameter comparable to molecular size. This scheme is
applied both to interactions within the solution and to solution-
wall interactions in the case of molecular walls. In the case
of interactions of particles with smooth walls, approach (i) is
applied in the same way, i.e., Eq. (14) is applied to Eq. (4),
where u(r∗) represents the particle-wall potential, however, a
slightly modified formula

r
∗ = r + Rs(1 − λ) (16)

is used in rescaling the particle-wall distance. The parameter
Rs in Eq. (15) is adjusted to achieve roughly evenly distributed
acceptance ratios for all intermediate λ-states. Empirically, we
find it optimal to split the process of inserting or deleting a
water molecule to 5 subprocesses of different λ values and the
process changing the amount of NaCl to 15 such subprocesses,
and we use Rs = 2.5 Å.

We set the ∆G j
p according to

∆G
p
j = w j+1 − w j + (λ j+1 − λ j)∆G

p;

j = 0,1, . . . .,M + 1, (17)

where w j are biasing weights assigned to the intermediate λ
-states, and w0 = wM+2. The biasing weights w j are adjusted
during the equilibration phase of the simulation by an iterative
Wang-Landau (WL)62 procedure, which ensures that the rela-
tive occurrences of all λ-states are roughly equal during the
simulation.34,37

All values of w j are initially set to zero, w j
0 = 0. During

the equilibration period, when the system visits state λ j, the
corresponding value of w j is adjusted according to

w j = w0
j + ∆w. (18)

The parameter ∆w is initially set to a value that provides
reasonable convergence of the histograms of the λ-states dur-
ing the first iteration. The histograms are then collected, and
when the relative occurrences of all λ-states become reason-
ably high, the histograms are zeroed, ∆w is divided by two,
and the process repeated. The iterations are stopped when ∆w
meets a specified lower threshold. In addition, after each WL
iteration, a constant is added to all values of w j to set their
average to zero. This prevents numerical overflow of the w j-
values without affecting the relative occurrence of the λ-states.
Here, we use the initial value of ∆w = 5 × 10−23 J, we decrease
∆w and zero the accumulators when the relative occurrence
of each λ-state becomes greater than 0.7, and the iteration is
stopped when ∆w drops below 10−26 J. As this iteration takes
place in a relatively short part of the simulation, the choice
of the numerical values of these parameters is of marginal
importance provided that the values of wj converge. Our choice
is based on experience from previous simulations34 in bulk
solutions.

D. Treatment of the long range electrostatic
interactions and the Lennard-Jones tail corrections

As the simulated system is inhomogeneous, the standard
isotropic tail correction to LJ interactions, i.e., based on the
assumption g(r) ≈ 1 for r > rc, is not applicable. Special
methods thus have to be used. Here, we use a method based
on considerations similar to those introduced by Janecek63 and
later simplified by Blas et al.

64 We apply a cylindrical cut-off,
i.e., we consider the total energy of the system due to the LJ
interactions expressed by

ULJ =
1
2

�N

i=1

��
j ∈R(i)

c
u(ri j) +U

LRC
i

�
, (19)

where the notation means that the second sum runs over all
particles j located inside the cylinder of radius Rc with its axis
perpendicular to the planar pore and centered at the position
of particle i. U

LRC
i (LRC stands for long range correction)

represents the energy of intermolecular interactions between
particle i and all particles outside the cylinder. The Lennard-
Jones interactions of particle i with particles inside the cylinder
are calculated directly by Eq. (1) subject to Eqs. (14) and (15)
in the case of fractional particles. The interaction with particles
outside the cylinder is approximated by an interaction with a
continuum whose number density is homogeneous in the direc-
tions parallel to the pore. The number density of each species
k of the solution outside the cylinder is, therefore, considered
to be a function of only z, i.e., ρk = ρk(z), where z is the
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coordinate on the axis perpendicular to the pore. Furthermore,
ρk(z) is considered to be equal to the corresponding number
density ρk in(z) measured inside the simulation box. ρk in(z),
therefore, assumes the form of the Dirac δ function, which is
infinite at each z at which a particle is found in the simulation
cell and zero elsewhere. The spatial distribution of the number
density outside the central box, therefore, corresponds to a
set of infinite planes parallel to the pore and of given surface
number density, with a plane j found for each particle j in
the simulation box at the same position, z j. Fig. 2 depicts
a typical situation where particle j is outside the cylinder
and its corresponding plane j is represented by the light grey
color. The surface number density of each of these planes is
1/S where S = LxLy is the lateral area of the simulation cell.
Consequently,

