Mathematical Modeling for the Transmission Dynamics of \textit{Mycobacterium marinum} Incorporating Intra-host Variability

Lihong Zhao

University of Louisiana at Lafayette, lzhao@louisiana.edu

Follow this and additional works at: http://scholarscompass.vcu.edu/bamm

Part of the Immunology of Infectious Disease Commons

http://scholarscompass.vcu.edu/bamm/2017/thursday/5
Mathematical Modeling for the Transmission Dynamics of 
*Mycobacterium marinum* Incorporating Intra-host Variability

Azmy S. Ackleh, Karyn L. Sutton, and Lihong Zhao  
Department of Mathematics  
University of Louisiana at Lafayette  
Lafayette, LA

**Abstract**

*Mycobacterium marinum* (Mm) is one of the closest genetic relative to *Mycobacterium tuberculosis* (Mtb), the bacterium that causes human TB, it establishes chronic infections in a variety of fish species and presents similar pathology. We extend the recently developed model of Mm transmission dynamics in aquatic animals, by allowing the intra-host progression rates to be sampled from an unknown probability distribution. This more general model consists of a nonlinear hyperbolic partial differential equation coupled with five nonlinear ordinary differential equations. We develop a second order approximation scheme to approximate the solution, and establish the convergence to a unique bounded variation weak solution of the model. We also provide examples of the approximated model and improved agreement to data.