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RESEARCH ARTICLE

A Simple, Sensitive and Safe Method to
Determine the Human a/b-Tryptase
Genotype
Quang Trong Le, Sahar Lotfi-Emran, Hae-Ki Min, Lawrence B. Schwartz*

Department of Internal Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of
America

*lbschwar@vcu.edu

Abstract

The human tryptase locus on chromosome 16 contains one gene encoding only b-

tryptase and another encoding either b-tryptase or the homologous a-tryptase,

providing a:b gene ratios of 0:4, 1:3 or 2:2 in the diploid genome, these genotypes

being of potential clinical relevance in severe atopy. Using an EcoRV restriction site

in a- but not b- tryptase, PCR products, spanning intron 1 to exon 5, were used to

determine a/b-tryptase gene ratios using non-radioactive labels, including ethidium

bromide labeling of all PCR products, and either digoxigenin-primer or DY682-

primer labeling of only the final PCR cycle products. Sensitivity increased ,60-fold

with each final PCR cycle labeling technique. Ethidium bromide labeling

underestimated amounts of a-tryptase, presumably because heteroduplexes of a/b-

tryptase amplimers, formed during annealing, were EcoRV resistant. In contrast,

both final PCR cycle labeling techniques precisely quantified these gene ratios,

because only homoduplexes were labeled. Using the DY682-primer was most

efficient, because PCR/EcoRV products could be analyzed directly in the gel; while

digoxigenin-labeled products required transfer to a nitrocellulose membrane

followed by immunoblotting. This technique for determining the a/b-tryptase

genotype is sensitive, accurate, simple and safe, and should permit high-

throughput screening to detect potential phenotype-genotype relations for a/b-

tryptases, and for other closely related alleles.

Introduction

The human tryptase locus on chromosome 16 includes genes that encode a- and

b- tryptases [1], which are major protein products of human mast cells, lesser
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amounts being expressed by basophils, and none being expressed by other cell

types [2]. The locus includes one gene that always expresses a b-tryptase (TPSB2),

and another one that can express either a- or b- tryptase (TPSAB1). Thus, a:b
tryptase gene ratios are typically 0:4, 1:3 or 2:2, depending on whether the parental

TPSAB1 genes encode either a- or b- tryptase. Importantly, mature b-tryptase is

proteolytically active as a homotetramer, whereas mature a-tryptase is

proteolytically inactive, despite having 93% protein sequence identity to b-

tryptase [3–6], and pro and mature tryptase serve as biomarkers of human

diseases such as mastocytosis and systemic anaphylaxis [2]. A frame-shift

mutation in the b-tryptase gene, though uncommon, also has been detected at

TPSB2 in Caucasians and African Americans, but not in Asians, giving rise to a

truncated inactive form of b-tryptase, and when present, only full length b-

tryptase has been detected at the TPSAB1 locus, seemingly ensuring that everyone

expresses an active form of b-tryptase [7]. This locus also includes TPSD1, the d-

tryptase gene [1], originally called MMCP-7-like gene, harboring a mutation that

truncates the protein 40 amino acids short of 245 amino acid sequences of the

mature a/b-tryptases, likely making this a pseudogene [1, 8, 9], though one report

contests this conclusion [10]. TPSG1, the c-tryptase gene, encodes a transmem-

brane protease that is quite distinct from the a/b-tryptases [11, 12]. Measuring

allelic a/b-tryptase gene ratios can be a powerful approach toward detecting

potential involvement of a-tryptase on disease phenotypes. For example, in one

study the 2:2 but not 1:3 a:b tryptase genotype, compared to the 0:4 a:b genotype,

was associated with higher serum levels of IgE and more severe atopy [13].