U
LRC

i =
�N

j=1
u

LRC(zi j), (20)

where u
LRC(zi j) is the interaction energy of particle i with

the part of the plane j outside the cylinder and zi j ≡ |zi − z j |.
u

LRC(zi j) is obtained by integrating energetic contributions
with individual surface elements, dS = 2πRdR, of this plane
represented by the dark grey circle in Fig. 2, where the inte-
gration runs over the distance from the axis of the cylinder, R,
from Rc to∞,

u
LRC(zi j) =

2π
S

∞�

RC

RdR ui j(
�

R2 + z
2
i j). (21)

In the specific case of LJ potential,

u
LRC(zi j) =

4πεi j
S

�
�

σ12
i j

5(R2
c + z

2
i j)5
−

σ6
i j

2(R2
c + z

2
i j)2

�
� . (22)

Thus, ULJ is conveniently calculated as a sum of pair interac-
tions and 1/2 of a sum of interactions of all particles with their
own planes,

FIG. 2. The design for the tail correction of the cylindrical cut-off of non-
coulombic interactions. The contribution of atoms at vertical distance zij
and radial distance exceeding the cylindrical cut-off plane rxy > Rc from
the particle under consideration is approximated by a uniform area density
1/LxLy located at vertical distance zij and integrated over all radial distances
rxy > Rc.

ULJ =

N−1�

i=1

N�

j=i+1

�
uc(ri j) + u

LRC(zi j)
�
+

1
2

N�

i=1

u
LRC(0), (23)

where uc(ri j) = u(ri j) when particle j is within the cut-off
cylinder of particle i and uc(ri j) = 0 when it is outside the
cut-off cylinder. Analogous approach can be readily incor-
porated into any simulation program for anisotropic systems
as it introduces only a changed pair-additive potential and a
correction, independent on the positions of particles. We use
Rc = 9.8 Å, which is close to our preceding studies of the bulk
electrolytes34 and aqueous confinements.52,65

We treat long-ranged electrostatic interactions by the
standard Ewald summation method augmented by the Yeh-
Berkowitz correction66 for systems periodic only in lateral
dimensions. We use the value of the screening parameter
α = π/Rc and 15 × 15 × 19 vectors in the reciprocal space.
Nineteen vectors are used in the direction perpendicular to
the pore in which a distance of 10 nm separates the individual
periodic images of the pore.

The additional energy contributions discussed above are
scaled according to Eqs. (14) and (15). Specifically, u

LRC(zi j)
is multiplied by λ(i)λ( j) for interactions involving fractional
particles, and qi is multiplied by λ(i) for the calculation of
the Fourier-space contribution of fractional particle i. Com-
parisons between our results for pure water with or without
tail corrections show minor differences between the two ap-
proaches provided we use chemical potentials predetermined
at the level of approximation identical to the one used in the
confinement. The use of tail corrections is critical for electro-
lyte solutions since available chemical potentials correspond
to bulk systems treated with long-range corrections for LJ
interactions.34–36

E. Pressure tensor components and wetting free
energy calculation

Simulated averages of pressure tensor components in the
direction perpendicular to the pore, �P⊥� = �Pzz�, and lateral
to pore walls, �P�� ≈ �Pxx� ≈ �Pyy�, are estimated numerically
following earlier works16,51,67,68

�P⊥� =
1

βL2
xyLz

�
�N� + 1

2δz
ln�e−β∆U(Lz(1−δz)→Lz(1+δz))�

�
,

�P�� =
1

βL2
xyLz

×
�
�N� + 1

4δxy
ln�e−β∆U (Lx y(1−δx y)→Lx y(1+δx y))�

�
.

(24)

Equation (24) implies the equality �P�� = �Pxx + Pyy�/2, consis-
tent with the symmetry of the system. �N� is the average
number of particles in the simulation cell of base area Lxy

2

and height Lz, ∆U is the potential energy change associated
with scaling of cell dimensions and molecular coordinates by
the scaling factor αz = 1 + δz or αxy = 1 + δxy. To verify the
accuracy of the finite difference approximation67 for the excess
pressure components in Eq. (24), we used three values of δ
parameters spanning the interval 10−6 < |δ| < 10−4. Results
obtained by using different δ parameters from the specified
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FIG. 3. Number density profiles ρN
of oxygen atoms (red solid lines),
half the number density of hydrogen
atoms (black dotted lines), and com-
bined charge density ρq due to partial
charges on both atomic species (solid
black) in pores of diameter h = 1.64 nm
(left) or 2.7 nm (right). Horizontal lines
denote number density values in the
corresponding bulk reservoirs.

range mutually agree and their systematic errors due to the
numerical estimates of the derivatives are much smaller than
their statistical uncertainties due to the limited sampling of the
configurational space.

To provide an additional test of the above approach, we
also calculate �Pzz� directly from the net force per unit area of
the wall. The force is calculated by analytically differentiating
the total potential energy with respect to the z-position of the
wall even in the case of the molecular wall model because
the cylindrical cut-off and the long range corrections yield a

smooth potential energy function of z-positions of all particles
including the interaction sites constituting the wall. In all our
simulations, the values of Pzz calculated by Eq. (24) and by
the direct calculation of forces mutually agreed within their
statistical uncertainties.

The wetting free energy, defined as the change in grand
potential Ω({µi},h,T) per unit area (A) of wetted nanopore
walls, σ = (∂Ω/∂A){µi},h,T , is calculated according to the
relation σ = −�P��h/2, where h is the thickness of the pore.51

In contrast to macroscopic systems, in our nanosized pores, h

FIG. 4. Number of water molecules
(1st row) and Na+Cl− ion pairs (2nd
row) in 1.64 nm (left) or 2.7 nm wide
confinement (right) as a function of
NaCl molality in the bulk phase. 3rd
row: average molality inside the con-
finement, mc, as function of bulk NaCl
molality, mbulk, at the two widths of the
pore. Dotted lines are guide for the eye.
Solid lines are bulk values. The size of
the symbols denotes error bars.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
128.172.10.194 On: Fri, 27 Mar 2015 14:55:02



124705-7 Moucka, Bratko, and Luzar J. Chem. Phys. 142, 124705 (2015)

FIG. 5. Top: number density profiles
of oxygen atoms (red, solid lines), half
the number density of hydrogen atoms
(black, dotted lines), chloride (green,
dotted-dashed), and sodium (purple,
dashed) ions in pores of diameter h
= 1.64 nm (left) or 2.7 nm (right) at
bulk NaCl molality mbulk= 2 mol kg−1.
Bottom: net charge density profile
(black, solid) and charge densities
due to water molecules (red, dotted-
dashed), and salt ions (blue, dotted).
Horizontal lines denote number density
values of water (red) and of ions (blue)
in the corresponding bulk reservoirs.

is comparable to the range of molecular interactions, leading
to a detectable dependence of the wetting free energy on the
width of the pores.

III. RESULTS AND DISCUSSION

To isolate effects of added salt on structural and thermo-
dynamic properties of confined solution, we consider model
systems well characterized in the absence of ions.11,12,15,51 We
choose two confinement widths: h = 1.64 nm or 2.7 nm. For
the selected wall hydrophobicity (contact angle around 130◦),
both separations are well inside the cavitation regime, with
water persisting in the pore in metastable liquid state because
of appreciable kinetic barrier to cavitation.11,12,69 The narrower
of the two pores features the smallest separation shown to
consistently avoid evaporation at given hydrophobicity of the
walls and timescales accessible in practical simulations. As
illustrated in Fig. 3, when the narrower pore is filled with

neat water, the layered water structure extends through the
entire system. The bigger pore, on the other hand, is suffi-
ciently wide to comprise two nearly independent interfacial
layers separated by a region resembling bulk aqueous phase.
The subtle differences in the density profiles of oxygen and
hydrogen atoms reflect a bias in molecular orientations,50,57,70

which varies with the distance from the wall.43 As a result,
local charge densities due to the partial charges on oxygen and
hydrogen atoms are generally not cancelled, leading to notable
oscillations in charge density within the first few solvation
layers. These oscillations extend across entire pore at smaller
diameter h = 1.6 nm but become negligible around the mid-
plane of the wider pore with h = 2.7 nm.