PCR-sequencing was used initially to demonstrate that 20% of Caucasians and

African Americans, and 10% of Asians were a-tryptase gene deficient, but

incorrectly concluded these deficiencies were due to a deletion of the a-tryptase

gene rather than allelic heterogeneity and did not attempt to distinguish between

2:2 and 1:3 a:b tryptase genotypes [14]. One strategy distinguishing a- from b-

tryptase alleles utilizes restriction fragment length polymorphism methods. In

particular, an EcoRV restriction site in a-tryptase genomic DNA (gDNA)1 was

identified [15], that was later utilized to distinguish a (cleaved) from b
(uncleaved) tryptase gene PCR products [16], allowing the a:b tryptase gene ratios

(genotype frequency) to be calculated at 2:2 (0.21), 1:3 (0.50) or 0:4 (0.29), and

again finding that a-tryptase gene deficiency was higher in Caucasians (0.45) and

African Americans (0.26) than Asians (0.13). However, the use of ethidium

bromide to measure PCR amplimers and their cleavage products provided

potential ambiguity in distinguishing 2:2 from 1:3 a:b tryptase gene ratios,

because a/b-tryptase gene amplimers may form heteroduplexes that resist EcoRV

cleavage, increasing the apparent amount of the b-tryptase gene. This potential

limitation was overcome using a hot-stop technique, introducing radioactive

nucleotides only during the final PCR cycle, such that all labeled PCR products

were homoduplexes [17], and yielding a:b tryptase gene ratios (frequencies) of 2:2

(0.29), 1:3 (0.44), and 0:4 (0.26). However, radioactive agents are inherently

hazardous. Another technique used for quantitative tryptase genotyping involved

performing a high resolution melt curve on a 70 bp PCR product from Exon 4,
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having 6 nucleotide a:b mismatches [13]. This study reported an a-tryptase gene

deficiency of 57%, a genotype with 1 a-tryptase gene in 31%, 2 a-tryptase genes in

11%, and 3 a-tryptase genes in 1%, but utilized primers that recognize d-tryptase

as well as a- and b- tryptase genes. The d-tryptase amplimer, having 3 nucleotide

mismatches with a-tryptase and 5 with b-tryptases, may have affected the

apparent a/b genotype results calculated from the melt curves.

Using nonradioactive labelled primers not only eliminates the hazards of

working with radioactivity, but also may increase resolution and sensitivity

[18, 19]. We report a novel non-radioactive PCR genotyping method for

efficiently and accurately genotyping the ratios of a- and b- tryptase genes in

genomic DNA, utilizing a 39-primer, conjugated with an infrared-fluorescent

label, a technique that should be broadly applicable to quantification of other

duplicated genes with minor sequence differences. IRD-700 or DY862 label

detection at infrared wavelengths provides high sensitivity, in part due to the very

low background of infrared auto-fluorescence, being more sensitive than visible

fluorescence [19]. Furthermore, these dyes have excellent water solubility,

minimal nonspecific binding, and do not interfere with PCR. Compared to the

direct IRD fluorescent PCR method, using digoxigenin-labeled DNA primers for

PCR, detected with IRD-700-labeled anti-digoxigenin IgG, is very sensitive and

exhibits low levels of nonspecific binding compared to other techniques [20, 21].

Our new non-radioactive PCR/restriction enzyme digestion method for

determining allele-specific quantitative gene ratios offer several advantages over

other previous methods, including: (i) high sensitivity; (ii) ease of performance;

(iii) safety; and (iv) a stable labeled primer, and was used to determine the a:b-

tryptase genotypes in genomic DNA from 24 individuals.

Materials and Methods

Reagents

Betaine (B0300), Me2SO (DMSO), glycerin, phosphate-buffered saline, 2-(N-

morpholino)ethane sulfonic acid (MES), Hepes, Tris, EDTA, bovine serum

albumin, agarose, and MgCl2 (Sigma-Aldrich Chemical Company LLC, St. Louis,

MO); dNTP mix, gDNA purification kit, RNase-free DNase, and EcoRV

(Promega Company, Fitchburg, WI); ProbeQuant G-50 Micro column

(Amersham, Piscataway, NJ); FastStart Taq DNA Polymerase (Roche Diagnostics,

Indianapolis, IN); polyacrylamide gels (Invitrogen, Carlsbad, CA); goat affinity-

purified polyclonal IgG anti-digoxigenin (Vector Laboratories, Burlingame, CA);

and IRDye680RD-labeled affinity-purified donkey IgG anti-goat IgG (LiCor,

Lincoln, NE) were obtained as indicated.