Below, we examine if these properties change when the
pore is in equilibrium with a reservoir of saline solutions. We
use NaCl molalities ranging from 1 to 6 mol kg−1. The upper
molality limit is below NaCl solubility in bulk solution.34,35

Apolar confinement walls with weak affinity for the ions do not

FIG. 6. Top: number density profiles
of oxygen atoms (red, solid lines), half
the number density of hydrogen atoms
(black, dotted lines), chloride (green,
dotted-dashed), and sodium (purple,
dashed) ions in pores of diameter h
= 1.64 nm (left) or 2.7 nm (right) at
bulk NaCl molality mbulk= 4 mol kg−1.
Bottom: net charge density profile
(black, solid) and charge densities
due to water molecules (red, dotted-
dashed), and salt ions (blue, dotted).
Horizontal lines denote number density
values of water (red) and of ions (blue)
in the corresponding bulk reservoirs.
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FIG. 7. Density profiles between par-
allel molecular walls at separation h
= 1.64 nm in pure water (left) and
bulk NaCl molality mbulk= 4 mol kg−1

(right). Top: number density of oxy-
gen atoms (red, solid lines), half the
number density of hydrogen atoms
(black, dotted lines), chloride (green,
dotted-dashed), and sodium (purple,
dashed) ions. Bottom: total charge den-
sity (black, solid) and charge densities
due to water molecules (red, dotted-
dashed), and salt ions (blue, dotted).
Horizontal lines denote number density
values of water (red) and of ions (blue)
in the corresponding bulk reservoirs.

assist crystal nucleation71 and we observe no signs of precipi-
tation even when the confinement molality exceeds that of the
bulk phase. In the top two rows in Fig. 4, we show the numbers
of water and NaCl molecules inside the periodically repeating
confinement box with the area (2.5 nm)2 and width 1.64 or
2.7 nm. While the share of NaCl ion pairs in the confinement
increases with bulk concentration, the relative trends at the two
pore widths are markedly different. As shown in the 3rd row of
Fig. 4, the molality in the narrower confinement shows deple-
tion, while we observe enhancement relative to the bulk value
in the wider pore. Clearly, the molality inside the confinement
converges to the bulk value at large widths. The nonmonotonic
width dependence of the excess molality is explained in terms
of the oscillatory ion distributions illustrated in Figs. 5 and 6 for
mNaCl = 2 mol kg−1 and 4 mol kg−1. These distributions follow
the charge density layering in interfacial water, hence the pack-
ing efficiency of the ions is a nonmonotonic function of pore
width. The overall molality in the pores is also reduced due

to the exclusion of the ions from the first solvation layer (see
Figs. 5-7), with net effect more significant in narrower pores.
Apart from the differences due to the hydrophobic character of
pore walls in the present study, essential structural features in
the 1.64 nm pore conform to earlier MD results for confined
NaCl carbon pores of similar (1.6 nm) width.17

The majority of our calculations employ smooth confine-
ment walls with integrated (9-3) Lennard-Jones wall-water
interaction mimicking hydrocarbon.7,11,12,50,51 To verify if
perfectly smooth walls exaggerate the structure in the inter-
facial layer, in Fig. 7, we present density profiles obtained
with a more realistic model consisting of butylated graphane
platelets, whose interface with water resembles a hydrocarbon
SAMs surface.53,56 The interfacial structures show little
change upon replacement of smooth walls by a model
with molecular resolution,53 however, a somewhat enhanced
layering of atomic densities and less pronounced polarization
of surface water layer is observed in the latter case.

FIG. 8. Normal pressure acting on
the confinement walls with interven-
ing NaCl solution in metastable liquid
state for two pore widths: h = 1.64 nm
(left) or 2.7 nm (right) as a function
of NaCl molality in the bulk phase
(top). Wetting free energies of confine-
ment walls ∆γ≡ σ (h,m) as functions
of bulk NaCl molality at the two widths
of the pore (bottom). The symbols de-
note smooth wall (circles) and molecu-
lar wall (squares) systems.
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Finally, we consider the changes of two thermodynamic
properties, the mean of the normal component of the pres-
sure tensor between confinement plates, Pzz(h,m), and wetting
free energy σ(h,m), defined as the change of the confinement
grand potential Ω(h, A,m) per unit area (A) of wetted walls.
Note that, in the nanoconfinement, interfacial effects propagate
throughout the entire volume; hence, the wetting free energy
σ sums up contributions from the whole pore rather than the
surfaces alone. In Fig. 8, we show GCMC simulation results
for both quantities, presented as functions of the bulk molality
of NaCl. At both confinement widths we considered, the pres-
sure shows a notable increase with salt molality in the bulk
phase. While sampled pressures carry considerable numerical
uncertainty, the overall trend is unambiguously showing the
presence of salt to increase short-ranged repulsion, previously
observed11,42,72 between hydrophobic walls with neat interven-
ing water in metastable liquid state. At the same time, salinity
renders apolar walls more hydrophobic20,43,45 and stabilizes the
wall-wall contact configuration,45,73 which corresponds to the
globally stable state. The presence of salt leads to a wider gap
between the metastable (liquid) and stable (cavitated) branches
of free energy (grand potential Ω) vs. distance (h) profiles.42

The leading contribution to the difference between the two
branches is free energy of wetting, σ(h,m). In view of the
above, σ(h,m) is expected to increase with decreasing separa-
tion h and the effect should be intensified by salinity. These
trends are confirmed by comparing the dependence of σ on
mNaCl at two separations, h, shown in row 3 in Fig. 4. Specif-
ically, the difference σ(1.6 nm) − σ(2.7 nm) is 4 ± 2 mN m−1

in pure water and 19 ± 2 mN m−1 at mbulk = 6 mol kg−1. In
spite of the free energy increase of the (metastable) liquid
phase in the confinement, simulations have not shown salinity
to destabilize the liquid with respect to cavitation. Preserved
metastability can be rationalized by concurrent increase in the
nucleation barrier to cavitation due to the rise in liquid/vapor
surface tension at increased salinity of confined solution.

IV. CONCLUDING REMARKS

Nanopore wetting by salt solutions affects the perfor-
mance of corrugated electrodes, the catalyst function in ionic
reactions, decontamination of metal ions, dispersion stability,
and ion-assisted biointeractions. Molecular modeling can pro-
vide helpful insights into these processes. However, because
of huge energy changes upon addition or removal of ions,
standard open-ensemble methodologies cannot be used to
model adsorption processes of ions in GCMC simulations. We
describe an extension of the fractional ion-exchange approach,
previously applied in the osmotic ensemble for the bulk phase,
to confined electrolyte systems subject to incremental, multi-
step exchanges of both the solvent and salt molecules. Through
test calculations for NaCl solutions, we demonstrate that the
method enables rigorous modeling of pore/bath equilibria
without explicit inclusion of a bulk-like reservoir, which is
typically necessary in molecular dynamics studies along with
the use of laterally restricted pores.

Using fractional-exchange GCMC simulations in extended
hydrophobic nanopores, we show that salt molality features
a nonmonotonic dependence on pore width. Specifically, we

observe salt depletion (compared to the bulk value) in narrow
pores of width below 2 nm while molality is enhanced in about
twice wider pores. The addition of the electrolyte does not
promote capillary evaporation when confined water persists
in a metastable liquid state. While the presence of electrolyte
renders pore surfaces more hydrophobic,43 increasing the over-

all attraction between the walls, the moderate-range solvation
force in the metastable-liquid regime can actually acquire a
repulsive contribution. In the narrower pores, the wetting free
energy increases with bulk phase salinity, however, an opposite
trend is detected in twice wider pores, consistent with salt
depletion in the former, and (positive) adsorption in the latter
case. Planned extensions of our GCMC approach will enable
studies of combined effects of external electric field51,52,57 and
ion specificity74 to facilitate tuning surface free energy, uptake
of water and salt for potential use in capacitors, surface energy
storage, nanofluidics, and electromechanical actuation. Gen-
eralizing the described methodology to the reaction ensemble
Monte Carlo75 will also allow us to address reaction equilibria
in ionic solutions.
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