Human mast cell leukemia cells (HMC)-1,obtained from a patient with mast

cell leukemia and provided by Dr. G. Gleich and Dr. J. Butterfield (Mayo Clinic,

Rochester, MN) [22], known to contain only bI and bIII variants of the b-tryptase

gene; [7] and Mono Mac-6 cells[23], a cell line established from a patient with

monoblastic leukemia and containing both a- and b- tryptase genes [24], were
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cultured in RPMI 1640 medium supplemented with 10% heat-inactivated fetal

calf serum, L-glutamine, penicillin and streptomycin at 37 C̊/5% CO2. Primary

human skin mast cells (SMCs), obtained from discarded surgical skin of 24

subjects (10 African Americans, 14 Caucasian or Latino), who ranged in age from

21 to 60 years, with written informed consent as approved by the Virginia

Commonwealth University Internal Review Board, were cultured in serum-free X-

Vivo-15 medium (Lonza Inc., Allendale, NJ) containing recombinant human SCF

(100 ng/ml)(provided by Swedish Orphan Biovitrum, Stockholm, Sweden) as

described [25].

Genomic DNA from SMCs, HMC-1, or Mono Mac-6 cells was purified using

the Wizard Genomic DNA Purification Kit (Promega, Madison, WI).

Oligonucleotides were synthesized and sequenced by the Nucleic Acid Core

facility at Virginia Commonwealth University. DY682 (IRD700 replacement,

MWG Operon, Huntsville, AL), [19] and digoxigenin– (Integrated DNA

Technologies, Coralville, IA) 39-labeled primers, stored frozen (220 C̊) at a

100 mM concentration in 10 mM Tris-HCl, pH 8.0, were obtained as indicated.

PCR

Allele-specific PCR genotyping was performed using standard PCR and ethidium

bromide labeling of the accumulated PCR product(s), or using DY682- or

digoxigenin–labeled primers as described below. Briefly, an initial PCR was

performed using unlabeled primers, the resultant product providing the template

for the final PCR cycle, in which DY682- or digoxigenin- labeled primers were

introduced. PCR was conducted with 2.5 ng of gDNA in a total volume of 25 ml,

containing PCR reaction buffer with dNTP (200 mM), Taq DNA polymerase

(0.75 U) and each primer (sense, 59-GCCCTGCCCTGTGAGGCCC-39; antisense,

59-CCGTGTAGGCGCCAAGGTG-39) (0.5 mM). These primers, as described [16],

uniquely recognize a/b-tryptase genes, and do not recognize other tryptases,

including d- and c- tryptases. The sense and antisense primers complement

nucleotide sequences located in intron 1 and exon 5, respectively, and amplify a

1028 bp region from b-tryptase gDNA and a 1017-8 bp region in a-tryptase

gDNA (due to a 10 or 11 bp deletion in intron 4), but an EcoRV restriction site

resides only in the a-tryptase amplicon, being located in exon 4. EcoRV cleavage

of the a–tryptase gene product yields fragments of 678 bp (59 side, unlabeled) and

339–40 bp (39 side, labeled). PCR using unlabeled primers begins with a

denaturation step at 94 C̊ for 5 min (one cycle), followed by 35 cycles consisting

of 94 C̊ for 30 sec, 60 C̊ for 60 sec and 72 C̊ for 60 sec. To eliminate a/b-tryptase

heteroduplexes from the final labeled PCR product, the final PCR cycle was

performed after DY682 39-labeled or digoxigenin 39-labeled primer was added to

the PCR react mixture, thereby ensuring that only homoduplexes were labeled.

Human mast cell tryptase genes are GC-rich (67–68%), making its amplifica-

tion more difficult. The use of several additives during PCR was explored to

improve amplification, including betaine, DMSO, glycerol and ethylene glycol.

These agents were diluted in water and added in varying concentrations to PCR
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reaction mixtures, final concentrations being 1–10% for DMSO or 0.5–2.5 M for

the others.

Restriction enzyme digestion and analysis of PCR products

The PCR products derived from gDNA were digested with EcoRV (GAT//ATC

recognition sequence) for 3–4 h, according to the manufacturer’s instructions,

and then subjected to electrophoresis in 1.2% agarose gels. For PCR genotyping,

the fluorescent bands in the gel were directly imaged using the FluorChemTm Q

system and analyzed with AlphaView SA software (ProteinSimple, Santa Clara,

CA) after ethidium bromide labeling or the Odyssey system (LI-COR Biosciences,

Lincoln, NE) after labeling with the DY682-tagged 39-primer. After PCR using the

digoxigenin-labeled primer, DNA products were transferred to a positively

charged nylon membrane using a semi-dry transfer cell (Bio-Rad Laboratories

Inc., Hercules, CA) under a constant amperage (50 mA, 25 V max for 1 h). The

nylon membrane was then baked in a vacuum to link the DNA to the membrane,

blocked for 1 h at room temperature in 2x Licor blocking reagent, and then

incubated with goat polyclonal anti-digoxigenin IgG at 1:1000 dilution for 2 h.

After washing, the membrane was incubated with IRD700-conjugated secondary

donkey IgG anti-goat IgG at a 1:10,000 dilution for 30 min before being washed,

imaged and analyzed on the Odyssey system. Neither DY682- nor digoxigenin-

labeled product appeared to inhibit EcoRV restriction endonuclease activity.

DNA sequencing

Sequencing of PCR products was used to detect allelic differences. The presence of

a- and b- tryptase genes in cell lines was analyzed in PCR products obtained after

35 cycles of 94 C̊ for 30 sec, 58 C̊ for 60 sec, and 72 C̊ for 60 sec as described

above using non-labeled primer sets. The PCR products were analyzed by direct

sequencing with a BigDye Terminator Cycle Sequencing Kit (Life Technologies,

Grand Island, NY) on an automated sequencer, the 3130xl Genetic Analyzer

(Applied Biosystems, Life Technologies).

Statistics

Data groups followed a normal distribution and were analyzed by either a

student’s T test if only two groups were involved or ANOVA (all pairwise

comparisons used the Holm-Sidak test) if there were more than two groups.

Results

Detection of a/b-tryptase genes in gDNA

As expected, HMC-1 cell DNA after PCR/EcoRV yields a single band of 1017-

28 bp (Fig. 1, all three panels), while Mac-6 cell DNA, known to have an ab:ab
tryptase genotype (9), yields bands of 1017-28, 678 and 339-40 bp after ethidium

Human a/b-Tryptase Genotype
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bromide labeling (Fig. 1, upper panel) or bands of 1017-28 and 339-40 bp with

DY682- or digoxigenin- labeled 39-primer (Fig. 1, middle or lower panel,

respectively), indicating that HMC-1 cells contain only the b-tryptase gene, while

Mac-6 cells contain both a- and b-tryptase genes. DNA extracted from SMCs

from two different subjects show only b tryptase DNA from SMC1, and both a

and b tryptase DNA from SMC2. The presence of only b tryptase genes or of a

mixture of a and b tryptase genes was confirmed by DNA sequencing, as indicated

by the sequencing results above the panels in Fig. 1, showing the presence of the

GATATC EcoRV sensitive a-tryptase DNA site along with the GACATC

insensitive b-tryptase DNA site in the DNA PCR product from Mac-6 and SMC2

cell DNA, but only the GACATC insensitive site from HMC-1 and SMC1 cell

DNA. These results demonstrate that the new nonradioactive PCR genotyping

methods could be efficient tools for allele discrimination in genotyping.

Sensitivity of a/b-tryptase gene detection by PCR

To assess the sensitivity of PCR using the DY682 or digoxigenin labeled primer

compared to ethidium bromide labeling, the amount of genomic DNA was varied,

as shown in Fig. 2. The band intensities obtained by the DY682 and digoxigenin

labeled primer showed strong linear relations with the log of the DNA dose (r2

values of 0.99), whereas ethidium bromide-labeled band intensities showed less

Fig. 1. Standard and new PCR/restriction enzyme-based methods for a and b tryptase genotyping.
Genomic DNA extracts from HMC-1, Mac-6 and two SMC preparations were each tested for the presence of b
and a-tryptase genes by three different methods, each using the same 59 and 39 PCR primer pair as described
in Methods. When the 1017-28 bp amplimers were exposed to EcoRV, the a-tryptase amplimer yielded 678
and 339-40 bp fragments. After labeling with ethidium bromide, all such products were detected (upper
panel). In contrast, only the high molecular weight amplimer and 339-40 bp fragment were visualized using
either DY682- (middle panels) or digoxigenin- (lower panels) labeled 39-primer. DNA sequence analyses of
the restriction site are shown above the corresponding gel electrophoresis pattern.

doi:10.1371/journal.pone.0114944.g001
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linearity. Furthermore, the standard PCR/ethidium bromide method was able to

detect a specific PCR product with as little as 1.3 ng gDNA, whereas the DY682

and digoxigenin-labeled primers enabled detection of the PCR product with only

0.02 ng of DNA, providing an approximately 60-fold increase in sensitivity.

Fig. 2. Sensitivity of standard ethidium bromide and new PCR amplimer detection methods for a/b-
tryptase genes. Purified gDNA from a SMC preparation having both a- and b- tryptase genes and from MAC-
6 cells, in each case at doses ranging from 0.02 to 81.9 ng, were subjected to PCR and labeled using
ethidium bromide (top panels), or to PCR with DY682- (middle panels) or digoxigenin- (bottom panels) labeled
39-primer. In each case labeled 1017-28 bp amplimer bands are shown along with the net fluorescence in the
corresponding plots, representing three independent experiments (data in S1 Table).

doi:10.1371/journal.pone.0114944.g002
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Comparative accuracy of a:b tryptase genotype determination by

PCR/EcoRV

The accuracy of the three genotyping methods was compared in Fig. 3 using

gDNA from SMCs with b:a tryptase gene ratios of 4:0 (bbbb), 3:1 (bbba), and 2:2

(bbaa). Using 39-labeled primers, experimental percentages of b-tryptase genes

were essentially identical to those predicted, whereas after ethidium bromide

labeling the experimental percentages deviated upward from the predicted

percentage of the b-tryptase genes when the genotype was 2:2 (bbaa), and

exhibited greater variability at both the 2:2 and 3:1 ratios such that the mean

percentages at these ratios were not significantly different than one another

(p50.14, Student t-test). The actual measured percentages of b-tryptase genes for

known b:a tryptase gene ratios of 2:2; 3:1 and 4:0, respectively, using DY682-

labeled primer were 49.6¡0.7, 75.1¡0.6, and 100¡0, using digoxigenin-labeled

primer were 49.6¡2.5, 74.1¡2.4 and 100¡0, and using ethidium bromide

labeling were 59.0¡10.8, 76.1¡11.9 and 100¡0. In contrast to the comparison of

gene ratios at 3:1 and 2:2 with ethidium bromide-labeled bands, which were not

significantly different from one another (p50.06), those with DY682- or

digoxigenin- labelled bands were each significantly different than one another

(p,0.001) by ANOVA. Each of the three techniques enabled distinction between

Fig. 3. a/b-Tryptase genotyping using EcoRV-digested amplimers. EcoRV-digested amplimers were
labeled with ethidium bromide after gel electrophoresis (top panels) or, during the final PCR cycle with DY682
(middle panels) or digoxigenin (bottom panels) labeled 39-primer. gDNA from SMCs with known bbbb, bbba
and bbaa genotypes, defined as 4:0, 3:1 and 2:2 b:a ratios, were utilized. Experimentally calculated
percentages of the b-tryptase gene were plotted against the known percentages of b-tryptase (n53, mean ¡

SD). Standard deviations were too small to visualize the error bars in the 50 and 75%b-Tryptase (theoretical)
values for the middle plot. Data is stored in S2 Table.

doi:10.1371/journal.pone.0114944.g003
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3:1 and 4:0 genotypes (p,0.04 for ethidium bromide; p,0.001 for DY682 and

digoxigenin). Because the a- and b-tryptase genes are 93% homologous,

heteroduplexes of a/b-tryptase gene products likely formed during the annealing

phase of PCR, and these heteroduplexes are resistant to EcoRV enzymatic

digestion, leading to a higher apparent level of b-tryptase genes.

Using enhancers to improve the sensitivity of PCR of a/b-tryptase
genes

The %GC content of the amplified tryptase gene sequences is about 68%, which

can decrease the PCR efficiency. To optimize PCR in the current study, several

additives were examined, including ethylene glycol, betaine, glycerol and DMSO,

as described for PCR of other GC-rich DNA domains [26–29]. Ethylene glycol or

betaine facilitate strand separation by altering the DNA melting characteristics

and increasing the resistance of Taq polymerase to denaturation, while DMSO

weakens hydrogen bonding, improving the specificity of primer annealing and

preventing premature terminations due to intra and inter strand annealing

[28, 29]. To determine at what concentration these additives optimized the

generation of full-length amplimers from a/b-tryptase genes using gDNA from

SMCs or MAC-6 cells, DMSO (1 to 10%) and ethylene glycol (0.5–2.0 M), betaine

(0.5–2.0 M) and glycerol (0.5–2.0 M) conditions were examined, as shown in

Fig. 4. Ethylene glycol (0.5–1.5 M) and betaine (0.5–1.5 M) greatly and

comparably improved the efficiency of amplification of the 1017-28 bp tryptase

gene products, 1 M ethylene glycol by 2.9¡0.5 fold for DY682 and 2.5¡0.2 fold

for digoxigenin and 1 M betaine by 2.9¡0.3 fold for DY682 and 2.6¡0.3 for

digoxygenin, calculated as the band signal intensity ratio (‘with’ over ‘without’

each enhancing agent, mean ¡ STD) using the Odyssey system. DMSO inhibited

the PCR amplification at high concentrations, whereas neither DMSO nor

glycerol had an apparent enhancing effect. Thus, ethylene glycol and betaine were

the most effective PCR enhancers, and 1.0 M betaine was chosen for the standard

method.

Genotyping of individuals

PCR using DY682-labelled primer was performed to investigate the a/b tryptase

genotype on 24 subjects, as shown in Fig. 5. Subjects grouped into the 2:2 and 1:3

a:b-tryptase genotypes showed no overlap, mean ¡ STD (range) values being

1.02¡0.05 (0.93–1.07) and 2.97¡0.09 (2.8–3.1), respectively, and means were

significantly different (P,0.001).All subjects had b-tryptase gene amplimers,

while 17 of the subjects also had an a-tryptase gene. The frequency of the a-

tryptase allele (af) at the single locus where this gene resides was 0.52, whereas the

overall frequency of the a-tryptase allele at both a/b-tryptase loci (a9f) was 0.26;

yielding an overall b9f value of 0.74. The respective 2:2, 3:1 and 4:0 b:a tryptase

gene ratios were 0.25, 0.46, and 0.29, showing Hardy-Weinberg Equilibrium

Human a/b-Tryptase Genotype
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(X250.62; P50.43 with 1 degree of freedom), [30] consistent with prior reports

[16, 17].

Discussion

PCR of homologous a/b-tryptase genes, using a primer set that recognizes both

alleles, results in a mixture of homo- and hetero- duplexes. Using EcoRV to

discriminate the a-tryptase amplimer, containing a susceptible restriction site,

Fig. 4. A comparison of potential enhancers on the PCR of a/b-tryptase gDNA using DY682-labeled (left
panels) or digoxigenin-labeled (right panels) 39-primer. The effects of ethylene glycol (0.5 to 2.5 M),
betaine (0.5 to 2.5 M), glycerol (0.5 to 2.5 M), DMSO (0.5 to 10%) or no additive was examined on PCRs
performed with gDNA amounts of 0.3-0.5 ng and Taq DNA polymerase of 0.75 U per PCR with ethylene
glycol or betaine, or 1.2–2.0 ng of gDNA and 1.25 U of Taq DNA polymerase per PCR with glycerol or DMSO.
Representative images of the 1017-28 bp amplimers from three independent experiments are shown. Band
intensity data is stored in S3 Table.

doi:10.1371/journal.pone.0114944.g004

Fig. 5. Tryptase genotyping in healthy subjects. a/b-Tryptase genotyping was performed with gDNA
obtained from SMCs of 24 subjects. EcoRV digestions of PCR amplimers labeled during the final cycle with
DY682-labeled 39-primer were performed. Gel images are shown for 3 of the 24 samples analyzed, 2 with a
b:a ratio of 3:1 and 1 with a ratio of 2:2. The 17 samples in which the a-tryptase gene was detected are shown
in the plot, where those with a 2:2 or 3:1 genotype are grouped together. Data is stored in S4 Table.

doi:10.1371/journal.pone.0114944.g005
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from the b-tryptase amplimer, having no such restriction site, can be problematic

due to the formation of a/b-tryptase heteroduplexes as a and b- tryptase

amplimers can anneal to one another, and these heteroduplexes lack susceptibility

to cleavage by this restriction enzyme. By utilizing a labeled primer during the

final PCR cycle, the labeled amplimers contain only homoduplexes of a or b
tryptase gene products. This most likely explains why ethidium bromide labeling

failed to discriminate between ab:ab (2:2) and ab:bb (1:3) tryptase genotypes

(Fig. 3); variable formation of a/b-tryptase heteroduplexes likely increased the

apparent amount of the b gene product. In contrast, the 2:2 and 3:1 b:a genotypes

were discriminated from one another by both the DY682 and the digoxigenin

techniques (Fig. 3 and 5). Also, the DY682- or digoxigenin- labeled 39 primer

together with infrared fluorescent signaling as employed in the current study

resulted in a very low background and a strong fluorescent signal, improving

sensitivity compared to ethidium bromide labeling of amplimers and their

fragments by about 60-fold, while avoiding the hazards of working with

radioactivity. However, because the fluorescence of DY682-labeled products could

be assessed directly in the gel, while detection of digoxigenin-labeled products

required blotting followed by immunolabeling, the former takes only a few hours

to perform and was considered the best technique. Thus, the PCR/restriction

enzyme technique for determining the a/b-tryptase genotype is sensitive, accurate,

efficient and safe, and should permit high throughput screening to detect

potential phenotypes due to the presence of the a-tryptase gene, and be applicable

to analogous situations with other closely related alleles.

Supporting Information

S1 Table. Fig. 2 data.
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S2 Table. Fig. 3 data.

doi:10.1371/journal.pone.0114944.s002 (PDF)

S3 Table. Fig. 4 data.
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S4 Table. Fig. 5 data.
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